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The heart is a person's fundamental organ. Heart sounds can help support healthcare 

workers by aiding in the early diagnosis of irregular heart rhythms. This study 

developed a system to categorize heart sounds by employing logistic regression as the 

classifier and the grey-level co-occurrence matrix as the classifier. For this reason, the 

GLCM technique was assessed in this work for feature extraction in the heart sound 

categorization. Moreover, the diagnostic heart sound analysis and classification 

procedure can be greatly improved by visualizing heart sounds using the Grey Level 

Co-occurrence Matrix (GLCM). The three data classifications for heart sounds are 

artifact, murmurs, and normal. Moreover, the heart sound is converted into the time-

frequency domain using the short-time Fourier transform (STFT). The gray-level co-

occurrence matrix approach is a useful tool for extracting the energy distribution in 

STFT. Dissimilarity, correlation, homogeneity, contrast, energy, and angular second 

moment (ASM) are the characteristics of the GLCM extraction. With dissimilarity 

offering the most feature extraction, logistic regression yields an 82% classification 

accuracy. The AUC value of 0.7 for the murmur class indicated that the feature and 

classification model had reduced sensitivity, but it performed well for the normal and 

artifact classes. This is because there are too few datasets for the murmur class. More 

abnormal class datasets are hoped to be contributed in the future in order to improve the 

classifier model. 
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1. INTRODUCTION

Every human being's heart is their central organ. The 

purpose of the heart is to circulate blood throughout the body. 

The heart is situated between the fourth and sixth ribs on the 

left side of the chest. Because the heart beats instinctively and 

autonomously, it is an organ whose function is not controlled 

by the brain [1]. The diagnosis results are highly influenced by 

the subjectivity of the physician, as they need expertise and 

sensitivity to diagnose normal or abnormal heart sounds, often 

known as pathological murmurs. An essential diagnostic 

technique for cardiac disease is auscultation, a low-cost 

screening technique. Issues with valvular function and heart 

disease diagnosis are related to heart valves. The range of 

frequencies for normal heart sounds is 20 Hz to 500 Hz, 

whereas the range for aberrant heart sounds is up to 1000 Hz. 

A murmur is the result of an improper valve opening or 

stenosis, which makes blood flow through a restricted aperture 

and causes blood to backflow [2]. Digital signal processing 

techniques have been used in numerous researches to diagnose 

cardiac problems because heart sound assessment is still 

highly subjective [3]. 

Early detection of abnormal heart sounds is needed and can 

also be used to support healthcare professionals [4]. Several 

studies have been carried out to develop heart sound 

classification applications. Hamidi et al. classified cardiac 

sound signals using fractal dimension and curve fitting [5]. 

Using the closest neighbor as a classifier, the approach was 

evaluated on three datasets and yielded the maximum accuracy 

of 92%. The fractal approach was also employed by Juniati et 

al. [6] and Komalasari et al. [7] with a promising accuracy of 

up to 100% for regular and murmurs. Fauzi et al., meantime, 

categorizes cardiac sounds using statistical traits and empirical 

mode decomposition (EMD). When using KNN as a classifier 

[8], the highest accuracy is 98.2%. Other researchers have also 

processed cardiac sounds using the time-frequency domain. 

Wang et al. extracted features using wavelet-time entropy [2]. 

Excellent classification findings have been obtained from 

some of these experiments. However, another viewpoint is 

required to visualize and analyze heart sound texture while 

conducting research. Similar to the subsequent study, a heart 

sound spectrogram acquired from STFT was processed using 

the Grey Level Difference Matrix (GLDM) [9]. 73% accuracy 

was the best accuracy achieved when using SVM as a 

classifier. Nonetheless, the findings of this study are still 

regarded as inadequate and have room for improvement. 

GLDM seeks to extract the heart sound spectrogram's 

texture [9]. Other techniques, such GLCM, can be applied in 

addition to GLDM. This is the reason that the GLCM approach 

was evaluated in this work for feature extraction in the 
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classification of heart sounds. Furthermore, visualizing heart 

sounds using GLCM can significantly enhance the diagnostic 

heart sound analysis and categorization process. GLCM is 

used for feature extraction in image processing, which is then 

used for classification with machine learning. The results of 

previous research are good, especially for biomedical image 

processing, with an accuracy level above 80% [10-13]. 

Previous research was also carried out for sound classification 

with GLCM, with accuracy results of up to 90% [14]. This 

could be the basis for a similar development of heart sounds to 

classify abnormal classification. GLCM uses textural features 

from heart sound spectrograms to discover patterns linked to 

various heart conditions [15]. To convert the signal from one 

dimension to two dimensions, heart sounds are converted into 

the time-frequency domain. After that, normalization is done 

to make the SFTT value equal to the image's pixel value. The 

transformed image from the heart sound spectrogram is 

subjected to GLCM, and its properties are computed. It is 

anticipated that the accuracy that results would be better than 

the GLDM approach in earlier studies. This study makes use 

of a number of models created to identify which GLCM 

feature produces the most accurate model for categorizing 

heart sounds. All GLCM features such as Dissimilarity, 

Correlation, Homogeneity, Contrast, ASM and Energy with 

directions 0°, 45°, 90° and 135°. 

2. MATERIAL AND METHODS 

 

The research methodology is presented in Figure 1. STFT is 

used to convert heart sounds into spectrograms. This 

spectrogram is then transformed into an 8-bit picture with a 0-

255 pixel value range. Then, with directions of 0°, 45°, 90°, 

and 135° and a one-pixel distance, GLCM is utilized to extract 

features such as Dissimilarity, Correlation, Homogeneity, 

Contrast, ASM, and Energy. The GLCM process produces 

four feature extractions from a single GLCM technique, 

producing six GLCM methods with 24 feature extractions 

from all the feature extraction processes. Each GLCM method 

for all directions, for example, dissimilarity with 0°, 45°, 90° 

and 135° (four features), is trained with several machine 

learning methods using GridSearchCV to get the best 

parameter per model with third cross-validation [16]. The 

process's primary goal is to choose the best GLCM feature 

with a validation process machine learning model. KKN, SVM, 

AdaBoast, Random Forest, Stochastic Gradient Descent, 

Decision Tree, and Logistic Regression are a few machine-

learning techniques used in this research [17]. The final result 

from all the training processes is that Logistic regression is the 

best machine learning model. 

 

 

 
 

Figure 1. Diagram block of proposed method 

 

2.1 Dataset 

 

The present study employed a dataset to investigate 

potential anomalies in cardiac auscultation. The dataset 

utilized in this study was acquired from Kaggle with the 

purpose of studying the application of machine learning 

techniques. Digital stethoscopes are utilized to collect 

recordings of cardiac sounds. The data was obtained from two 

distinct sources: (A) The general population, who provided 

their data through the iStethoscope Pro iPhone application, and 

(B) A hospital study that utilized the Digiscope digital 

stethoscope [18, 19]. Every recording is appended with labels 

designating the S1, S2, systole, and diastole phases of the 

cardiac cycle. The dataset used has been labelled, and there are 

three sound classes: 1. Normal Heart Sounds 2. Murmur Heart 

Sounds 3. Artifact. An artifact exhibits functionality when the 

auditory signal differs from the characteristic heart sounds or 

heart murmurs. The duration of the dataset ranges from 1 

second to 30 seconds. In the dataset pertaining to normal 

cardiac sounds, there were 320 instances, accounting for 

70.32% of the total. Additionally, there were 95 occurrences 

of murmurs, representing 20.87% of the dataset, while artifacts 

constituted 40 instances, making up 8.79% of the dataset. 

Metrics other than accuracy are essential to grasp performance 

when assessing models for unbalanced datasets. Confusion 

metrics, accuracy, recall, F1 score ROC curve, in particular, 

offer a more complex picture of a model's efficacy [20]. The 

dataset typically contains recordings from multiple subjects 

covering a range of ages and health conditions. Both pediatric 

and adult heart sounds are included to account for variations 

in heart sound characteristics across different demographics 

[19]. 

 

2.2 Short time Fourier transform dataset 

 

STFT is a widely used technique in signal analysis that 

enables the examination of signal frequencies and the 

segmentation of signals into distinct time intervals. The Fast 

Fourier Transform (FFT) is utilized to convert the segmented 

signal into the frequency domain. STFT is a signal processing 

technique that allows for the visualization of an input signal in 

both the time and frequency domains. This is achieved by 

applying a window function to the signal, which enables the 

analysis of specific time intervals within the signal. The 

mathematical representation of STFT calculation is given by 

Eq. (1) [21]: 
 

𝑋𝑆𝑇𝐹𝑇 [𝑚, 𝑛] = ∑ 𝑥[𝑘]𝑔[𝑘 − 𝑚]𝑒−𝑗2𝜋𝑛𝑘/𝐿
𝐿−1

𝐾=0
 (1) 

 

The signal x[k] is denoted as the input, whereas g[k] 

represents the L-point window function. The Short-Time 

Fourier Transform (STFT) is a mathematical operation that 

applies the Fourier transform to a given signal x[k], utilizing a 

window function g[k]. This research uses the Window function 

are, the Kaiser-Bessel window, with the number of FFT at 512. 
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STFT spectrogram converted to an 8-bit picture with a 0-255 

pixel value range. 

 

2.3 Feature extraction using GLCM 

 

The GLCM technique is a texture analysis approach that 

computes the co-occurrence of two pixels separated by a 

specific distance [22]. The spatial distribution of pixels in an 

image can be computed using GLCM. The GLCM approach 

generates a co-occurrence matrix, from which several 

attributes are computed. A pair of pixels' coordinates are 

separated from the orientation angle θ by a distance d. Angles 

are expressed in degrees, and distances are expressed in pixels. 

Angle forms in angle orientation include 0°, 45°, 90°, and 135°, 

with a pixel-to-pixel spacing of one in this research. In GLCM, 

the extraction of characteristics or features is used in this 

research. The features used are as follows: 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ 𝑃(𝑖, 𝑗)2

𝑗𝑖
 (2) 

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑ ∑
𝑃(𝑖, 𝑗)

1 + |𝑖 − 𝑖|𝑗𝑖
 (3) 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑
(𝑖 − 𝜇𝑖)(𝑖 − 𝜇𝑖)𝑃(𝑖, 𝑖)

𝜎𝑖𝜎𝑗𝑗𝑖
 (4) 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑ (𝑖, 𝑗)2𝑃(𝑖,𝑗)
𝑗𝑖

 (5) 

 

𝐴𝑆𝑀 = ∑ ∑ (𝑃(𝑖, 𝑗))2

𝑗𝑖
 (6) 

 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ ∑ |𝑖 − 𝑗|
𝑗

. 𝑃(𝑖, 𝑗)
𝑖

  (7) 

 

2.4 Logistic regression 

 

In this research, several machine learning methods were 

used and tested, such as KKN, SVM, AdaBoast, Random 

Forest, Stochastic Gradient Descent, Decision Tree, and 

Logistic Regression. The GridSearchCV function is also used 

to help find the best parameters for each model. The results 

obtained from pre-research found that simple models, such as 

logistic regression, were the best models of all those tried. The 

representation of results described is the best model of logistic 

regression. 

One type of regression technique used for binary 

classification is called logistic regression. The class output is 

defined by this approach by utilising the probability of 

instances that measure with the sigmoid function. The output 

is predicted using Eq. (8).  

 

�̂� {
0 𝑖𝑓 �̂� < 0.5 
1 𝑖𝑓 �̂� ≥ 0.5 

 (8) 

 

Because the problem in this research is multiclass, the 

Softmax function is used to decide the classification results 

from the output value of the function for each class by 

calculating the probability of each class is shown in Eqs. (9) 

and (10). The highest probability is the prediction result from 

the logistic regression model. From the description above, the 

logistic regression model is simple and is even the basic 

algorithm of the classification model [23]. 

𝑆𝐾(𝑥) = 𝑋𝑇𝜃(𝑘) (9) 

 

�̂�𝑘 = 𝜎(𝑠(𝑥))𝑘 =
exp(𝑆𝑘(𝑥))

∑ exp(𝑆𝑗(𝑥))𝑘
𝑗=1

 (10) 

 

 

3. RESULTS AND DISCUSSION 

 

 
(a) 

 
(b) 

 

Figure 2. (a) Normal heart sound; (b) Spectrogram of normal 

heart sound 

 

 
(a) 

 
(b) 

 

Figure 3. (a) Murmur heart sound; (b) Spectrogram of 

murmur heart sound 
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Figures 2 and 3 present visual representations of both 

normal cardiac sound signals and murmurs, together with the 

corresponding spectrums that come from these acoustic 

phenomena. A spectrogram can be visualized as a two-

dimensional image that exhibits a texture indicative of the 

energy distribution of a signal over both the time and 

frequency domains. Prior to performing feature extraction 

using GLCM, a conversion process is undertaken to transform 

the values obtained from the spectrogram into integer values 

ranging from 0 to 255, as has been previously demonstrated in 

prior research [9]. 

 

 
 

Figure 4. Distribution of several GLCM in the 0° direction 

(a) Dissimilarity; (b) Correlation; (c) Homogeneity; (d) 

Contrast; (e) ASM; (f) Energy 

 

As stated earlier, this study utilized six features that were 

computed at four different angles: 0°, 45°, 90°, and 135°. In 

Figure 4, a boxplot illustrates the computed values distribution 

of data for each class for each feature in the 0° orientation. 

There is a tendency for all distribution data per each class trait 

to overlap with one another, as shown in each graph for each 

feature. This pattern of distribution data per class suggests that 

this could lead to a comparatively reduced level of accuracy. 

Table 1 displays the results of classification tests for each 

feature in each direction. The contrast in the 90° direction 

produced the highest accuracy when utilizing a single 

characteristic, at 75%, while the 90° direction dissimilarity 

gave the second-highest accuracy, at 74%. This outcome is 

better than earlier studies that extracted features using GLDM 

with only two classes of data, yielding an accuracy of 73% for 

features in a single direction [9]. The pretty good accuracy 

obtained with only one feature demonstrates the significant 

potential for increased accuracy by including other parameters.  

 

Table 1. Training results for all features 

 

Feature 
Accuracy (%) 

0° 45° 90° 135° 

Dissimilarity 72 70 74 70 

Correlation 70 70 70 70 

Homogeneity 71 71 70 71 

Contrast 71 70 75 70 

ASM 70 70 70 70 

Energy 70 70 70 70 

 

Next, testing was done with all features (24 features) and all 

degree of each type of feature extraction (every 4 features), 

with training data comprising 90% and test data comprising 

10% of the 455 total features. It is evident that even with an 

increase in the number of attributes, the rise is not statistically 

significant. In addition to using all the features, other 

classification methods, such as SVM, KNN, and Logistic 

regression, are also compared. Determining the optimal 

parameters for all classifier is the next step towards improving 

accuracy. This is why GridSearchCV, a method for selecting 

the best parameters from a range of parameters applied to a 

subset of data, is used with third cross validation [24]. It was 

found that logistic regression obtained greater accuracy than 

SVM and KNN. The Dissimilarity and Contrast features have 

the best accuracy from the previous model test in Table 1, and 

this combined test also show in Table 2, that the highest 

accuracy is in the same feature. Dissimilarity had the highest 

score, 82.64%, among the other categories. 

 

Table 2. All degree GLCM feature extraction accuracy 

machine learning 

 

Feature 

Accuracy 

SVM 
Logistic 

Regression 
KNN 

Dissimilarity 72.97% 82.64% 77.14% 

Correlation 72.75% 70.33% 72.97% 

Homogeneity 70.33% 70.33% 74.51% 

Contrast 70.33% 76.49% 76.92% 

ASM 69.45% 70.33% 69.23% 

Energy 70.33% 70.33% 70.11% 

All feature 70.33% 78.03% 76.92% 

 

Dissimilarity is the best feature that can be extracted from 

GLCM. Therefore, we reserve this feature's use for testing 

many other performance metrics. The performance results 

from the all machine learning model using the dissimilarity 

feature are shown in Figure 5 and Table 3, which in this 

example include the confusion matrix, precision, recall, and 

F1 score. 

Because each class's data size is not balanced, 

measurements using these parameters are required. These 

findings show that although the accuracy of the model with 

feature dissimilarity is generally not outstanding, the precision, 

recall, and F1 Score values for the normal class are still 

excellent when compared to other classes, is shown in Figure 

5. However, only the logistic regression method could classify 

the murmur class well, as seen in Figure 5(a) and Table 3, with 

a recall value reaching 100%. Meanwhile, for SVM, the model 

cannot classify this class well with a recall value of even 0%, 
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as can be seen in Figure 5(b) and Table 3. The artifact class is 

also not classified well for each model, even though the 

boxplot in Figure 4 clearly illustrates this class's pattern. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 5. Confusion matrix dissimilarity feature from 

machine learning method: (a) SVM; (b) Logistic regression; 

(c) KNN 

 

In Figure 6, other measurement results are carried out using 

the ROC curve from one class to another (one versus rest 

classifier) from logistic regression as best machine learning 

model. From the curve, the area under the ROC curve (AUC) 

value for the normal and artifact classes is considered very 

good because it is close to 1, but had lower sensitivity for the 

murmur class, with an AUC value of 0.7. The average value 

of the AUC for each class is still 0.93. These results show that 

the resulting model is still able to classify each class well, even 

though the accuracy obtained is only 82%. 

 

Table 3. Performance Softmax regression with dissimilarity 

feature training results for all classes 

 

Classes 
Precision 

SVM Logistic Regression KNN 

Normal 100% 97% 97% 

Murmur 0% 50% 38% 

Artifact 50% 50% 50% 

Classes 
Recall 

SVM Logistic Regression KNN 

Normal 0.86 90% 88% 

Murmur 0 100% 75% 

Artifact 0.25 33% 50% 

Classes 
F1-score 

SVM Logistic Regression KNN 

Normal 92% 93% 92% 

Murmur 0% 67% 50% 

Artifact 33% 40% 50% 

 

 
 

Figure 6. ROC for one versus rest for each class 

 

The results of the research above are better than those of 

research on lung sound classification using GLDM, which had 

the highest accuracy of 73% [9]. This method uses the 

distribution of signal energy in the time-frequency domain, 

which is analyzed using the texture analysis method. The 

spectrogram analysis technique differs from that of 

Shanthakumari and Priya [25]. Shanthakumari uses 

morphological features in spectrograms, such as energy, 

entropy, variance, and waveform length. The weakness of 

texture analysis in heart sound analysis is the low image 

contrast because the heart sound energy is relatively low. 

Apart from that, the frequency of heart sounds is also low. The 

image produced from a spectrogram is also greatly influenced 

by spectrogram parameters, such as N-FFT, window width, 

and sampling frequency [24]. The resulting combination of 

parameters and characteristics can increase accuracy in 

subsequent research. Apart from that, the feature subset 

selection method can be carried out before exploring more 

advanced classification methods such as deep learning. 

Based on all of the tests mentioned above, the GLCM 

dissimilarity feature generates a machine-learning model that 

is reasonably good. The current features can effectively 
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identify all classes, including normal and artifacts, but they 

have poor sensitivity for class murmurs. The similarity in 

feature data distribution patterns between the normal and 

murmur classes accounts for this performance. Nevertheless, 

because there aren't enough datasets, the murmur class isn't 

very sensitive. This needs to be enhanced since high sensitivity 

to abnormal classes is necessary for real-world heart sound 

classification systems to detect them accurately [26]. The 

research is limited by the balanced dataset for each class, 

which prevents the classification model's accuracy from being 

deemed excessively high even when other metrics like 

precision, recall, AUC, and F1 are deemed to be rather 

powerful. Further datasets will be required in the future, 

particularly for the murmur class. A strategy can be carried out 

by collaborating with healthcare centers to collect datasets, 

especially for murmur classes. Another way is to use 

Augmentation Techniques to add murmur class datasets 

artificially using GAN or other methods [27]. 

 

 

4. CONCLUSION 

 

This study applies GLCM to the heart sound signal 

spectrogram and suggests a feature extraction strategy for 

heart sound categorization. The present study employs the 

following GLCM characteristics: dissimilarity, correlation, 

homogeneity, contrast, ASM, and energy. Tests have shown 

that, despite the cleaning procedure being completed, every 

feature in GLCM overlaps for normal and murmur class. As a 

result, the accuracy of the results could be improved. The best 

features from the GLCM were found to be dissimilar and 

contrasted at degree 90, with the highest accuracy of 75%, 

when tested with one degree of one feature. Based on these 

findings, the dissimilarity feature yielded the highest accuracy 

of 82.64% when a machine learning model was built utilizing 

data aggregated at four degrees from each feature. Because the 

dataset is not balanced, measuring model performance with 

other parameters is used, such as precision, recall, AUC, and 

F1. It was found that the model only had high sensitivity to the 

normal and artifact classes but was still less sensitive to the 

murmur class, which is the most important class that must be 

classified in heart sound applications. This performance is due 

to the similarity of feature data distribution patterns for the 

normal and murmur classes and the lack of datasets for the 

murmur class, so this class has low sensitivity. For future 

research, it is hoped that more datasets will be added for the 

murmur class so that it can improve the resulting model and 

increase sensitivity to the murmur class. The application can 

display STFT and GLCM visualizations of the texture of heart 

sounds as additional information for healthcare professionals 

to analyze. 
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