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Human Artificial Intelligence Teaming (HAIT) is a significant topic that is dominating 

different research domains. One of these domains is the automotive industry, whereby 

automation is suggested to certain aspects of driving, while the driver can intervene and be 

aware of the decisions. Trust is a major issue; hence the AI collaborates with the human 

towards making a decision regarding different aspects of driving. The Internet of Vehicles 

(IoV) is a topic that can use HAIT in many of its applications. A major point of the HAIT 

application is the increase in the transparency of the AI process and trust is being built 

between the two teammates. In this paper, the goal is to offer a comprehensive review of 

HAIT and its significance, going deep into various representations to facilitate the 

development of automated vehicles systems. HAIT seeks to promote trust in automated 

automotive systems, particularly regarding data sourced from vehicle sensors. The human 

roles 'in,' 'on,' and 'over' the loop within HAIT is provided, elucidating their pivotal 

contributions. Furthermore, ongoing academic contributions are reviewed integrating 

HAIT into the automotive sector, emphasizing the symbiosis between IoV and AI to forge 

unified solutions. The solutions have been separated according to their functionality and 

models used comprising Reinforcement Learning, Hidden Markov Models, Deep Learning 

and experiments as well as simulation based methods. The use of HAIT in automotive 

applications will pave the way to its utilisation in other disciplines such as aviation and 

maritime. 
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1. INTRODUCTION

Artificial intelligence (AI) is being utilised as a paradigm to 

a variety of industries enhancing data processing and decision 

making actions. In healthcare, diagnoses and treatment plans 

are assisted with AI being at the forefront [1]. In finance, AI is 

encapsulated to detect frauds and optimise strategies [2]. In 

education systems, custom learning experiences are performed 

[3]. In the transport domain, routing can be safely and 

efficiently planned [4]. Moreover, manufacturing [5], 

agriculture [6] and cybersecurity [7] constitute domains 

whereby AI thrives towards their efficient transformation. 

In the automotive domain, AI is utilised to improve safety, 

efficiency and the driver’s functions in the vehicle. AI is used 

in autonomous vehicles as well as in driving assistance 

systems, which change the driver’s state of mind as well as the 

vehicle’s tasks. The prevention of accidents is performed by 

the increased perception of the environment and the decision 

making in complicated traffic scenarios [8]. In addition, 

predictive maintenance based on AI models predict and 

prevent vehicle failure, minimising downtime [9]. AI models 

are also utilised for fuel consumption optimisation [10], 

routing [11] and customisation of driver custom preferences 

[12]. It is clear that the use of AI-based technologies leverages 

the safety, security and pleasant driving experience. 

HAIT involves ande combines the human perception 

advanjtages with the accuracy of the models of AI, and the 

disadvantages of both are being addressed. There is ongoing 

reaserch that deals with the opinion of humans on AI-based 

systems in terms of how reliable explainable and biased they 

are. 

The perceived reliability of AI is crucial for human trust and 

utilization. For instance, Zhang et al. [13] demonstrated that 

providing healthcare workers with insights into AI's data 

transformation process boosted their perception of data quality 

reliability. Another study found that AI was exhibited better 

reliability than humans in decision support contexts. AI 

systems with accountable and explainable features are more 

likely to gain the trust of human decision-makers (DMs). 

The HAIT design distinguishes the authority each team 

member has over independent control and the individual 

contribution towards task completion. Endsley and Kaber [14] 

define levels of automation in systems. The levels of 

intervention of the individual to a system are given in Figure 

1. 

The AI-first design paradigm assumes a dynamic 

circulation of knowledge across the network, enabling 

decision-makers and autonomous systems to collaborate 

effectively. Autonomous systems excel in deductive reasoning 

and solving complex tasks, including automotive applications 
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such as cruise control [15] and lane detection [16]. Operators 

perform well at applying context and providing input to 

specific tasks. Automation tasks place when complex tasks' 

outputs come from sensors and systems, i.e., navigation of 

vehicles. In particular, the system may identify the best 

potential road along the path of the vehicle. 

 

 
 

Figure 1. Levels of automation 

 

 
 

Figure 2. IoV with HAIT 

 

IoV [17] has emerged during the last decade whereby the 

vehicle is connected to the Internet and decisions are thereby 

made regarding several aspects such as platooning [18]. The 

IoV can move towards the HAIT, in terms of assisting the 

driver with decisions coming from Road Side Units (RSUs or 

other vehicles by an AI system. There the driver will obtain 

the data wirelessly and the data will be fed to a Machine 

Learning (ML) and/or AI system to inform the driver 

regarding specific actions that need to be performed to 

optimise driving. A basic IoV network with HAIT capabilities 

is given in Figure 2. 

An example of IoV with HAIT is dynamic routing. Taking 

RSUs in the traffic lights where the traffic is communicated 

based on the queues of the roads and the speed of the vehicles, 

the communication system of the vehicle takes the information 

of the aforementioned metrics and calculates the best route 

taking into account the current state of the roads. The in-

vehicle system informs the driver regarding the proposal of the 

new route and it is up to the driver to follow it or select a 

different route. Upon a good decision by the model of the 

vehicle the driver will acknowledge the optimal decision to the 

system. 

In this paper, the reader is provided with the necessary 

information to comprehend the notion of HAIT. Using the 

different ways of representing HAIT an automated IoV system 

can be built, which will take advantage of the wireless 

capabilities available and the AI methods that can be utilised 

to perform some action. The reason behind HAIT is to enable 

and enhance trust of automated automotive systems, namely 

the data coming from sensors of the vehicles and RSUs. We 

present the human in, on, and over the loop concepts and 

finally, we provide a review of the current academic works that 

involve HAIT in the automotive domain. The aim is to work 

closely with the aspects of IoV and AI to integrate them to 

common solutions. The IoV is a research domain which gets 

attention due to the dominion of the Internet of Things (IoT). 

Models that need to be simple to run with minimum delay of 

response should be available and constructed to maximise the 

performance of the IoV. Taking, for example, the use of 

telecommunications to connect a RSU with a vehicle, the 

response time should not exceed seconds because the nature of 

the deployment is dynamic and hazardous. Hence, the AI 

model of the vehicle needs to assist the driver in a fast manner 

and the driver to assess, agree or not with the suggestion within 

seconds. This gives a new dimension to the creation of models 

for HAIT. 

 

 

2. EXPLANATION OF HUMAN-AI TEAMING 

THEORY 

 

In this section, we examine the dynamics of four distinct 

methods from the study [19], where humans and AI assume 

specific roles. These methods include: 

1. Human-in-the-loop, where AI provides decision 

support. 

2. Human-on-the-loop, exemplified by straightforward 

vehicle operations. 

3. Over-the-loop, involving a team of distinguished 

members with primary and supervisory authority. 

4. A model where AI and humans function as independent 

decision-makers. 

These approaches highlight various ways in which humans 

and AI can collaborate to optimize task performance. 

 

2.1 Human in the loop (HITL) 

 

Here we take a machine learning model-based system that 

gets knowledge of particular situations on the road, which 

requires action, lets the human know regarding it, and waits 

for direction. 

In this scenario, the human assumes the role of safety 

controller, with the system acting as an assistant to implement 

the control actions. The human is responsible for decision-

making tasks, such as data labeling. Measurements from 

various sensors are provided to the AI for processing, which 

then displays relevant data aspects to the human.  

The human can request additional input from sources 

beyond the AI's knowledge base. The AI becomes aware of the 

human's actions through information relayed from the sensors. 

 

2.2 Human on the loop (HOTL) 

 

The human on the loop process provides the AI with 

permission to act unless the human decides otherwise and 

performs an override. Essentially the human plays the role of 

input or decides to override the process decision of the AI. The 

AI recommends an option in advance of action; on the other 
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hand, the human gives permission for the action to be 

performed or she selects from alternative options to change the 

decision.  

There is a debate here on the type of data the human 

possesses and the risk they are considering which would 

change the decision of the control. An example of an 

automotive application is the throttle control, which can be 

automated and overridden by the driver. 

 

2.3 Human over the loop (HOVTL) 

 

Here we regard to decision-makers who act in an 

independent manner over the same control. Both of the 

decision-makers are set in series and the second can pose an 

argument to the first. The primary and the supervisory decision 

makers can benefit from the sensor data, process it and obtain 

information to handle their process. The primary decision-

maker acts on the basis of the sensor input and perception. 

The AI can make decisions based on its model; hence 

providing routine results. The human, on the other hand, may 

have to override the decision without sufficient knowledge, 

which poses a problem in the procedure. To address this issue, 

the supervisory process must gather inputs that clearly capture 

the context and safety status.  

This process benefits from incorporating additional sensor 

data. Off-nominal conditions should not be automatically 

attributed to human error without an explainable context, 

enabling humans to effectively manage contingencies. 

 

2.4 Autonomous peer decision makers 

 

In this setup, an AI system and a human collaboratively 

influence the same control process, each with distinct 

decision-making authority and mechanisms. The AI 

contributes computational power and data analysis, while the 

human adds intuition, creativity, and contextual 

understanding. Both parties can seek additional input to 

enhance their decision-making, allowing for diverse 

perspectives, real-time feedback, and adaptation to changing 

conditions. A summary of these methods is provided in Table 

1. 

 

Table 1. HAIT methods summary 

 
Method Summary 

HITL 
Direct human control, high reliability 

but slower decision processes. 

HOTL 
Supervisory control, equilibrium for 

efficiency and safety. 

HOVTL 

Strategic oversight, maximizing 

efficiency with minimal direct 

intervention. 

Autonomous peer 

decision makers 

Collaborative autonomy, achieving high 

efficiency and exceptional adaptability. 

 

 

3. HAIT APPROACHES IN THE AUTOMOTIVE 

DOMAIN 

 

This review of academic contributions to HAIT has been 

primarily undertaken using Google scholar, which has an 

overlap with other databases. The articles that have been found 

were selected according to the relevance with the proposed 

subject and the academic nature of the contribution. The 

synthesis of the data has been done based on the respective 

method that has been used to tackle specific issues in the 

automotive sector.  

Primarily, in this section, examples of the different 

aforementioned models are given. For the HITL, an example 

can be when the car at front increases its acceleration and the 

system of the car behind calculates the distance based on some 

kind of sensor to keep a platooning type of movement. For the 

HOTL, an automotive application is the throttle control, which 

can be automated and overridden by the driver. For the 

HOVTL, course management in vehicles can be automated 

and further data can be available to the human to make a 

different call where applicable. In terms of the autonomous 

peer decision makers, a vehicle may have its own automated 

cruise control based on RSU and Vehicle to Vehicle (V2V) 

data while the driver can act independently of the throttle and 

brakes. A coordination mechanism needs to be present in order 

to make the teammates act to the benefit of the drive. Here we 

have different accountability since the processes act 

independently. Reading in Kumar et al. [20] and references 

therein, there is a number of applications of autonomous 

vehicles that use the HITL method. 

The market for automotive artificial intelligence is 

expanding globally, characterized by its size, trends, and 

industry growth across various segments. It covers offerings 

such as hardware and software, driven by technologies 

including deep learning, ML, natural language processing 

(NLP), context-aware computing, and computer vision. This 

market analyzes components, processes, applications, and 

regions, with projections extending to 2028 

(https://www.researchcorridor.com/global-automotive-

artificial-intelligence-market/). 

There exists a number of advancements in the development 

of intelligent assistants using AI in the automotive industry. 

These include: 

-Audi Autonomous Intelligent Driving (https://www.audi-

mediacenter.com/en/audi-ai-9099/download) is actively 

researching and developing autonomous driving capabilities, 

integrating AI technologies with human input to create safe 

and efficient driving solutions. 

-Waymo (https://waymo.com) is the self driving car project 

designed by Google, that has been one of the leaders of 

autonomous vehicles and it encapsulates AI with human 

intevenstion in order to create self-driving cars that enhance 

safety and efficiency. 

-Tesla's Autopilot system 

(https://www.tesla.com/support/autopilot) integrates AI and 

human tasks in order to assist drivers with driving functions 

such as lane-keeping, adaptive cruise control, as well as 

automated parking. 

-Uber ATG (https://www.uber.com/en-GR/blog/machine-

learning-model-life-cycle-version-control/)integrated AI for 

navigation purposes and safety while altering the driver to a 

act in a supervisory role with the ability to intervene. 

-BMW 

(https://www.bmwgroup.com/en/innovation/automated-

driving.html) created a campus that concentrates o the 

development of autonomous driving technologies, integrating 

AI and human abilities in order to increaser vehicle 

automation. 

-Mercedes-Benz 

(https://www.mercedesbenzofeaston.com/mercedes-benz-

intelligent-drive-overview/) created Intelligent Drive systems, 

which encpasulate AI-based models in order to increase safety 

and satisfaction of driving comfort. 
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-Ford 

(https://media.ford.com/content/fordmedia/fna/us/en/news/20

23/03/02/ford-establishes-latitude-ai-to-develop-future-

automated-driving.html) is investing in autonomous vehicle 

technologies, utilizing AI and human supervision to develop 

next-generation mobility solutions. 

-NVIDIA's DRIVE platform 

(https://developer.nvidia.com/drive) provides AI computing 

solutions for autonomous vehicles, supporting human-AI 

collaboration in the automotive industry. 

 

3.1 Reinforcement learning-based systems 

 

Wu et al. [21] present a research work, which creates a 

HITL Deep Reinforcement Learning (DRL) system that viably 

leverages human insights in real-time amid show preparing. A 

real-time Human-Guidance based DRL (HugDRL) strategy is 

created and effectively connected to the operator preparing 

beneath independent driving scenarios. Beneath the proposed 

design, an energetic learning prepares adaptively apportions 

weighting variables to human encounter and DRL activity, in 

arranging to optimize the DRL’s always progressed capacity 

over human direction amid the by and large preparing handle. 

Based on this human-in-the-loop direction instrument, a 

moved forward actor-critic architecture with modified 

arrangement and esteem systems is created.  

The rapid integration of the proposed HugDRL facilitates 

the real-time integration of human-directed activities within 

the agent's training cycle, significantly enhancing the 

efficiency and performance of deep reinforcement learning. 

This method has been validated through human-in-the-loop 

tests involving 40 subjects and compared against other state-

of-the-art learning approaches. The findings indicate that the 

proposed approach effectively improves the training 

efficiency and performance of deep reinforcement learning 

algorithms under human guidance, without mandating specific 

expertise or prior experience from participants. 

Gopinath et al. [22] focus is directed towards human-AI 

driving teams, where the AI system interacts closely with the 

driver through tactile data during critical moments of the 

driving task. In this scenario, it is assumed that the human 

maintains continuous control over the vehicle, with the AI 

system providing recommendations, alerts, or other supportive 

measures to assist the driver. This approach contrasts with 

more autonomy-driven integration setups, where the AI 

system aims to override the driver by assuming control of the 

vehicle. Such setups are designed to respect the inherent 

preferences and capabilities of the human partner. 

The goal is to demonstrate the flexibility of the proposed 

system in accommodating various characteristics of human 

drivers, such as their level of distraction, cautiousness, and 

preferences towards AI-based interventions. The authors 

model this scenario as a reinforcement learning (RL) problem, 

seeking to find a policy—a mapping of observations by the 

agent to actions taken on behalf of the agent. They 

conceptualize both the human and AI system in terms of their 

higher-level objectives and constraints within a framework of 

rewards. This framework allows for the representation of the 

agent (the policy) as either a single entity representing both the 

human and AI systems working together, or as two separate 

entities interacting with each other. While their approach 

primarily supports the former (i.e., a joint policy), the system 

accommodates both configurations to generate results 

effectively. 

The approach learns from real-world perceptions gathered 

through experiences and continuously improves by 

maximizing a cumulative reward for each rollout generated by 

the trained policy. In the context of human-AI collaboration, 

the state encompasses a simulated environment that includes 

other vehicles, road conditions, and the human's state. 

Observations are potentially imperfect measurements of this 

environment. 

The human model is formulated as a Markov Decision 

Process (MDP), which specifies how the system transitions 

from one state to another based on actions taken, along with 

associated rewards (e.g., speed preferences) or penalties (e.g., 

collisions) incurred during these transitions. To train policies 

within this framework, a policy gradient method is employed, 

specifically the proximal policy optimization (PPO) 

algorithm. This method facilitates the iterative improvement 

of policies to optimize performance in navigating and 

interacting within complex driving scenarios. 

Huang et al. [23] propose a reinforcement-learning-based 

approach for designing shared control in semi-autonomous 

vehicles involving human supervision. The collaborative 

effort between the assistant pilot controller and the driver 

enables simultaneous vehicle control. To account for driver 

reaction time, the human-vehicle system is characterized using 

differential-difference equations. Real-time data is utilized to 

develop an adaptive optimal shared controller through 

adaptive dynamic programming, without requiring complete 

knowledge of the driver and vehicle models. 

The data-driven shared steering controller ensures near-

optimal solutions, adaptation, and stability within the human-

in-the-loop vehicle system. It effectively manages potential 

variations and uncertainties in the human-vehicle interaction. 

The efficacy of this control strategy is substantiated through 

theoretical proofs and demonstrated with numerical results, 

affirming its capability to enhance operational efficiency and 

performance. 

Elmalaki [24] states that the number of applications 

targeting the automotive sector is expected to be high. Hence 

there is a necessity of a systematic framework that assists to 

the design and verification of these applications. Furthermore, 

these applications are built in order to have an interaction with 

the human; thus, there is the need for human-centered 

applications. Here, the authors, propose the MAConAuto, 

which is essentially a framework that encapsulates the 

preferences of the human behavior and reaction time at the 

core of the automotive applications. This framework can 

provide support for two types of applications with respect to 

the intervention level. These are: Type I, Direct-based 

interaction and Type II, Monitor-based interaction. 

MAConAuto is highly adaptive to human variability using a 

RL engine that tunes the assistance that the two application 

types perform by addressing certain challenges of human 

reaction modeling regarding these assistive interventions. The 

authors elaborated on the design of the system with 

verification from two applications, namely the context aware 

Heating Ventilation and Air-Conditioning (HVAC) and 

context aware Forward Collision Warning (FCW). 

Ahadi-Sarkani and Elmalaki [25] investigate the Lane 

Departure Warning (LDW) systems. These particular systems 

obtain their data from algorithms that handle sensors rather 

than encapsulating as well the driving behavior of a driver as 

well as the physiological data. An Adaptive Driver Assistance 

System with Reinforcement Learning (ADAS-RL) is 

suggested which includes the human factor into LDW 
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approaches. The drivers’ response time to functionalities, their 

driving characteristics and the levels of concentration are 

taken into account to customize the warning times as well as 

the frequency. The ADAS-RL is essentially a HITL system, 

which tweaks the frequency of the warnings to drivers 

according to the level of concentration in the vehicle. The 

distraction levels of the drivers are considered to optimize the 

level of warnings. The proposed system detects the variability 

in the driver response times; hence it shows the level of 

adaptation depending on different behaviors of drivers at both 

simulation and real test cases. 

In the study [26], an advanced HITL-RL system is 

suggested, which aims to construct policies of driving, 

integrating transportation and robotics characteristics. The 

Human as AI Mentor (HAIM) is at the heart of this research, 

whereby humans perform tasks that include supervision, 

interventions as well as demonstrations to AI models while 

being in a learning procedure. A HAIM-DRL is proposed, 

which utilized DRL with interventions by humans to 

strengthen safety in Autonomous Vehicles (AV)s as well as 

maximizing the efficacy of the traffic flow. The HAIM-DRL, 

provides several strengths, which comprise the increased 

training safety which is vital for real test cases of AV 

deployment and optimized efficiency in training. Other 

advantages include the better integrations of AVs to traffic by 

minimizing disruptions and performing better flow of traffic, 

as well as supreme generalization to different scenarios. In 

summary, this paradigm provides a standard for a 

collaborative setting between humans and AI systems, 

whereby safety and efficiency are promoting in AVs. 

Future research directions will focus on real-world 

implementation, scalability of the framework, and reducing 

dependency on perfect human expertise by learning from a 

wide range of human drivers. Integrating additional 

transportation domain knowledge will also be critical for 

advancing the seamless integration of AVs into mixed traffic 

environments, ultimately contributing to the development of 

smarter and safer transportation ecosystems. 

The RL methods presented offer several advantages: real-

time human insights improve training for autonomous driving 

scenarios, balancing human input with DRL actions optimizes 

learning, and RL enhances training efficiency and 

performance without needing specific expertise. Additionally, 

these methods increase safety, stability, and context-aware 

interactions, while personalizing outcomes based on 

individual actions. 

 

3.2 Hidden Markov model-based systems 

 

Dai and Xu [27] explore control augmentation within HITL 

systems, such as advanced driver assistance systems, where 

human capabilities impose limitations like visual range and 

understanding of the Internal Vehicle Model (IVM). The 

research proposes a novel framework centered on a new 

human IVM model comprising a Hidden Markov Model 

(HMM)-based parameter predictor and an augmenting 

controller. This framework aids in precisely tracking a pre-

determined trajectory for the controlled vehicle. 

The HMM method includes a specific issue that needs to be 

addressed which is the humna IVM parameters alignment at 

the time of the Expectation-Maximisation (EM) procedure. In 

the case that the IVM parameters are not known, recursion is 

performs to obtain a closed-form solution which addressed 

dynamical systems. Simulations of pilot-controlled quadrotor 

attitude control has been performed to validate the suggested 

method in terms of how effective it is. Duting the simulation, 

there was a clear performance increase of the closed-loop 

system in comparison to the human IVM error not being 

corrected approach. Already used HITL systems will lack of 

the advancement of their capabilities comparing to the 

proposed approach in a diverse number of applications. 

Janssen et al. [28], suggest a HMM framework targeting 

semi-automatic vehicles. The approach aims to formalize the 

beliefs of the humans in terms of the modes of operation of the 

aforementioned vehicles. This work takes as a start previous 

research, which determines different automation levels and the 

level of expectation of the operator involvement. Moreover, 

the prior work determines the distinct automation levels of the 

vehicle as well as the modes of operation, which are timely –

evolved. The levels of automation are required to be obtained 

in an accurate manner, since the driver may get confused 

regarding the mode of automation of the vehicle. The HMM 

that is being suggested, is there to address the confusion of the 

driver which comes as a result of wrong beliefs regarding the 

modes of automation. This work coincides with other theories 

and research works targeting automation in vehicles. It serves 

as a contributor to the design and evaluation of automation in 

systems as well as future infrastructure of the transport 

domain. It also provides insights towards understanding and 

handling issues that arise in real test cased in terms of 

automation. 

HMMs models human behavior by representing the 

sequential and probabilistic nature of actions and states 

through hidden states and observable states (actions influenced 

by hidden states). Transition probabilities model how human 

states evolve over time, while emission probabilities link 

hidden states to observable actions. Parameters are learned 

from data using algorithms like Expectation-Maximization 

(EM). HMMs capture the evolution of behavior, handle 

uncertainty, and learn from real-world data for accurate and 

adaptive modeling. 

 

3.3 Experimental, simulation-based and other systems 

 

Chiang at al. [29] suggest integrating Human-in-the-Loop 

(HITL) design into a longitudinal automation framework, 

successfully implemented and validated on a passenger 

vehicle in real traffic scenarios. This system features a 

comprehensive architecture comprising an adaptive detection 

zone, supervisory control, and regulatory control, structured 

hierarchically for adaptability across different vehicles with 

minor adjustments. Safety enhancements are achieved through 

the adaptive detection mechanism, which prevents potential 

collisions with vehicles ahead during curves. 

The supervisory control autonomously selects control 

modes independent of vehicle-to-vehicle communication, 

ensuring coherent operation within predefined acceleration 

limits. Regulatory control for throttle management is designed 

based on an understanding of human decision-making 

processes, aiming to minimize operational rules. This 

automation system assists human drivers by managing speed 

and inter-vehicle distance, alleviating driving burdens, 

particularly on long trips.Experimental results in actual traffic 

environments demonstrate the effective performance and 

comfort of the longitudinal automation system, validated 

against ISO 2631-1 standards. 

Kuru [30] proposes that while human drivers may 

eventually cease driving, they will still need to be trained in 
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teleoperating fully autonomous self-driving vehicles (FA-

SDVs) equipped with Vehicle-to-Everything (V2X) 

technologies for location-independent remote control. These 

capabilities are further enhanced with haptics and Tactile 

Internet to intervene promptly when AI encounters unforeseen 

situations beyond its autonomous capability. 

To bridge existing gaps in this area, the paper explores 

establishing an ecosystem aimed at fostering location-

independent collaboration between capable Human 

Teleoperators (HTS) and intelligent FA-SDVs. This concept 

is embodied in the HOTL-HT-SDV framework, which 

integrates two parallel worlds: the physical environment and 

its cyber emulation. The HOTL concept is studied from 

technological, psychophysical, and philosophical 

perspectives, emphasizing the critical role of haptic feedback 

in enabling timely interventions that enhance FA-SDVs' 

ability to handle uncertainties in real-time. By leveraging the 

full potential of this framework, the authors argue for 

accelerating the integration of vehicles into traffic by fostering 

high levels of trust, even without expecting the technology to 

achieve perfection. The dual active roles of HTS and FA-SDV 

are evaluated through Quality of Trust (QoT) metrics, ensuring 

bidirectional interaction that optimizes Quality of Experience 

(QoE) and Quality of Vehicle Experience (QoVE). 

Different to Humans-Are-Better-At/Machines-Are-Better-

At (HABA/MABA), where humans and automation agents are 

invloved into a competition on who is the owner of a specific 

task, the suggested Human-Agent-Robot Teamwork (HART)-

centric framework sets the priority for the engagement of a 

human while it gradually moves towards complete automation 

of FA-SDVs. The change that brings the adaptive automation 

from human interventipn takes place via the utilisation of a 

collaborative and behavioral learning and it is shown in studies 

where proof-of-concept is necessary. This provides evidence 

of the benefit that may arise from collaborative learning.  

Hong and Aparow [31] suggest the utilization of an end-to-

end simulator that is implemented to support Level 3 safety 

systems for autonomous vehicles, as well as for the collection 

of data related to driving. The simulator comprises an IPG 

CarMaker with Simulink as well as the Logitech G29 Driving 

Force Steering Wheel and Pedals kit. Driving in a road 

network is available at the simulator. Recording of driving 

data is undertaken, and parsing as well as result clarification is 

given. Moreover, development and testing of ML algorithms 

is demonstrated. This simulator’ primary objective is the 

streamlining of development of autonomous systems as well 

as the strengthening of reliable safety procedures that undergo 

testing. 

Chen et al. [32] demonstrate a driving assistance system 

called HITL Connected Cruise Control (hCCC). This system 

integrates humans and machines towards collaborating 

between them which gives the flexibility to a non-automated 

but connected vehicle to be part in a platooning setting, while 

ensuring and improving string stability. The driver has control 

of the vehicle’s functions, while the hCCC is more of an 

assistant which performs control modifications in order to 

keep the vehicle stable.  

The controller of the hCCC is caefully designed with a bi-

level architecture in order to accomplish control linearization. 

It utilises specific features taken from existing and established 

Cooperative Adaptive Cruise Control (CACC), including a 

feedback-feedforward control structure and a zero-spacing-

error rule. Validation came as a comparison of the hCCC 

having drivers with existing CCC and it demonstrated that the 

hCCC showed supreme stability takin as input a significant 

variety of human behaviour as well as uncertainties. 

Moreover, the hCCC was validated in a simulator in order to 

investigate its performance when real conditions are given. 

The results showed that the hCCC exhibited quite large 

improvements in comparison to human drivers, including 

acceleration reduction, less fuel dissipation and time-gap 

variation decrease. In contrast to traditional systems, the 

hCCC is flexible to the adjustment of parameters regarding 

users. This comeas as a result of the enhanced string stability 

abilities that can encompass different driving behaviours.  

Ropelato et al. [33] showed the Virtual Reality (VR) 

methods’ efficacy to enhance vehicle driving experience.They 

simulated the physical properties affecting car driving 

characteristics, including the behavior of the engine and 

transmission system. Their software integrates with a 6 

degrees of freedom (DoF) motion system to simulate 

acceleration during driving, utilizing input devices in a cockpit 

mockup to control the virtual car. AI-driven vehicles operate 

within a city environment, adhering to predefined traffic rules 

and interacting with both other AI vehicles and the driver’s 

vehicle. 

Additionally, the authors proposed five types of driving-

related activities that can be automated and evaluated through 

an Intelligent Transportation System (ITS). They adapted the 

zpdes algorithm to drive vehicles, demonstrating how 

personalized teaching sequences can be developed. 

Challenges such as limited computational performance, 

integration of motion hardware, and effective simulation of 

city-wide traffic were acknowledged. A user study revealed 

that most participants experienced a high level of presence in 

the virtual world and demonstrated proficiency in operating 

the car within the VR driving simulator. 

Ai et al. [34] suggest an enhancement of autonomous 

transportation in open-pit mines, the iMAPeM paradigm 

which introduces an intelligent mining system that 

incorporates humans in the loop, providing a reliable, efficient, 

and universal operating framework. The iMAPeM architecture 

features three categories of miners—biological, digital, and 

robotic—each with specific roles to improve safety and 

efficiency while reducing the workload on human miners. It 

also includes three models: autonomous, parallel, and 

emergence/expert, which can be adjusted based on the severity 

of production issues to ensure stable transportation policies. 

The iMAPeM-based parallel mining system, YUGONG, 

has been implemented in various open-pit mines, 

demonstrating stability and efficiency in real-world scenarios. 

As the system's operating time and mileage increase, its 

stability improves, reducing reliance on the Expert/Emergency 

mode and lessening the tasks assigned to human miners. 

YUGONG is also evolving to incorporate human-machine 

interactive functions and a multimodal model, aiming to create 

a human-centered operation system that provides intelligent 

services for the diverse transportation needs of open-pit mines. 

Wang et al. [35] introduce a human-in-the-loop multi-

indices fusion decision framework (HITL-FD) for predicting 

Mars rover trafficability. The framework uses fuzzy theory to 

address the uncertainty of trafficability boundaries and 

integrates multiple evaluation indices through a fuzzy decision 

tree algorithm. Human-assisted decision-making is included in 

the decision loop, and a reward function based on decision 

error is proposed to create a closed-loop system. Results 

indicate that HITL-FD increases the performance of the 

trafficability prediction and decreases the uncertaintly of the 
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terrain in comarison to decision method made only by 

machine.  

Kaufman et al. [36] suggest a framework who’s main 

objective is the cultivation of situational awareness of human 

AV systems by the joint action theory. This framework 

emphasizes on the significance of personalised, shared and de-

centralised situational awareness uo to a threhold, in order to 

accomplish objectives related to joint action in the teams 

between humans and Avs. An example is the assurance of 

safety in transportation as well as the learning process from the 

behaviours of the AVs. There are also other goals that need to 

be satisfied such as the establishment of trust. The efficient 

collaboration is an outcome of the human and the AV having 

accurate representations of each other and processing them 

along with the driving context. There the situational awareness 

of the individual agent is mandatory in ordrer to set and 

promote their actions. 

The situational awareness is quite significant in order to 

allow the team to achieve its objectives. Explainable AI (XAI) 

is performed to be incorporated by humans as well as human 

input in real-time as well as AVs sensing retaed tasks. This is 

crucial for the exhange of data. The AVs can incorporate data 

for training to predict and personalise the communication 

depending to the different contaxt. There is the necessity of the 

understanding of the interactions between four components, 

namely the characteristics of the AV, the objactives of each 

action, the individual conditions and the environment of the 

driving task. The comprehension of these core components is 

mandatory to enhance situational awareness and to secure 

efficient joint action. The successful joint action shows the 

necessity of the prediction and the adoption of the shared and 

individual situational awareness behavior; thus, assuring the 

fact that there is the need to coincide with the tema’s 

objectives. 

The approaches discussed in this section have several 

limitations. HITL into automation frameworks can face 

adaptability issues in real-world conditions and safety 

assurance challenges across various driving environments. 

Teleoperation of fully AVs heavily depends on V2X 

communication and haptic feedback systems. Transitioning 

from user intervention to full autonomy in HART-centric 

frameworks can be complex due to collaborative learning 

modes. End-to-end simulator platforms may not accurately 

mimic the unpredictability of real-world driving. Human-in-

the-loop Connected Cruise Control systems need thorough 

validation to ensure robustness for different driving behaviors. 

Virtual Reality simulations for car driving face computational 

performance challenges and issues in simulating realistic city-

wide traffic. Autonomous mining transportation relies 

significantly on human oversight and expertise. Additionally, 

situational awareness in human-AV systems is compromised 

by the unpredictability of human behavior and limitations in 

current AI explainability methods. 

 

3.4 Deep learning and neural networks 

 

Usman et al. [37] propose a framework integrating a 

probabilistic Convolutional Neural Network (CNN) and fuzzy 

logic to predict accidents in vehicular networks. This approach 

emphasizes human-in-the-loop intervention through 

classification of driver emotions—such as heartbeat and facial 

expressions—complemented by traffic status analysis. A 

probabilistic graph-based inference model is employed to 

estimate accident probabilities using data classified during the 

initial learning phase. Subsequently, a fuzzy rule-based 

mapping method maps the severity of accidents based on this 

model. Alerts are then generated for drivers to prompt 

appropriate actions. Validation of the framework was 

conducted using Kaggle data suitable for accident prediction, 

incorporating emotional states and road traffic data. 

Experimental results demonstrate superior performance 

compared to benchmarking methods in accurately predicting 

accidents. This improvement is evident in metrics such as 

accuracy, precision, and F1 score, underscoring the 

effectiveness of integrating human-in-the-loop considerations 

alongside other critical factors. 

Schmidt et al. [38] explore learning in an industrial context 

focusing on object detection for autonomous driving. They 

propose distinct approaches for calculating uncertainty using 

ensembles. Additionally, they evaluate two training strategies 

for 2D object detection networks: continuous training and 

active class weighting. Continuous training is shown to reduce 

training time by approximately 55% and data requirements by 

15% compared to training from scratch. They further 

demonstrate that active learning combined with dataset 

balancing methods enhances data efficiency. Beyond 2D 

object detection, the authors implement a proof of concept 

using a more sophisticated neural network for 3D object 

detection. This approach facilitates more efficient 

development of object detectors tailored for the automotive 

industry. 

Deng et al. [39] investigate how speech impacts the 

measurement of drivers' trust in autonomous vehicles (AVs). 

Seventy-five participants were randomly assigned to high-

trust and low-trust groups based on different AV performance 

scenarios. The high-trust group experienced AVs with perfect 

accuracy (100%), no crashes, and received visual-auditory 

system messages. In contrast, the low-trust group encountered 

AVs with 60% accuracy, a 40% crash rate, and received 

visual-only system messages. During driving tasks, voice 

interaction was employed to collect speech data. The study 

successfully induced states of both trust and distrust among 

participants. Speech features extracted from both trust groups 

were utilized to train a back-propagation neural network for 

predicting trust levels, achieving a maximum accuracy of 

90.80%. This research presents a method for reliably assessing 

trust in AVs using voice recognition technology. 

Deep learning empowers vehicles with advanced perceptual 

capabilities, intelligent decision-making, and enhanced 

interaction with drivers, thereby advancing the efficacy and 

safety of Human-AI Teaming in automotive applications. 

Sensor fusion and other methods to correlate the readings, 

encapsulating a variety of sensors such as cameras, lidar, On -

Board diagnostics (OBD) are often utilised. 

 

 

4. CRITICAL ANALYSIS AND COMPARISON 

 

There is a number of solutions that exist are already part of 

the automotive industry with large players making their efforts 

in introducing AI with human involvement in the vehicles. The 

applications that have been selected to appear to this paper, 

pave the way to solutions that will be or have been aready 

tested to vehicles using state of the art AI and ML methods. 

These methods are established in the scientific community and 

the automotive sector seems like a good vandidate for their 

application. 

However, the ML and AI methods that have been proposed, 
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may pose implications towards their complexity and/or the 

response time of the vehicle. A good solution is not always the 

optimal one. Using different ML models require their 

optimisation for the applicability to these systems that are real-

time and safety critical. Simulations are essential to ensure the 

safety and efficiency of the approaches, while in real 

scenarios, operating in traffic may be a totally different case. 

In terms of other disciplines, Vats et al. [40] whereby 

different domains are given in the form of applications. Here, 

the aviation industry is the primary focues, whereby the 

HAIKU project is ongoing and involves 6 use cases, including 

HAIT for startle effect, Drones, Air traffic management, and 

COVID spreading prevention in airports. A brief review on an 

example proposed in aviation follow. 

The aviation industry faces significant challenges in 

managing projected increases in air traffic and the emergence 

of new flight modes like Unmanned Aerial Systems (UAS). 

The study [41] emphasizes the need to enhance system 

capabilities to handle the influx of data and make informed 

decisions. Increasing air traffic density across regions and the 

efficiency challenges in Demand-Capacity Balancing (DCB) 

underscore the evolution of Air Traffic Flow Management 

(ATFM) systems towards AI-driven solutions. ATFM systems 

increasingly rely on sophisticated AI models, integrating a 

"human in the loop" approach with explainable AI (XAI) to 

optimize human-machine interaction. Wei et al. [42] introduce 

flow-based management as a novel concept where controllers 

manage aircraft flows rather than individual aircraft in 

airspace, supported by a customized Human-Machine 

Interaction (HMI) system. Xie et al. [43] further enhances 

ATM efficiency with a predictive ML model, XGBoost, 

integrating SHapley Additive explanations (SHAP) and Local 

Interpretable Model-Agnostic Explanations (LIME) for 

decision support. While AI technologies are poised to 

complement human decision-making in ATM, their full 

integration into operational environments remains a pivotal 

development for future aviation systems, promising enhanced 

operational efficiency and decision support capabilities. The 

main problem of these approaches is the complexity of the 

flow and the fact that it is multi-parametric as opposed to the 

automotive sector which essentially involves less parameters.  

Other aviation systems comprise assurance of maintenance 

[44] and safety including landings [45, 46]. These need to 

leverage the advantages of the HAIT in conjunction with those 

of the human towards a better organisation of the tasks. Safety 

in aviation is perhaps the most significant challenge and the 

systems need to be totally precise which make the HAIT a 

challenging task to implement. On the other hand, the vehicle 

systems comprise of less variables and they do not imply the 

loss of a large number of lives upon problem in the 

functionality.  

 

 

5. CONCLUSIONS 

 

This paper aims to elucidate the concept of HAIT, providing 

readers with essential insights for understanding its 

implications. HAIT serves to foster trust in automated 

automotive systems, particularly in the data sourced from 

vehicle sensors and RSUs. The concepts of human in, on, and 

over the loop are introduced, elucidating their significance. 

Furthermore, a comprehensive review of current academic 

research incorporating HAIT is conducted within the 

automotive domain. The main objective of this paper is to 

closely align IoV and AI elements, facilitating their integration 

into cohesive solutions.  

HAIT in the automotive industry is quite important since it 

may assist the driver to make the correct decision on specific 

tasks. Moreover, the driver’s mental and physiological state 

may be monitored by sensors that will feed the AI model to 

intervene to decisions on the roard. In general, HAIT is 

gaining a lot of attention since, the ML models that are used 

do not provide black box decisons, but engage the driver with 

explanations to the process. In this manner the driver is more 

aware of the new systems of the vehicle and the 

interconnection with other systems, like the RSSs, and 

attention is maximised. Explainability which is at the heart of 

HAIT will provide the driver with the means to trust the AI 

and acknowledge the decisions. Explainable AI (XAI) does 

exactly that. It enhances the trust between the AI and the 

driver. 

HAIT is recently addressed in aviation and maritime, 

whereby the cooperation between the human and the AI will 

be evident. The next generation of HAIT will evolve with the 

contributions in Brain Computer Interfaces (BCI)s as well as 

the prevalence of level 5 automation, which means a 

completely automated vehicle. With this in mind, the driver 

will play a supervisory role rather than actively engaging in 

the driving and will be able to communicate with the vehicle 

using her thoughts. Comparing to aviation HAIT is therefore 

considered as a promising methodology. The HAIKU project 

aims to include HAIT, where 6 use cases that are given, 

including startle effect, UAVs and COVID spreading 

prevention to airports. Moreover, to our knowledge, several 

EU projects aim to include HAIT in the maritime industry 

where sensor fusion and connectivity is a major issue. 

Automation in maritime is evident and an inclusion of HAIT 

is a great step towards the future ships. 
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