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The study evaluates the accuracy of LiDAR and CCTV technologies for vehicle and 

pedestrian count collection at a signalized intersection under varied weather conditions. 

Data collection occurred over a two-hour period during peak morning and evening hours 

using both technologies. The trajectory identification, entry and exit point determination, 

and anomaly filtering were utilized to analyze the vehicle counts. The pedestrian counts 

were carefully analyzed using LiDAR point cloud data and CCTV footage to monitor 

movements, in areas. Analysis of the data showed differences in vehicle and pedestrian 

counts depending on the weather conditions. Rainy weather had the variations while sunny 

conditions also showed differences with snowy weather having the least discrepancies. 

Interestingly the southbound through and eastbound right movements exhibited the 

variations in both vehicle and pedestrian counts. Despite challenges like spots and weather 

impacts, both LiDAR and CCTV technologies hold promise for collecting traffic data. It is 

vitally important that this study focuses on the limitations of current traffic control systems. 

The integrity of current systems and improving them is essential for traffic monitoring and 

enhancing safety measures at signalized intersections.  
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1. INTRODUCTION

City transportation systems depend heavily on signalized 

intersections for the safe and effective movement of vehicles 

and pedestrians [1-3]. Emerging technologies have the 

potential to significantly enhance travel safety. If these 

technologies are widely adopted and integrated into smart 

transportation systems, they could lead to a substantial 

reduction in the frequency and severity of conflicts and crashes 

[4]. The purpose of this research is to examine and compare 

the effectiveness of Light Detection and Ranging (LiDAR) 

sensors and Closed-Circuit Television (CCTV) cameras at 

signalized intersections in different weather conditions. 

LiDAR sensors, which utilize Light Detection and Ranging 

technology have gained attention for their potential in traffic 

control [5-7]. These sensors emit laser pulses measure the time 

taken for the pulses to return, enabling distance and speed 

calculations. The advantages of LiDAR sensors include object 

detection the ability to create 3D maps of surroundings and 

consistent performance regardless of lighting conditions [8, 9]. 

Hereupon, LiDAR sensors hold promise for operation in 

challenging weather conditions by providing real time data on 

vehicle, pedestrian and cyclist presence and movement. 

Potentially reducing collision risks, through alerts and 

enabling efficient traffic rerouting [10]. 

On the hand CCTV cameras have been widely utilized in 

traffic monitoring systems providing the benefit of capturing 

data across a broad area [11, 12]. Additionally, CCTV cameras 

play a key role, for law enforcement agencies and efficient 

traffic control. However, they may encounter challenges in 

weather conditions and light settings. Due to their 2D image 

output CCTV cameras could hinder assessment of object 

height and distance impacting decision making during bad 

weather. This study aims to examine the strengths and 

limitations of LiDAR sensors and CCTV cameras when 

monitoring traffic at intersections with traffic signals under 

weather conditions. By conducting tests and comparative 

evaluations this research seeks to offer insights, into the real-

world effectiveness of these technologies.  

LiDAR sensors and CCTV cameras are often compared in 

the field of traffic management. That's because each system 

has different capabilities and ways of operating [4]. It is 

important to note that both LiDAR and CCTV technologies 

are efficient traffic monitoring at signalized intersections. 

When it comes to hardware, LiDAR sensors can pretty much 

do it all, from object detection and distance measurement, to 

determining speed of objects [13]. LiDAR sensors and CCTV 

cameras need to be compared in terms of their coverage, 

characteristics, advantages, and disadvantages. In traffic 

signal management, for instance, it might be found that 

LiDAR sensors are better at determining when vehicles are 

present at an intersection. However, this needs to be figured 

out in a systematic and an experimental way. 

By understanding how LiDAR and CCTV sensors perform 

under varying weather conditions practitioners can proactively 

address risks. Also, this study seeks to provide information, on 
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how well LiDAR sensors and CCTV cameras perform in 

different weather conditions. The goal is to assist in making 

decisions and improving the reliability of transportation 

systems. 

The significance of this study lies in its ability to provide 

insights for traffic engineers, policymakers and practitioners 

involved in intersection safety and traffic management. 

Through an assessment of how both sensor technologies 

perform under weather conditions this research not only 

enhances the understanding of their operational differences but 

also offers guidance on how they can be effectively utilized in 

real world situations. Additionally, by highlighting the 

strengths and limitations of LiDAR sensors and CCTV 

cameras during weather conditions this study contributes to 

the improvement of more robust and effective urban 

transportation systems. Furthermore, the comparative analysis 

carried out here helps decision makers make informed choices, 

on sensor usage, placement and configuration to optimize 

resource allocation and enhance intersection safety and 

efficiency. The remainder of this paper is structured as 

follows: Section 2: Literature Review, Section 3: Research 

Methodology, Section 4: Data Analysis Results, Section 5: 

Discussion, Section 6: Conclusion, and Section 7: References.  

 

 

2. LITERATURE REVIEW 
 

Signalized intersections play a key role, in transportation 

systems requiring data gathering to effectively manage traffic 

and enhance safety [2, 3, 14, 15]. With the development of 

sensing technologies such as LiDAR and CCTV there is a 

growing interest in comparing their accuracy in different 

weather conditions [4], a growing interest is being shown in 

comparing their accuracy under a variety of weather 

conditions [16-22]. Accurate data collection at signalized 

intersections is crucial for various reasons. Firstly, it helps 

improve safety by identifying risks and implementing 

measures especially during challenging weather situations. 

Secondly, accurate data supports traffic management efforts 

by optimizing signal timing and detecting incidents ultimately 

leading to managing traffic flow and less congestion [23-27]. 

Thirdly, it informs infrastructure planning decisions, and it 

provides future traffic demands and effective prioritization of 

infrastructure investments [28, 29]. Lastly, it helps protect the 

environment by reducing fuel usage and emissions through 

traffic control [30-32].  

In recent years, researchers have developed approaches to 

evaluate the precision of LiDAR and CCTV data gathering 

specifically looking at how they work in different weather 

situations [4, 33-35].  

One efficient approach is the utilization of hybrid sensor 

fusion techniques [27, 36] which integrate LiDAR and CCTV 

data to investigate strengths of each technology. LiDAR is an 

effective tool that provide three dimensions data [37-39], 

while CCTV provides detailed images that monitor objects [40, 

41]. Monitoring and analyzing traffic are both precise and 

reliable when these types of data are combined. Even so, 

machine learning techniques can be developed, which allow 

for the examination and comparison of the detailed data 

obtained from LiDAR systems and CCTV cameras. 

Convolutional Neural Networks (CNNs) [42-44], and 

Recurrent Neural Networks (RNNs) [45-47] are among the 

most widely utilized techniques for extracting effective 

patterns and features. Techniques such as regression analysis 

and hypothesis testing [10, 48], error modeling [49], and 

Generalized Additive Models (GAMs) [50] have been widely 

applied to investigate the effects of weather condition on 

sensor accuracy.  

Weather Research and Forecasting (WRF) model is 

designed to simulate all kinds of weather events with 

impressive local (spatial) and immediate (temporal) detail [51, 

52]. The WRF model is able to simulate weather patterns on 

both small and large scales.  

Additionally, the Advanced Weather Interactive Processing 

System (AWIPS) [53] is also widely utilized in assessing a 

broad range of weather conditions on sensor’s performance in 

different weather conditions. 

Previous studies have investigated the accuracy of LiDAR 

and CCTV sensors and their performance under various 

weather conditions at signalized intersections. While earlier 

research has explored comparisons of these sensors, this study 

recognized the gaps in the state-of-the-art and it analyzes their 

performance across a wide range of weather scenarios. 

 

 

3. RESEARCH METHODOLOGY 
 

Real-time vehicle and pedestrian movement data are being 

collected at a selected signalized intersection. To do this, the 

LiDAR sensor was installed to capture objects’ movements.  

Detecting and recognizing objects using LiDAR sensor 

requires a series of tasks. The broad laser pulses emitted by a 

LiDAR sensor can be used to create a dense 3D point cloud. 

This point cloud is akin to a large volumetric representation of 

the environment around the sensor, including the surrounding 

structures (such as trees or buildings) and any objects in its 

path (such as vehicles, cyclists or pedestrians). Processing this 

large point cloud to obtain useful information, such as 

recognizing the types of objects at the intersection is the next 

step. 

SVM and CNN machine-learning algorithms are utilized 

[10] to distinguish between different objects based on their 

size, shape, and movement patterns. Both models assist to 

identify characteristics for detecting and classifying objects. 

With this method of extracting features, CNNs can learn 

representations directly and detect and classify objects based 

on their unique traits. Through training and optimization, these 

techniques help LiDAR sensors adapt to changes in the 

environment ensuring performance in monitoring traffic 

situations. Figure 1 illustrates the positioning of the LiDAR 

sensor as it sends out signals, toward objects moving through 

an intersection. 

The data collection process was conducted over three 

distinct weather conditions. A key aspect of their method 

involved using point cloud data to extract traffic details. 

Vehicle counts, pedestrian counts, and trajectories emerged as 

focal points of analysis, each meticulously delineated through 

the meticulous processing of the acquired point cloud data. 

Through a rigorous processing of the collected point cloud 

data, the movement of vehicles and pedestrians and other 

objects was tracked within the intersection.  

On the other hand, image processing algorithms, such as 

clustering and segmentation techniques [54] were employed 

for object detection on the recorded videos from CCTV 

cameras to collect traffic data in three snowy, sunny, and rainy 

days. Traffic parameters including vehicle counts, pedestrian 

counts, and trajectories were then extracted. Figure 2 

illustrates the CCTV camera views.

238



 
 

Figure 1. LiDAR perspective view of the intersection (left figure) and installed LiDAR location at the intersection of the case 

study (right figure) 

 

 
 

Figure 2. CCTV camera view 

 

Regarding CCTV cameras, strategically positioned CCTV 

cameras capture visual data of vehicular and pedestrian 

activities within the intersection. High-resolution video 

footage is recorded continuously to capture real-time events. 

Image processing algorithms, such as background subtraction 

or object tracking [55, 56] detect and track moving objects, 

including vehicles and pedestrians. Various features extracted 

from the detected objects, such as size, shape, and motion 

characteristics, facilitate classification into vehicles and 

pedestrians. Vehicle and pedestrian counts are estimated from 

the video data using these features. Machine learning 

algorithms, including ensemble methods or deep learning 

models that are strategically employed to enhance the 

accuracy and precision of count estimations, are employed to 

improve count estimations.  

Attention was given to the specifics of the sensors, the 

mounting setups, and the necessary calibration procedures to 

ensure the system functioned as intended. The chosen sensors 

provided the appropriate resolution to identify the features of 

interest for this study. Sensors were placed to cover the four 

corners within LiDAR's visual range, ensuring no 

impediments to visibility. CCTV cameras used for video-

based traffic monitoring were selected based on their imaging 

capabilities. They were required to have high resolution, a fast 

frame rate, and a sufficient dynamic range to capture traffic 

scenes under various lighting and weather conditions. Based 

on experience, the cameras were likely positioned to provide a 

comprehensive view of traffic flow while minimizing blind 

spots and obstacles. 

As can be seen in Figure 3, the LiDAR sensor installed at E 

Cold Spring Ln – Hillen Rd intersection [4, 10] as this research 

case study.  

 
 

Figure 3. E Cold Spring Ln – Hillen Rd intersection [10] 

 

Several important reasons underpin the selection of the E 

Cold Spring Ln – Hillen Rd intersection in Baltimore City as 

the site for studying how effectively LiDAR and CCTV 

sensors work in different weather conditions to monitor 

traffic—especially pedestrian and bicycle traffic—that might 

move through or close to the intersection. It is important to 

note that, E Cold Spring intersection was practically in close 

proximity of Morgan State University. It was a busy urban 

intersection where the research team could get the kind of 

traffic volume that the study needed. The intersection had a 

crash history that was essential for conducting a before–after 

study. This history enabled a thorough evaluation of the 
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sensors' effectiveness in collision prevention in different 

weather conditions.  

Through analyses visualization methods and machine 

learning algorithms the study aimed to uncover correlations, 

patterns and irregularities, in the collected data. This holistic 

approach provides accurately estimate traffic parameters, 

thereby supporting traffic management strategies. The 

physical layout of the intersection is illustrated in Figure 3. 

The location of the LiDAR sensor is shown by a purple circle 

while the purple rectangle illustrates the location of two CCTV 

cameras. 

A Bland-Altman analysis was conducted [57] to compare 

the collected data by LiDAR sensor and CCTV cameras. This 

method assesses the agreement [57, 58] between the two 

collected datasets by plotting the difference between 

vehicle/pedestrian counts obtained from LiDAR (Li) and 

CCTV (Ci) against their mean count (Mi = 
𝐿𝑖+𝐶𝑖

2
) for each 

movement and time period.  

Based on Bland-Altman analysis, the difference between 

overlaps and the random overlaps is calculated (𝐷𝑖), and then 

the average of these differences is determined by Eq. (1). 

 

𝐷∗ =  
1

𝑛
 ∑ 𝐷𝑖

𝑛

𝑖=1

 (1) 

 

The limits of agreement (LoA) are calculated as the mean 

difference (D*) ± 1.96 times the standard deviation of the 

differences (SD(D)) as can be seen in Eq. (2). 

 

LoA = D∗  ± 1.96 × SD(D) (2) 

 

where, SD(D) is the standard deviation of the differences 𝐷𝑖 . 

LoA represents the range where the differences can be 

expected between measurements from two methods to fall 

with a level of confidence. To calculate LoA, the difference 

between measurements is calculated. Then add or subtract 

1.96 times the standard deviation of these differences. A 

narrower LoA indicates agreement between the two methods 

while a wider LoA shows variability or disagreement [58]. In 

other words, a narrower LoA means that measurements from 

both methods are closer to the difference showing agreement. 

On the hand a wider LoA suggests that there is spread or 

variability in measurements indicating increased disagreement 

between the two methods. 

 

 

4. DATA ANALYSIS RESULTS – LIDAR AND CCTV 

CAMERA FOOTAGE ANALYSIS 

 

4.1 Snowy weather (Friday, January 19th, 2024 - 10:30 AM 

to 12:30 PM) 

 

Snowy weather poses challenges, for traffic flow, such as 

visibility, slippery roads and longer stopping distances 

increasing the dangers for drivers and pedestrians. Traditional 

methods of monitoring traffic like CCTV cameras may 

struggle to track and analyze traffic patterns in harsh 

conditions. In contrast LiDAR technology shows promise as a 

solution by using laser pulses to create 3D maps. During 

snowy weather condition, CCTV cameras encounter risks that 

can significantly affect their performance in monitoring traffic. 

The reduced visibility caused by snowfall can result in image 

quality and restricted detection capabilities. Additionally, 

snow buildup on camera lenses or mounts may block the 

camera’s view. Furthermore, freezing temperatures can lead to 

icing on the lens or housing of the camera distorting images 

and causing issues with parts. 

Snow accumulation on the sensors housing or emitter/ units 

may block laser beams leading to readings or complete signal 

loss. Subzero temperatures might cause icing on the sensors 

surfaces further affecting its operation. Moreover, snowflakes 

or ice particles in the atmosphere can scatter laser pulses 

causing noise or disruptions, in the data captured by the 

LiDAR sensor. Additionally extreme cold conditions can 

influence the parts of the sensor potentially resulting in 

malfunctions or operational issues. 

For accurate analysis, two hours interval were selected for 

data analysis. The vehicle count data was collected to 

investigate the traffic condition at the intersection. Table 1 

displays the number of collected vehicles at intersection under 

snowy weather condition. 

As can be seen in Table 1, there is a significant difference 

between the LiDAR and CCTV vehicle counts in eastbound 

right (=WS) direction. Blind spots, near where LiDAR sensors 

installed can have an impact on how well they work, especially 

when the weather is snowy. Buildings, trees or other objects in 

proximity of the sensor's location can block its view. In snowy 

condition, the snow can cover things up and make it harder for 

the sensor to detect objects. This means that vehicles going 

through these spots might not be picked up accurately by the 

LiDAR sensor causing differences in vehicle counts compared 

to CCTV cameras. The difference in vehicle counts between 

LiDAR and CCTV for vehicles moving eastbound or heading 

towards WS could be due to reasons related to spots. Putting 

the LiDAR sensor close to this place raises the chances of 

spots causing inaccuracies in data collection especially when 

visibility is low due, to snow conditions.  

Moreover, the angle and orientation of the LiDAR sensor 

relative to the movement direction may exacerbate blind spot 

effects, particularly during snowy conditions when 

obstructions are more prevalent. 

To assess the accuracy of LiDAR compared to CCTV 

cameras during snowy weather conditions, Figure 4 illustrates 

the disparities in vehicle counts between the two technologies. 

In Figure 4, the vehicle counts recorded by CCTV cameras 

were subtracted from those recorded by the LiDAR sensor. 

 

 
 

Figure 4. Discrepancies in vehicle counts between LiDAR 

and CCTV cameras across intersection movements during 

snowy weather 
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Table 1. Assessing vehicle counts across intersection movements in snowy weather 

 

Hourly Counts Technology 
Movement 

NE NS NW ES EW EN SW SN SE WN WE WS 

10:30 – 11:30 
LiDAR 30 193 56 14 88 36 10 193 9 52 78 4 

CCTV 29 202 57 15 94 34 9 207 9 48 76 20 

10:45 – 11:45 
LiDAR 35 199 56 15 81 39 10 210 15 52 77 4 

CCTV 34 208 56 17 88 39 10 216 17 47 76 23 

11:00 – 12:00 
LiDAR 34 194 60 16 77 33 11 216 18 53 77 5 

CCTV 34 199 60 17 89 33 11 226 21 49 71 21 

11:15 – 12:15 
LiDAR 34 189 60 21 83 35 7 209 24 53 91 3 

CCTV 37 202 59 22 91 36 7 226 27 50 89 22 

11:30 – 12:30 
LiDAR 35 191 59 22 88 31 7 222 22 51 94 2 

CCTV 38 203 59 22 98 32 7 237 26 50 96 23 
 

Table 2. The percentage (%) differences of CCTV and LiDAR vehicle count in snowy weather 
 

Hourly Counts NE NS NW ES EW EN SW SN SE WN WE WS 

10:30 - 11:30 3.4 4.5 1.8 7 6.4 5.9 11.1 6.8 0 8.3 2.6 80 

10:45 - 11:45 2.9 4.3 0 11.8 8.0 0 0 2.8 11.8 10.6 1.3 82.6 

11:00 - 12:00 0 2.5 0 5.9 13.5 0 0 4.4 14.3 8.2 8.5 76.2 

11:15 - 12:15 8.1 6.4 1.7 5 8.8 2.8 0 7.5 11 6 2 86.4 

11:30 - 12:30 7.9 5.9 0 0 10.2 3.1 0 6.3 15.4 2 2.1 91.3 

 

Table 3. Assessing pedestrian counts across intersection 

approaches in snowy weather 

 
Hourly Counts Technology N E S W 

10:30 – 11:30 
LiDAR 1 0 3 0 

CCTV 2 0 3 0 

10:45 – 11:45 
LiDAR 1 2 2 0 

CCTV 2 1 2 0 

11:00 – 12:00 
LiDAR 1 2 2 0 

CCTV 3 1 2 0 

11:15 – 12:15 
LiDAR 2 3 2 0 

CCTV 4 2 2 0 

11:30 – 12:30 
LiDAR 1 3 2 0 

CCTV 2 2 2 0 

 

 
 

Figure 5. The mean difference (D*) of vehicle counts of all 

time intervals for each movement in snowy weather 

condition 

 

Figure 5 illustrates the mean difference (D*) of all intervals 

for each movement at the intersection in snowy weather 

condition. 

Table 2 highlights the percentage of differences between 

CCTV and LiDAR in different time intervals in snowy 

weather conditions. 

Gathering data, on pedestrians in conditions presents 

challenges for both CCTV and LiDAR technologies. One 

major obstacle is the reduced visibility caused by snowfall 

which can make it difficult for CCTV cameras and LiDAR 

sensors to spot pedestrians. Snow buildup on camera lenses or 

LiDAR equipment can also hinder visibility, impede 

pedestrian detection. Moreover, freezing temperatures may 

lead to ice formation on the surfaces of cameras and LiDAR 

sensors impacting their ability to accurately detect pedestrians. 

In snowy weather, pedestrians may alter their behaviour and 

become more cautious, particularly when visibility on 

walkways is poor. Some pedestrians might cross paths in 

hazardous conditions, which poses a challenge for data 

collection. Pedestrian counts across intersection approaches in 

snowy weather can be seen in Table 3. Figure 6 showed that 

the pedestrian counts from LiDAR and CCTV were consistent 

across all directions. The findings demonstrated that both 

LiDAR and CCTV systems could accurately track human 

movements. At the corners during inclement weather, LiDAR 

and CCTV provide reliable alternatives to traditional 

pedestrian counters. These tools effectively capture the 

patterns and quantities of human movement through high-

traffic areas. When used properly, they offer a robust method 

for monitoring pedestrian flow in various conditions. 

Figure 6 demonstrates that there is no discernible difference 

in the pedestrian count across the intersection. Both 

surveillance methods are equally adept at calculating how 

many pedestrians cross the intersection. 

 

 
 

Figure 6. Discrepancies in pedestrian counts between 

LiDAR and CCTV cameras during snowy weather 
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4.2 Sunny weather (Friday, January 26th, 2024 - 10:30 AM 

to 12:30 PM) 

 

Sunny conditions provide visibility that greatly affects the 

accuracy of data collected by both technologies. Table 4 and 

Table 5 show the vehicle counts across intersection 

movements in sunny weather, and differences (%) between 

CCTV and LiDAR during intervals, respectively. The 

pedestrian count data was examined at times throughout the 

day under weather conditions as indicated in Table 6. 

Figure 7 demonstrates the discrepancies in vehicle counts 

between LiDAR and CCTV cameras across intersection 

movements during sunny weather. Additionally, Figure 8 

illustrates the mean difference (D*) of vehicle counts for each 

movement in sunny weather condition. 

Analyzing pedestrian counts in sunny weather depicted in 

Figure 9. The comparison of pedestrian counts from LiDAR 

and CCTV consistently yielded outcomes indicating variations 

between the two technologies. This consistency highlights the 

effectiveness of both LiDAR and CCTV in tracking pedestrian 

movements at the intersection under sunny weather conditions. 

The dependable performance of these technologies suggests 

their suitability for collecting pedestrian data, offering insights 

to transportation planners and authorities, for improving 

pedestrian safety and infrastructure planning purposes. 

 

 
 

Figure 7. Discrepancies in vehicle counts between LiDAR 

and CCTV cameras across intersection movements during 

sunny weather 

 

Table 4. Assessing vehicle counts across intersection movements in sunny weather 

 

Hourly Counts Technology 
Movement 

NE NS NW ES EW EN SW SN SE WN WE WS 

10:30 – 11:30 
LiDAR 101 520 143 64 205 114 28 475 74 156 234 2 

CCTV 103 550 141 64 207 117 32 473 76 147 240 76 

10:45 – 11:45 
LiDAR 107 526 137 63 224 114 32 501 75 172 273 4 

CCTV 108 550 133 64 229 118 35 503 78 165 280 79 

11:00 – 12:00 
LiDAR 108 552 135 64 238 118 31 508 69 190 290 5 

CCTV 111 579 129 65 240 118 34 503 71 189 292 78 

11:15 – 12:15 
LiDAR 111 583 138 68 241 121 33 564 73 189 269 4 

CCTV 116 605 131 68 240 117 36 558 73 191 269 70 

11:30 – 12:30 
LiDAR 121 602 124 68 252 122 37 557 71 180 277 4 

CCTV 124 618 117 68 251 118 40 552 72 186 279 66 

 

Table 5. The percentage (%) differences of CCTV and LiDAR vehicle count in sunny weather 

 

Hourly Counts NE NS NW ES EW EN SW SN SE WN WE WS 

10:30 - 11:30 1.9 5.5 1.4 0 1 2.6 12.5 0.4 2.6 6.1 2.5 97.4 

10:45 - 11:45 0.9 4.4 3 1.6 2.2 3.4 8.6 0.4 3.8 4.2 2.5 94.9 

11:00 - 12:00 2.7 4.7 4.7 1.5 0.8 0 8.8 1 2.8 0.5 0.7 93.6 

11:15 - 12:15 4.3 3.6 5.3 0 0.4 3.4 8.3 1.1 0 1 0 94.3 

11:30 - 12:30 2.4 2.6 6 0 0.4 3.4 7.5 0.9 1.4 3.2 0.7 93.9 

 

Table 6. Assessing pedestrian counts across intersection approaches in sunny weather 

 
Hourly Counts Technology N E S W 

10:30 – 11:30 
LiDAR 55 15 27 7 

CCTV 60 19 26 9 

10:45 – 11:45 
LiDAR 51 14 24 8 

CCTV 55 17 23 10 

11:00 – 12:00 
LiDAR 39 15 20 6 

CCTV 38 14 19 6 

11:15 – 12:15 
LiDAR 34 14 17 9 

CCTV 32 13 16 8 

11:30 – 12:30 
LiDAR 38 15 22 12 

CCTV 36 14 21 11 
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Figure 8. The mean difference (D*) of vehicle counts of all 

time intervals for each movement in sunny weather condition 

 

 
 

Figure 9. Discrepancies in pedestrian counts between 

LiDAR and CCTV cameras during sunny weather 

 
 

4.3 Rainy weather (Wednesday, February 28th, 2024 - 

17:00 PM to 19:00 PM) 

 

Rainy weather presents challenges, like decreased visibility, 

slippery roads and changes in traffic patterns. It can increase 

the likelihood of traffic crashes and traffic jams. 

Understanding how LiDAR and CCTV function in rainy 

conditions is essential for developing strategies to reduce risks 

and improve traffic management systems, thus making 

transportation networks safer and more robust. Rain impacts 

visibility for cameras, making it difficult to capture clear 

footage for counting pedestrians and vehicles. Additionally, 

rain affects LiDAR systems by interfering with data collection. 

Laser beams are less effective in rain, and LiDAR sensors can 

become obstructed and dirty. Baltimore City experienced an 

inconsistent rainy weather, especially on Fridays, providing a 

real challenge to collect data. To make sure the credibility of 

this research study would not be compromised by the 

conditions, however, the authors decided to collect data not 

only on Fridays but also on one Wednesday. This decision was 

made to incorporate weather conditions, for a comprehensive 

analysis enhancing the reliability of the study’s results. 

Despite collecting data on days, the primary focus remains on 

assessing sensor accuracy under varying weather conditions 

than comparing driver behavior across weekdays. By 

conducting analysis and accounting for specific weather 

conditions during data collection, the study aims to provide 

valuable insights into sensor performance beyond daily traffic 

variations. This method guarantees that the conclusions of the 

research are based on evidence and make a valuable 

contribution, to the field of sensor technologies despite 

variations, in data collection timing. 

Table 7 illustrates the collected data from LiDAR and 

CCTV cameras in rainy weather condition. 

To assess the accuracy of LiDAR compared to CCTV 

cameras under rainy conditions, Figure 10 illustrates the 

disparities in vehicle counts recorded by the two technologies.

 
 

Table 7. Assessing vehicle counts across intersection movements in rainy weather 

 

Hourly Counts Technology 
Movement 

NE NS NW ES EW EN SW SN SE WN WE WS 

17:00 – 18:00 
LiDAR 109 573 150 68 353 174 60 1055 63 226 398 41 

CCTV 119 609 147 68 353 176 60 1061 66 220 401 79 

17:15 – 18:15 
LiDAR 106 583 152 64 328 153 53 1001 57 225 387 44 

CCTV 114 612 149 60 328 155 53 1009 63 229 392 81 

17:30 – 18:30 
LiDAR 109 552 160 62 284 151 48 840 50 219 357 53 

CCTV 125 577 155 57 282 155 53 851 58 222 358 77 

17:45 – 18:45 
LiDAR 101 526 152 62 288 148 41 723 48 193 331 43 

CCTV 117 548 148 57 284 152 46 729 49 197 328 57 

18:00 – 19:00 
LiDAR 100 533 142 56 278 127 32 620 45 183 309 34 

CCTV 104 547 150 49 282 132 37 635 49 188 308 46 

 

Table 8. The percentage (%) differences of CCTV and LiDAR vehicle count in rainy weather 

 
Hourly Counts NE NS NW ES EW EN SW SN SE WN WE WS 

17:00 – 18:00 8.4 5.9 2 0 0 1.1 0 0.6 4.5 2.7 0.7 48.1 

17:15 – 18:15 7 4.7 2 6.7 0 1.3 0 0.8 9.5 1.7 1.3 45.7 

17:30 – 18:30 12.8 4.3 3.2 8.8 0.7 3 9.4 1.3 13.8 1.4 0.3 31.2 

17:45 – 18:45 13.7 4.0 2.7 9 1.4 2.6 10.9 0.8 2 2 1 24.6 

18:00 – 19:00 3.8 2.6 5.3 14 1.4 3.8 13.5 2.4 8.2 2.7 0.3 26.1 
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Table 9. Assessing pedestrian counts across intersection 

approaches in rainy weather 

 
Hourly Counts Technology N E S W 

17:00 – 18:00 
LiDAR 38 13 29 8 

CCTV 48 15 32 11 

17:15 – 18:15 
LiDAR 26 12 19 7 

CCTV 32 12 21 7 

17:30 – 18:30 
LiDAR 22 8 15 8 

CCTV 28 8 16 8 

17:45 – 18:45 
LiDAR 20 6 13 9 

CCTV 31 7 16 9 

18:00 – 19:00 
LiDAR 17 7 11 6 

CCTV 33 8 14 6 

 

 
 

Figure 10. Discrepancies in vehicle counts between LiDAR 

and CCTV cameras across intersection movements during 

rainy weather 

 
 

Figure 11. The mean difference (D*) of vehicle counts of all 

time intervals for each movement in rainy weather condition 

 

 
 

Figure 12. Discrepancies in pedestrian counts between 

LiDAR and CCTV cameras during rainy weather 

 

As can be seen in Figure 10, and similar to the obtained 

results in snowy and sunny weather conditions, the 

discrepancy between LiDAR and CCTV vehicle counts is 

considerable in southbound through (NS) and eastbound right 

(WS) directions. Figure 11 illustrates the mean difference (D*) 

of all intervals for each movement at the intersection in rainy 

weather condition. 

Table 8 highlights the percentage of differences between 

CCTV and LiDAR in different hourly intervals in rainy 

weather condition. 

The pedestrian counts data were analyzed at different hourly 

intervals in rainy weather as can be seen in Table 9. 

Assessing pedestrian count data during rainy weather 

conditions, as depicted in Figure 12, presents challenges for 

both LiDAR and CCTV technologies. While these 

technologies have shown acceptable accuracy in optimal 

conditions, the comparison between pedestrian counts 

obtained by LiDAR and CCTV reveals discrepancies during 

rainy weather, particularly in the northern approach of the 

intersection (southbound). Rainy weather introduces 

complexities such as decreased visibility and distortion of 

signals, leading to reduced accuracy in pedestrian counting. 

LiDAR, reliant on laser beams for detection, may experience 

scattering or absorption of beams by raindrops, affecting its 

ability to accurately capture pedestrian movements, especially 

in areas with considerable gradients like the southbound of the 

intersection. Similarly, CCTV cameras may encounter issues 

with images and identifying objects when raindrops block the 

lens or cause pictures leading to a decreased accuracy. 

One primary reason for selecting timeframes is to observe 

traffic patterns during both weekdays and weekends. By 

conducting counts on Wednesday and Friday, the research aim 

was to capture the changes in traffic flow that typically occur 

on days of the week taking into account factors like routines, 

work schedules and leisure activities. Additionally choosing 

mid-morning to early afternoon hours helps capture a range of 

traffic conditions, including both morning and evening rush 

hours, giving a view of intersection activity throughout the day. 

Moreover, selecting Fridays allows for considering 

fluctuations in traffic volume and behavior as people transition 

from weekday routines to weekend plans. This choice was 

influenced by the understanding that Fridays often have traffic 

patterns due to closures increased weekend trips and the 

excitement leading up to the weekend. 

 

4.4 Quantitative comparisons between LiDAR and CCTV 

technologies 

 

As shown in Table 2, and in snowy condition, comparing 

the LiDAR and CCTV counts at the E Cold Spring Ln – Hillen 

Rd intersection shows differences, in vehicle counts during 

hourly periods. The percentage gaps indicate varying vehicle 

counts detected by these two sensor technologies with changes 

ranging from variations to differences. For instance, between 

10:30 AM to 11;30 AM, the percentage differences vary from 

0% to 11.1%, showing disparities in vehicle counts between 

LiDAR and CCTV systems. However, as snowfall intensity 

rises, especially evident from 11:45 AM to 12:45 PM, the 

percentage gaps increase notably reaching up to 91.3%. These 

results imply that LiDAR sensors perform consistently well in 

conditions by detecting and counting vehicles while CCTV 

systems show more noticeable discrepancies due to visibility 
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challenges caused by heavy snowfall. The differences 

observed in vehicle counts between LiDAR and CCTV during 

snowy weather stem from the limitations of each sensor 

technology. LiDAR sensors use emitted laser pulses to detect 

and measure distances and speeds of surrounding objects 

maintaining performance irrespective of weather conditions. 

On the side, CCTV cameras might encounter difficulties, in 

recording vehicle activities and differentiating them from 

falling snow in the background. This could result in either 

underestimating or overestimating the number of vehicles. The 

intricate relationship among snow buildup decreased visibility 

and road conditions can affect how CCTV cameras work 

causing variations in vehicle counts when compared to LiDAR 

sensors. 

As can be seen in Table 5, in sunny weather and during the 

10:30 - 11:30 AM, percentage differences range from 0.4% to 

12.5%, indicating minor to moderate differences in the number 

of vehicles detected by LiDAR and CCTV camera. 

Particularly the largest gap of 97.4% is seen in the WS 

(direction indicating a notable discrepancy in vehicle counts 

between CCTV and LiDAR). These discrepancies could be 

due to factors like objects being partially or fully hidden from 

the CCTV cameras view leading to inaccuracies in counting 

vehicles. Moreover, variations in lighting and camera 

placement can affect the precision of CCTV counts causing 

these observed differences. On the hand, LiDAR sensors 

consistently perform well under conditions by using laser 

technology to accurately track vehicle presence and movement, 

resulting in more dependable vehicle counts. 

The results highlighted that inclement weather, such as 

snow or rain, presents significant challenges for the CCTV 

cameras. The results, however, indicate that LiDAR sensors 

can collect data more accurately under these conditions. 

Indeed, LiDAR sensors maintain performance in bad weather 

by using their laser-based detection technology to overcome 

disruptions caused by weather and provide reliable vehicle 

count data. Overall, these findings emphasize that LiDAR 

sensors are technically superior to CCTV cameras when it 

comes to dependable traffic monitoring, in challenging 

weather conditions. Hereupon, LiDAR technology could 

enhance safety at intersections and improve traffic 

management strategies in areas in challenging weather 

conditions. 

 

 

5. DISCUSSION 

 

The limits of agreement (LoA) represent the extent of 

variability between two measurement techniques [58]. 

Essentially, LoA defines the scope in which the discrepancies 

between measurements obtained from methods are anticipated 

to lie with a degree of certainty. To provide an interpretation 

of the results the subsequent sections are included. 

 

5.1 Vehicle counts comparison from LiDAR and CCTV 

technologies 

 

In the context of comparing vehicle and pedestrian counts 

data collected by LiDAR and CCTV technologies, LoA is used 

as benchmarks to compare the two datasets. The mean 

difference, which is the difference between the counts from 

LiDAR and CCTV acts as the central point of LoA. The lower 

boundaries are then set by adding and subtracting 1.96 times 

the standard deviation of the differences from this mean 

difference. This range captures about 95% of the variations, 

between the datasets giving an insight into their alignment. 

LoA plays a key role in assessing the reliability and 

consistency of measurements collected by two technologies. A 

tight LoA range suggests agreement between the data sets 

reflecting levels of accuracy and precision in the 

measurements. On the hand, a broad LoA range could indicate 

differences between the data sets, which may raise doubts 

about the reliability of one or both measurement methods. 

Figure 13 provides a representation of the LoA values, for 

vehicle counts. 

 

 
 

Figure 13. LoA values for vehicles counts in different 

weather conditions 

 

As can be seen in Figure 13, the LoA analysis involved 

determining the mean difference between the counts obtained 

by LiDAR and CCTV, that serves as the central point of the 

agreement range. Subsequently, the upper and lower limits of 

the LoA were established by adding and subtracting 1.96 times 

the standard deviation of the differences from the mean 

difference, respectively. Upon examination of the chart 

depicting LoA for different weather conditions—snowy, 

sunny, and rainy—it is evident that significant values are 

observed for the NS (southbound through) and WS (eastbound 

right) approaches. In the case of the NS movement, the 

significant LoA values suggest a considerable disparity 

between the vehicle counts recorded by LiDAR and CCTV, 

irrespective of the weather condition. The significant LoA 

observed in the WS approach indicate that the frequency of 

vehicles counted by each technology varies in sunny and rainy 

conditions. These discrepancies could be due to limitations in 

the detection range or technical constraints inherent in both 

LiDAR and CCTV systems. Significant LoA values for the 

WS approach might be attributed to technical issues with 

certain LiDAR systems, which can affect accuracy. These 

inaccuracies are likely due to the complexity of real-world 

intersections and the various technical challenges faced by 

LiDAR systems in urban environments. Moreover, heavy 

traffic volumes and densities in these movements contribute to 

congestion that obstructs LiDAR’s line of sight and causes 

complete hiding of vehicles. Unpredictable driver actions such 

as speeding or disregard for traffic signals further complicate 

vehicle tracking in these areas heightening disparities, in 

vehicle count data collected by LiDAR technology. 

Additionally challenging weather conditions, like rain or 

snow worsen these constraints by decreasing visibility and 

impacting the efficiency of LiDAR sensors in areas with 

inclines, such as the southbound direction. 
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5.2 Pedestrian counts comparison from LiDAR and CCTV 

technologies 

 

 
 

Figure 14. LoA values for pedestrian counts in different 

weather conditions 

 

Figure 14 illustrates the LoA values for pedestrian counts. 

As shown in Figure 14, the noticeable LoA seen in the part of 

the intersection on rainy days, stem from a mix of factors tied 

to how pedestrians behave and the surrounding environment. 

Hereupon, Morgan State University’s campuses impact 

pedestrian traffic and behavior in the southbound area. As a 

hub with classes, events and housing options, the university 

draws in a lot of activity that could lead to increased 

pedestrians’ traffic and varied behaviors. This influx of people 

moving around for purposes within the university might cause 

fluctuations in pedestrian numbers and changes in behavior 

especially in rainy weathers. Rainy conditions can bring about 

shifts in how pedestrians move such as changing their paths or 

seeking shelter. This can affect their detectability by 

technologies like LiDAR and CCTV. Additionally factors like 

visibility, slippery surfaces and discomfort due to weather may 

prompt pedestrians to take risks like jaywalking or crossing 

where they should not be able crossing.  

The changes, in pedestrian behavior exacerbated by 

inclement weather highlight the difficulties in counting 

pedestrian traffic near the southern direction of the intersection 

adjacent to Morgan State University’s campus. The study 

effectively evaluates the agreement boundaries between the 

two technologies; however, a direct reference to research 

would provide a better context for discussion and emphasize 

how this study adds to existing knowledge. Furthermore, 

introducing methodologies or insights in this research 

compared to previous studies underscores the importance of 

the provided discoveries. 

The study investigates the agreement boundaries focusing 

on the difference, between LiDAR and CCTV counts as the 

midpoint to establish lower limits of agreement based on 

standard deviations. Notably there are differences in limits of 

agreement for both the NS and WS approaches, regardless of 

weather conditions. These variations indicate differing 

detection abilities or environmental factors affecting how well 

both technologies perform. 

 

 

6. CONCLUSIONS 

 

In recent years, the integration of advanced technologies in 

traffic surveillance has led to the emergence of LiDAR sensors 

and CCTV cameras as key tools. Understanding the 

advantages of LiDAR technology is essential for modernizing 

traffic data collection and improving decision-making in 

planning and traffic management. To doing so, two data 

collection methods were assessed, in relation to their accuracy 

dependability and simplicity including LiDAR sensors and 

traditional CCTV cameras. This study aims to evaluate the 

effectiveness and benefits of using LiDAR sensors versus 

CCTV cameras to collect data on vehicle and pedestrian 

counts at a signalized intersection known for its rate of crashes 

in Baltimore City. 

The results highlighted that CCTV cameras often struggle 

in snowy conditions, as snow on the lenses can block views 

and distort images, which challenges the accurate detection of 

vehicles and pedestrians. 

In sunny weather, both LiDAR sensors and CCTV cameras 

are effective in collecting data on vehicle and pedestrian 

counts. Data collected during rainy conditions revealed 

disparities in vehicle and pedestrian counts, particularly for 

northbound and eastbound movements, due to factors such as 

intersection gradient and geometry. For northbound 

movements, inclines or declines can influence traffic flow and 

pedestrian activity, while the proximity to Morgan State 

University likely contributes to increased pedestrian traffic 

around the intersection. 

Inconsistencies in data may be caused in part by the 

different types of vehicles and their abilities to handle grades. 

For example, a tractor trailers ability to go up a 4.5 percent 

incline is quite different from that of a sedan or SUV vehicle. 

This difference can impact traffic flow speed patterns. To 

tackle this issue, reclassifying vehicles to include cars while 

treating buses, trucks and trailers as similar to cars could help 

reduce inaccuracies in sensor readings. By standardizing 

vehicle classifications in this way, it is possible to lessen the 

influence of specific vehicle performance traits on data 

precision leading to results, for analyzing intersections.  

To ensure an accurate analysis of the collected counts data, 

the Limits of Agreement (LoA) values were investigated. The 

LoA results highlighted the acceptable data analysis.  

This research focused on studying three weather conditions 

including sunny, snowy and rainy. To gain an understanding 

of sensor performance under environmental contexts, it would 

be beneficial to expand data collection to cover a wider range 

of seasons and time intervals. When justifying the choice of 

Baltimore City as the study area, it was specifically selected 

due to its weather patterns and relevance to traffic 

management issues. By choosing Baltimore City, the study 

was able to utilize existing infrastructure and partnerships with 

transportation authorities for smooth data collection and 

collaboration. Nonetheless there is recognition in this study of 

the importance of extending research to include seasons and 

times in order to capture a complete picture of sensor behavior 

and address potential variations, in traffic patterns and 

environmental conditions over time. 

Future studies investigating the accuracy of LiDAR and 

CCTV technologies in detecting vehicles and pedestrians 

across diverse weather conditions. New methods could 

involve combining sensor technologies like radar or infrared 

sensors to improve detection accuracy in harsh weather 

conditions that LiDAR and CCTV may struggle with. 

Moreover, advancements in data fusion methods and machine 

learning algorithms show potential in enhancing the reliability 

and strength of vehicle and pedestrian detection systems 

allowing for real time traffic analysis.  

Despite the examination carried out in this study, it is 
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important to note some limitations. Firstly, the study 

concentrated on one intersection which might limit how 

broadly its findings can be applied to intersections with 

different layouts, traffic flows and environmental factors. Also, 

the study mainly relied on data from LiDAR and CCTV 

technologies without considering factors such as pedestrian 

demographics, driver behaviors or road infrastructure features 

that could affect the accuracy of vehicle and pedestrian 

tracking. Finally, although attempts were made to consider the 

weather conditions, the research may not have completely 

captured how weather impacts the accuracy of collecting 

traffic data. It is worth mentioning that broadening the study 

to include a variety of intersections, weather situations and 

operational scenarios would enhance the knowledge in 

creating stronger intersection safety measures. 

It is worth noting that observing one day of snowfall might 

not fully capture all the types of snowy weather from light 

snow to blizzard conditions since each affecting sensor 

performance and intersection safety in unique ways. Similarly, 

variations in rainfall intensity ranging from rain to 

thunderstorms can have an impact on sensor accuracy and data 

collection results. During the specified period in Baltimore 

City, there were no days with conditions due to the regions 

sporadic fog occurrences. This absence prevented us from 

examining the effects of fog and glare during the study. This 

expansion will improve the relevance and reliability of this 

research findings, for real world traffic management situations. 
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