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This study aims to assess the probability of unsafe operations on horizontal curves resulting 

from speed variation, employing both statistical analysis and machine learning (ML) 

techniques. The statistical analysis was conducted using Minitab software to assess the 

probability of non-compliance through the Monte-Carlo simulation method. Additionally, 

the research applied three ML classification models—a novel optimized version of the 

Random Forest (RF) classifier, Naive Bayes (NB), and Extreme Gradient Boosting 

(XGBoost). Nine curves with radii ranging from 700m to 2000m were selected from two 

rural roads in Egypt for the study. The evaluation of non-compliance probability on each 

curve involved contrasting the supply (design speed, a fixed value) with the demand (actual 

speed, characterized by actual speed distributions). Findings revealed that using the 85th 

percentile speed in the analysis, the probability of non-compliance during off-peak hours 

exceeded 50% for all curves except two, where it reached 100%. This indicates that 

approximately 100% of vehicles engage in unsafe operations during off-peak hours on 

these specific curves. Accuracy results of the ML classifiers showed that the proposed RF 

classifier performed exceptionally well with a perfect score of 1.0, followed by XGB and 

NB classifiers for all curves. A comparative analysis between the results of statistical 

analysis and ML in estimating curve safety suggests that ML outperforms statistical 

analysis, demonstrating its potential as a more reliable tool for assessing road safety on 

horizontal curves.  
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1. INTRODUCTION

Traditionally, road design relies on a set speed value 

specified in manuals. However, it's crucial to acknowledge the 

non-uniform nature of vehicle speeds, which vary among 

different vehicles and over time, occasionally exceeding the 

designated design speed. Vehicles surpassing the intended 

speed limit may operate unsafely on the road. Therefore, the 

key questions are: how many vehicles exceed the speed limit, 

and what percentage of operations are unsafe? To address this 

issue, it is essential to examine the percentage of vehicles 

engaging in unsafe operations. This analysis should be 

conducted, determined, and integrated into the design process. 

Consequently, numerous studies have aimed to incorporate a 

variable speed value, as opposed to a fixed one, in the design 

and analysis of road safety. This approach involves 

considering speed variations and evaluating the safety of road 

elements to assign specific safety levels. While general road 

safety encompasses a broad range of factors affecting all types 

of roadways, the specific focus on horizontal curve safety 

zeroes in on the unique challenges these curves present, such 

as increased risk of skidding and loss of control, which are 

exacerbated by variations in vehicle speed.  

A notable case study illustrating the consequences of not 

accommodating variable speeds in road design is the frequent 

accidents on the curved sections of the Pacific Coast Highway 

(PCH) in California. This scenic route is known for its sharp, 

winding curves and varying speed limits, which can catch 

drivers off guard, particularly those unfamiliar with the road. 

In several high-profile incidents, such as the fatal crash 

involving actor Paul Walker in 2013, it was evident that speed 

variations combined with the road's curvature contributed 

significantly to the loss of control. These incidents highlight 

the critical need for road designs that better accommodate 

speed variations through improved signage, road surface 

treatments, and geometric adjustments, thereby enhancing 

driver awareness and safety on such challenging segments. 

The research gap in horizontal curve safety due to speed 

variation lies in the limited understanding of how different 

speed variations interact with road geometry and driver 
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behavior to influence accident risk. 

In this context, examining a road's maximum allowable safe 

speed, typically a fixed parameter requires a comparison with 

the inherently variable nature of the demand for vehicle speed. 

The result of this analysis clarifies the likelihood of 

noncompliance within the road infrastructure. This study 

specifically delves into the probability of vehicles deviating 

from compliance due to speed variations on horizontal curves. 

Two techniques are employed in this research: the first relies 

on statistical analysis, determining the normal distribution of 

speed (representing demand) as a focal point, alongside 

estimating the actual design speed of the horizontal curve 

(representing supply). The probability of noncompliance (Pnc) 

will be systematically calculated by comparing these two 

elements- demand and supply [1]. 

Research on horizontal curve safety due to speed variation 

is essential and innovative, as it involves a key aspect of road 

safety. The speed variations on horizontal curves can result 

from various factors, including road conditions, driver 

behavior, and vehicle performance. Understanding the impact 

of these variations on safety is essential for developing more 

effective road design and traffic management strategies. The 

research aims to reduce accidents and enhance overall traffic 

safety by focusing on this area. It offers new insights that can 

inform policies and engineering solutions designed to mitigate 

the risks associated with speed variations on curves [2]. 

This research examines road safety at horizontal curves 

influenced by speed variation using both statistical analysis 

and machine learning (ML) techniques. It introduces the safety 

study methodology for each approach and compares their 

accuracy, finally recommending the more effective procedure. 

The recommendations from this research should be 

incorporated into the design manuals of each country, 

emphasizing the need to consider speed variations in the 

design process instead of relying on fixed speeds. In essence, 

ML exceeds conventional statistical models due to its capacity 

to handle complex, nonlinear relationships in data, process 

large and diverse datasets, capture complicated interactions 

among various factors, adapt and optimize performance 

iteratively, and provide more accurate assessments of non-

compliance and crash risk, and finally enhancing road safety 

efforts [3]. 

 

 

2. LITERATURE REVIEW 
 

Road safety studies involve a broad examination of various 

elements essential for understanding and improving traffic 

safety. These studies investigate the complex interactions 

among affecting factors such as road geometry, traffic 

characteristics, vehicle features, and environmental conditions. 

Geometric elements include road design, signage, and 

intersection layout. Traffic flow patterns, driver behavior, and 

the effects of weather conditions and visibility are integral 

components of road safety studies. Additionally, analyses of 

accident data, injury severity, and the effectiveness of safety 

interventions provide a fundamental insight. The 

incorporation of emerging technologies, such as intelligent 

transportation systems and advanced data analytics, enhances 

these studies, enabling a more nuanced understanding of the 

dynamic factors influencing traffic safety. The combination of 

these various elements in traffic safety studies forms a 

foundation for decision makers, engineering interventions, and 

educational campaigns aimed at the enhancement of traffic 

safety [4, 5]. 

Variations in vehicle speeds on horizontal curves introduce 

a dynamic element to the traffic environment, significantly 

affecting the likelihood and severity of accidents. Speed 

fluctuations can lead to reduced reaction times, increased 

braking distances, and compromised vehicle control, all of 

which contribute to a higher risk of collisions. Excessive 

speeds, particularly when they deviate from the average or 

posted limits, exacerbate the severity of accidents. Conversely, 

quick reductions in speed or significant speed differentials 

between vehicles can result in a high risk of traffic accidents. 

Investigating the correlation between speed variation and 

traffic accidents is essential for developing effective measures 

to mitigate risks and enhance overall traffic safety [6, 7]. 

Examining the relationship between driver behavior and 

speed on horizontal curves is an essential aspect of traffic 

safety research. Drivers' reactions to horizontal curves 

significantly influence the determination of an appropriate and 

safe speed for navigating these curves. Factors such as 

perception time, mental workload, and individual driving 

experience contribute to variations in driver behavior. 

Understanding how drivers adapt to the geometry of horizontal 

curves and weigh their own comfort and safety margins is 

essential for optimizing road design and reducing the risk of 

accidents. Technical investigations into this relationship 

explore the cognitive processes involved in speed perception, 

decision-making, and the execution of appropriate speed 

adjustments, providing valuable insights for developing 

effective countermeasures aimed at enhancing the safety of 

horizontal curves on roadways [5, 8, 9]. 

Alhomaidat [1] developed a model to explore the 

correlation between accident rates and speed on arterial and 

freeway roads. They found that the average 85th percentile 

speed of vehicles exiting the freeway is 70 mph. This speed is 

higher than that on the arterial streets. This affects the safety 

of that road. Additionally, their study revealed that an increase 

in the speed limit could lead to a 13.9% rise in accident rates, 

particularly on arterial streets [9]. In a study by Alnawmasi and 

Mannering [10], the impact of altering speed limits on road 

safety features was also investigated. The researchers 

concluded that changes in speed limits do not significantly 

affect the frequency of crashes but do have a modest impact 

on the severity of injury accidents [10]. 

Faiz et al. [11] conducted a study on speed variation on two-

way two-lane rural roads in Malaysia, focusing on light 

vehicles during nighttime and morning operations. The results 

highlighted a relationship between the curve radius and the 

speed of each vehicle type. In a study by Gaber et al. [12], 

various factors influencing road safety were examined, 

including pavement conditions, speed, traffic volume, road 

entrance characteristics, traffic sign conditions, and road width. 

The research indicated a probable 5.26% reduction in the 

accident rate when using a lane width of 3.5m. Furthermore, a 

reduction in the speed limit to 75 km per hour could lead to a 

7.38% decrease in the accident rate. Additionally, maintaining 

good pavement conditions was associated with a substantial 

17.9% reduction in the accident rate [12]. 

The influence of traffic composition on traffic accidents 

creates a complex and multifaceted area of research. The 

makeup of traffic, surrounding of vehicle types, sizes, and 

driving behaviors, significantly outlines the risk opportunity 

on roadways. Understanding how traffic mix interacts is 

essential for understanding patterns of accidents. For example, 

the existence of vehicles with different speeds, management 
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capabilities, and braking distances presents complexities that 

can increase the likelihood and severity of traffic accident. 

Moreover, variations in driver experience, vehicle size, and 

road user categories contribute to the complicated dynamics of 

traffic safety. Studies examining the impact of traffic 

composition on accidents often employ advanced modeling 

techniques, statistical analyses, and observational data to 

discern patterns and fundamental relationships. Conclusions 

derived from such studies are important for planning targeted 

interventions and traffic management strategies aimed at 

reducing accident rates and enhancing overall road safety in 

diverse traffic environments [13, 14]. 

The impact of geometrical characteristics of roads on traffic 

safety is also an important area in safety research. Features like 

road alignment, lane width, intersection design, and road 

curvature greatly influence vehicular movement and safety. 

Well-designed geometrical features contribute to smoother 

traffic flow, reduce conflict points, and enhance visibility, and 

finally mitigate the risk of traffic accidents. Conversely, 

inadequately configured geometrical characteristics can 

increase the likelihood of collisions, especially at intersections 

or on curves where visibility is compromised. Advanced 

research in this field utilizes techniques such as geometric 

design consistency analysis and computer simulations to 

assess the relationship between specific geometric features and 

safety outcomes. These studies provide valuable insights for 

traffic engineers, aiding in the implementation of road designs 

that prioritize safety and contribute to an overall enhancement 

of road safety [4, 15]. 

Goswami [16] employed intelligent transportation systems 

to estimate road accident rates, utilizing geographical 

information systems (GIS) as a key tool for determining road 

safety factors. Similarly, Jimee et al. [17] utilized GIS for 

accident analysis in Nepal, categorizing accidents based on 

vehicle type, driver behavior, and other relevant factors. The 

study revealed that a significant factor contributing to 

accidents is the adherence to design manual limits, particularly 

evident in the minimum lane width and sight distance and their 

correlation with the design speed [17]. 

Exploring the correlation between non-compliance 

probability and crash risk on high-speed curves is a critical 

aspect of understanding and improving road safety. Numerous 

researches suggest valuable insights into this relationship, 

drawing attention to factors that contribute to the vulnerability 

of drivers and vehicles when crossing curves at high speeds. 

These documents often incorporate data from comprehensive 

studies, collision analyses, and traffic safety research. By 

scrutinizing the probability of non-compliance with 

recommended speed limits on curves, researchers can 

distinguish patterns and trends associated with an increased 

likelihood of crashes. This information is vital for developing 

effective countermeasures and safety measures to mitigate the 

risks linked to high-speed curves. Understanding the nuanced 

relationship between non-compliance and crash risk not only 

informs engineering standards and road design but also guides 

policy and enforcement strategies aimed at promoting safer 

driving behavior on challenging road geometries [18, 19]. 

The preceding discussion highlights various research 

endeavors focused on exploring the connection between speed 

and accident rates. Nonetheless, a limited number of studies 

have approached speed variation from a statistical standpoint. 

Consequently, this research aims to assess the likelihood of 

non-compliance for a specified curve and speed profile 

utilizing two distinct techniques: statistical analysis and ML. 

 

 

3. DATA COLLECTION 
 

The purpose of this section is to elucidate the necessary data 

and the methodology employed for its collection. The gathered 

data encompass both geometrical and traffic characteristics of 

nine horizontal curves situated on regional highways in Egypt. 

These highways comprise the ring road (consisting of five 

curves), Cairo Alex desert road (with two curves), and Cairo 

Elsokhna Road (featuring two curves). The nine curves are 

chosen randomly on the above-mentioned roads.  

The first step in traffic data collection is determining the off-

peak hour. Traffic volume on each road was manually counted 

for 12 hours, from 7 am to 7 pm. A fluctuation chart was 

created for each road. The results indicated that the off-peak 

hour for the Cairo-Alex Desert Road is from 11 am to 12 pm, 

and for the Ring Road, it is from 1 pm to 2 pm. Traffic data 

for each curve was acquired through a video recording process 

conducted during the above-mentioned off-peak hours to 

capture maximum speed values. A video camera was 

positioned on each curve, providing comprehensive coverage 

of the entire curve length. The collected traffic data 

encompassed information on traffic volumes and speeds. 

The geometrical characteristics of the curves were sourced 

from the design drawings of these curves and subsequently 

validated using Google Earth. A summary of the collected 

geometrical characteristics of the curves is presented in Table 

1.

 

Table 1. Data set statistical summary of the studied horizontal curves 

 

No. Lanes 
Lane Width 

(m) 

Shoulder Width 

(m) 

Radius 

(m) 

Superelevation 

 (%) 

Deflection Angle 

Δ0 

Curve 

Lngth L 

(m) 

Middle 

Ordinate-M 

(m) 

1 8 3.65 2.5 700 6 105 1283 4.325 

2 8 3.65 2.5 800 5 72 1005 4.325 

3 8 3.65 2.5 1000 4 34 602 4.325 

4 8 3.65 2.5 1250 3.5 57 1238 4.325 

5 8 3.65 2.5 2000 2 60 2068 4.325 

6 6 3.75 2.5 1000 5.6 54 930 9.375 

7 6 3.75 2.5 750 6 77 1000 9.375 

8 6 3.75 2.5 900 6 48 750 11.30* 

9 6 3.75 2.5 1350 4.5 55 1300 7.50* 
Note: *According to the minimum middle ordinate for AASHTO and Egyptian code design 
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Table 2. Data summary of the speed of the studied horizontal curves 

 

Curve No. 
85th Percentile Speed 

V85 

Standard Deviation 

SD85 

Average Speed 

Vmean 

Standard Deviation 

(SDmean) 

Mean Vmax - 

Operating  

1 95.61 3.4187 87.79 7.527 105.13 

2 104.6 1.6651 93.27 8.9553 106.62 

3 107.25 4.5738 96.24 8.959 111.16 

4 106.41 4.2427 97.69 5.2498 108.61 

5 108.35 1.4542 101.44 5.5293 107.30 

6 129.95 2.3319 118.66 7.4007 128.64 

7 120.54 3.2058 113.74 4.4706 128.29 

8 122.74 4.4216 113.39 5.5638 125.60 

9 128.03 3.1314 120.98 5.6815 126.23 

 

The velocity measurement in this study involved assessing 

the time taken to traverse the entire length of the curve. In 

Table 2, the research team presents data including the average 

eighty-fifth percentile speed (V85) with its standard deviation 

(SD85), mean speed (Vmean) with its standard deviation 

(SDmean), and maximum speed observed on each curve 

(Vmax). Each curve's sample size comprised 150 vehicles. 

Speed analysis, facilitated by SPSS software, followed a 

structured approach, which included organizing speed data 

into sets based on 1-minute intervals recorded by the Video 

Camera. Subsequently, the 85th percentile speed for each 

group was computed using SPSS software. The study then 

established the average of the 85th percentile speeds for each 

curve, with the standard deviation calculated to account for 

variance among the averages of the groups for each curve. 

Tables 1 and 2 clearly demonstrate that the curve radius 

alone does not exclusively dictate the 85th percentile speed. 

Even when the radii are nearly identical, there are observed 

differences in speeds. It is noteworthy that the designated 

speed for the ring road is 100 km per hour (curves 1 to 5), 

while the design speed for the Cairo Alex desert road and 

Cairo Elsokhna desert road is 120 km per hour (curves 6 to 9). 

 

 

4. RESULTS AND DISCUSSION OF STATISTICAL 

ANALYSIS 

 

4.1 Probability distributions for the random input 

parameters 

 

In this research, the Minitab software was employed by the 

research team to assess the probability of non-compliance 

through the Mont-Carlo simulation method. Each curve is 

characterized by a singular deterministic value of design speed, 

along with operational speed attributes such as mean and 

standard deviation. The estimation of the probability of non-

compliance involved utilizing both the design speed and the 

85th percentile speed of vehicles surpassing the designated 

speed on the respective curve 

Using the 85th percentile speed is crucial in estimating 

horizontal curve safety because it more accurately reflects the 

behavior of the majority of drivers compared to the average 

speed or any other measure. The 85th percentile speed 

represents the speed at or below which 85% of vehicles are 

traveling, thereby capturing the speed that most drivers 

consider safe under current road conditions. This approach 

helps in designing curves that accommodate natural driving 

patterns, reducing the risk of accidents caused by 

discrepancies between actual driving speeds and design speeds. 

By aligning road design with the 85th percentile speed, 

engineers can create safer, more efficient roads that better 

account for real-world driving behavior and variability in 

speed, leading to improved overall safety on horizontal curves. 

 

4.2 Calculation of non-compliance probability 

 

Utilizing the Minitab software, the speed distribution has 

been graphed based on the 85th percentile speed for each curve, 

as elaborated in the preceding section. The design speed is then 

plotted against the speed distribution for each curve, and the 

probability of non-compliance is calculated. Figure 1 

illustrates the probability of non-compliance when employing 

the 85th percentile speed distribution. It is evident from Figure 

1 that approximately 10% of operations exhibit unsafe 

conditions when utilizing the 85th percentile speed. 

It is noteworthy that the probability of non-compliance 

arises when the actual vehicle speed surpasses the designated 

design speed. Therefore, the probability of non-compliance is 

estimated as the difference between the design speed and the 

mean of 85th percentile speed. That means the probability of 

non-compliance occurs when the actual mean speed is greater 

than the design speed. 

 

 
 

Figure 1. The probability of non-compliance (Pnc) of V 

design for curve no.1 by V85 distribution 

 

4.3 Results of non-compliance probability, reliability, and 

discussion 

 

The outcomes of the probability of non-compliance 

estimation for speed variations across the nine curves are 

presented in Table 3. It is evident from the table that the 

probability of non-compliance reaches 100% for curves 4 and 

5, and exceeds 90% for curves 2, 3, 4, and 9. This implies that 

all vehicles operate under unsafe conditions during off-peak 

hours. 

The results above indicate a high probability of non-

compliance for most examined curves. This outcome appears 

logical and compatible with the literature due to several factors, 
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including low traffic volumes during this time period, the 

absence of speed-detecting devices in these areas, the 

favorable conditions of the roads, or drivers perceiving the 

speed limit as incredible. A credible speed limit is one that 

drivers find logical and appropriate, considering the road's 

characteristics and immediate surroundings. This includes 

factors such as road type, layout, surface, curvature, traffic 

density, weather conditions, and traffic mix. Consistency and 

continuity in road design are essential, ensuring that each road 

scene matches a speed limit accepted by most drivers [2, 20]. 

The problem of noncompliance is a major cause of motor 

vehicle collisions and significantly contributes to their severity 

and catastrophic outcomes. Reducing 

Therefore, work should be done to force drivers to follow 

the speed limit. Driving speed is a prudent strategy to enhance 

road safety. 

 

Table 3. Summary of reliability results of speed according to 

V85 of horizontal curves 

 
Curve 

No. 

Radius 

(m) 

V 

Design 
V85 SD Pnc  R 

1 700 100 95.61 3.4187 9.97 90.03 

2 800 100 104.6 1.6651 99.71 0.29 

3 1000 100 107.25 4.5738 94.35 5.65 

4 1250 100 106.41 4.2427 93.46 6.54 

5 2000 100 108.35 1.4542 100 0 

6 1000 120 129.95 2.3319 100 0 

7 750 120 120.54 3.2058 56.7 43.3 

8 900 120 122.74 4.4216 73.23 26.77 

9 1350 120 128.03 3.1314 99.48 0.52 

 

 

5. ML CLASSIFICATION MODELS 

 

The authors applied three classification models in this 

research NB, XGBoost, and RF, hereafter, an explanation of 

each classifier is introduced. 

 

5.1 Naive Bayes (NB) 

 

The NB algorithm uses Bayes' theorem as its foundation for 

probabilistic categorization [21-23]. It streamlines probability 

computation by assuming that, given the class label, the 

features are conditionally independent. NB is great for 

situations when there isn't a lot of training data because it can 

quickly manage several features in our classification problem. 

Using the observed feature values, the classifier can help to 

determine the likelihood of a vehicle's safety. 

 

5.2 Extreme Gradient Boosting (XGBoost) 

 

Extreme Gradient Boosting, or XGBoost for short, is a 

scalable and very effective ensemble learning technique [24]. 

It generates weak learners (usually decision trees) in a 

sequential fashion, with each one fixing the mistakes of the 

one before it. The prediction accuracy is improved by 

XGBoost with the use of gradient boosting techniques and a 

regularization term. Its superior predictive power makes it an 

excellent choice for complicated datasets. 

 

5.3 Random Forest (RF) 

 

An additional ensemble learning approach, RF builds a 

large number of decision trees during training and then 

produces the class mode as a classification output. It selects 

subsets of features and occurrences at random, which 

introduces randomness into the tree-building process. A more 

resilient model is the result of the increased diversity and 

decreased overfitting caused by this randomness [11, 25]. 

 

 

6. EVALUATION METRICS OF ML CLASSIFIERS 

 

The authors applied the following metrics to check the 

accuracy of the applied classifier models. 

 

6.1 Confusion matrix 

 

By offering a comprehensive breakdown of actual and 

expected class memberships, the confusion matrix is an 

essential tool for assessing the efficiency of categorization 

algorithms [2]. True positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN) are the four basic 

metrics represented by the square matrix. Whereas FP denotes 

situations where the model incorrectly classified a safe vehicle 

as unsafe, TP denotes instances where the model accurately 

predicted the safety of a vehicle in relation to our road curve 

classification job. When the model successfully identified a 

vehicle as unsafe, it will display TN, and when it wrongly 

classed a safe vehicle as unsafe, it will display FN. Here is the 

structure of the matrix as shown in Figure 2. 

 

 
 

Figure 2. The structure of the confusion matrix 

 

Elements that are off the diagonal (FP and FN) represent 

misclassifications. However, elements on the diagonal (TP 

and TN) show accurate forecasts. To better understand the 

classifier's capabilities and limitations while dealing with the 

complexities of road curve safety, this detailed breakdown 

enables the computation of essential assessment metrics 

including recall, accuracy, precision, and F1-score [2, 26]. 

 

6.2 Area under the curve (AUC) 

 

It is worthy to mention that, the Area Under the Receiver 

Operating Characteristic (ROC) Curve (AUC) provides a brief 

assessment of a model's capacity to distinguish between 

positive and negative cases. As one moves from one decision 

threshold to another, the ROC curve shows the relative 

importance of sensitivity (the rate of true positives) and 

specificity (1-specificity) in relation to the true positive rate. 

A higher area under the curve (AUC), which ranges from 0 to 

1, suggests stronger discriminating performance. An improved 

area under the curve (AUC) indicates that the classifier 

successfully differentiates between safe and unsafe vehicles 
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using the given features, offering a thorough evaluation of its 

prediction power in the context of road curve classification. 

 

6.3 Accuracy 

 

The accuracy of a classifier is defined as the percentage of 

correctly predicted instances relative to the total number of 

instances, which is represented by Eq. (1): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

6.4 Precision 

 

Precision is calculated as the ratio of true positive 

predictions to the total number of predicted positives, 

measuring the accuracy of positive predictions given by Eq. 

(2): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

6.5 Recall (Sensitivity or true positive rate) 

 

As a measure of the classifier's performance, recall is 

calculated as the percentage of positive predictions that turned 

out to be true divided by the total number of positive 

occurrences as Eq. (3): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

6.6 F1-score 

 

The harmonic mean of recall and precision is the F1-score. 

The measure strikes a good balance between recall and 

precision represented by Eq. (4): 

 

F1-score =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

Taken as a whole, these metrics provide a thorough 

evaluation of the classifiers' performance on the road curve 

categorization job. 

 

 

7. ML CLASSIFIER MODELS APPLICATION IN 

CURVE SAFETY 

 

In this paper, we propose an optimized version of the RF 

classifier to distinguish between the safe/unsafe vehicles 

regarding a certain road curve. Besides, the proposed RF 

model is compared against the NB and XGB classifiers 

showing its consistency and perfect results with accuracy of 

100%.  

The three techniques mentioned above were applied to 

analyze three curves that have been picked up from the 

aforementioned highways i.e., the ring road, Cairo Alex desert 

road, and Cairo Elsokhna Road to be investigated in order. The 

software used includes PyCaret version 3.3.2, an open-source, 

low-code machine learning library with Python v3.10.12. 

Subsequently, the following section delves into the discussion 

of this application. 

 

 

7.1 The ring road curve 

 

Figure 3 illustrates a bar chart that shows the simulated 

results for three classifiers i.e., NB, XGB, and proposed RF for 

the ring road curve. It compares models’ performance across 

various evaluation metrics such as AUC, Accuracy, Precision, 

Recall, and F1-score. It can be seen how each classifier is 

doing in different areas thanks to the color-coded 

representation. 

The AUC values of all the classifiers are very high; RF 

achieved a flawless score of 1.0. Results for accuracy 

demonstrate that the RF classifier performs admirably with a 

perfect score of 1.0 followed by the XGB and then the NB 

classifier. Again, the RF-optimized classifier shows an 

outstanding precision performance of 1.0, whereas the NB 

comes after and the XGB comes last. The classifiers' capacity 

to catch all positive cases is highlighted by the Recall metric, 

which displays faultless performance by XGB and RF. The 

F1-score bar gives a remarkable result in the case of the 

proposed RF classifier that equals 1.0 in contrast to the others. 

In our simulated road curve classification situation, the 

optimized RF classifier performs better than the XGB and NB 

classifiers according to the given dataset with a perfect 

performance. 

 

 
 

Figure 3. Comparative performance of NB, XGB, and 

proposed RF classifiers for ring road curve 

 

 
 

Figure 4. Proposed RF model confusion matrix for ring road 

curve 
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One of the main tools for evaluating classification problems 

is the confusion matrix, which shows how well the predicted 

classes perform. As shown in Figure 4, we have discovered 

that the RF model achieves the best classification accuracy 

when differentiating between the safe/unsafe events following 

a comprehensive examination. The findings show that every 

dataset used successfully predicts the labels of safe "1" with a 

perfect score. Similarly, unsafe "0"'s label prediction is 100% 

accurate. 

We display the learning curves of our RF best model for 

both the training and cross-validation runs in Figure 5 to prove 

its effectiveness. According to the figure, the RF model 

outperforms all others, with a training accuracy of 100% and 

a cross-validation accuracy of 100% as well. In particular, 

there is no room for improvement when the no fluctuating 

curve is present. In addition, there is a strong correspondence 

between the training and cross-validation curves, which shows 

that the model is effective. 

 

 
 

Figure 5. Learning curves for the RF model for ring road 

curve 

 

 
 

Figure 6. The ROC curves of the proposed RF model for 

ring road curve 

 
 

Figure 7. The precision-recall results of the proposed RF 

model for ring road curve 

 

One way to visualize the correlation between the projected 

class's TP and FP rates is using the ROC curve. In terms of 

classification accuracy, our comprehensive investigation 

shows that the RF model regularly performs better than the 

others. The ROC curves that were generated by classifying 

safe and unsafe events using the superior RF model are shown 

in Figure 6. Successful classification rates of 100% for safe 

class "1" as well as unsafe class "0" are recorded. 

The link between recall and precision for the most accurate 

strategy in terms of classification accuracy is shown in Figure 

7. After exhausting all other available ML models, we 

exclusively show the precision-recall result based on the RF 

(best model). The RF model can differentiate between safe and 

unsafe events with a 100% accuracy rate. 

 

7.2 Cairo Alex desert curve 

 

Considering the results of the Cairo Alex desert curve, the 

XGB and optimized RF classifiers have AUC values of a 

perfect score of 1.0 in contrast to the NB classifier with less 

value shown in Figure 8. According to the accuracy results, the 

RF classifier is the best with a score of 1.0, followed by the 

NB classifier with a slight difference, while the XGB classifier 

comes after them at 0.8. The RF-optimized classifier once 

again outperforms the NB and XGB with a precision 

performance of 1.0. The recall statistic showcases the 

classifiers' ability to catch all positive examples with a perfect 

performance of 1.0. In contrast to the others, the suggested RF 

classifier achieves an impressive F1-score bar value of 1.0, 

while that of the NB and XGB classifiers are 0.984 and 0.889, 

respectively. In a nutshell, the modified RF classifier 

outperforms the XGB and NB classifiers in our simulated road 

curve classification scenario with perfect results proven by all 

the evaluation metrics. 

After conducting a thorough investigation, it is found that 

the RF model yields the highest classification accuracy when 

distinguishing between safe and unsafe events as illustrated by 

the confusion matrix in Figure 9. Results demonstrate that all 

datasets accurately forecast the labels of safe "1" with a 

flawless score. Likewise, the label prediction for unsafe "0" is 

spot on with 100% accuracy. 

365



 

 
 

Figure 8. The evaluation metric for different classifiers for 

Cairo Alex desert curve 

 

 
 

Figure 9. Confusion matrix of the proposed RF model for 

Cairo Alex desert curve 

 

 
 

Figure 10. RF proposed model's learning curves for Cairo 

Alex desert curve 

 
 

Figure 11. ROC curves of the proposed RF model for Cairo 

Alex desert curve 

 

 
 

Figure 12. RF model’s precision and recall for Cairo Alex 

desert curve 

 

As evidence of its efficacy, we show in Figure 10 the 

learning curves of our RF best model during the training and 

cross-validation cycles. The RF model is clearly the best 

option, since it achieves a perfect score in both the training and 

cross-validation phases, as shown in the figure. Specifically, 

in the presence of the non-fluctuating curve, there is no 

possibility for progress. The model is also effective since the 

training and cross-validation curves are very congruent with 

one another. 

As aforementioned, the ROC curve is a useful tool for 

visualizing the relationship between the predicted class's TP 

and FP rates. According to our extensive research, the RF 

model consistently outperforms the competitors in terms of 

classification accuracy. Figure 11 shows the ROC curves that 

were produced by categorizing events as safe or unsafe using 

the better RF model. Both the safe class "1" and the unsafe 

class "0" have 100% success rates in categorization. 

Figure 12 shows the correlation between recall and 

precision for the best classification accuracy technique. Once 
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we've tried every other ML model, we'll only display the 

accuracy-recall metric for the RF model i.e., best model. The 

RF model has a perfect track record of accurately identifying 

safe and unsafe occurrences. 

 

7.3 Cairo Elsokhna curve 

 

As illustrated by Figure 13, the Cairo Elsokhna curve, the 

optimized RF and XGB classifiers outperform the NB 

classifier in terms of AUC, which is about 0.625 in the case of 

the NB model. By a wide margin, the XGB classifier comes in 

at 0.444, while the NB classifier takes last place with a score 

of 0.581, as shown by the accuracy results. With a precision 

performance of 1.0, the RF optimized classifier once again 

surpasses the NB and XGB. Fortunately, all the classifiers' 

capacity to detect all positive examples with a flawless 

performance of 1.0 is demonstrated by the recall statistic. 

While the NB and XGB classifiers get F1-score bar values of 

0.679 and 0.616, respectively, the proposed RF classifier 

stands out with an amazing 1.0. To summarize, in our 

simulated road curve classification situation, the updated RF 

classifier achieves better results than the XGB and NB 

classifiers, as evidenced by all assessment criteria. 

As shown in Figure 14's confusion matrix, an exhaustive 

analysis reveals that, when it comes to differentiating between 

safe and unsafe occurrences, the RF model produces the 

highest classification accuracy. The results show that every 

dataset performed perfectly when it came to predicting the 

labels of safe "1". Similarly, the unsafe "0" label prediction is 

also 100% accurate. 

Our RF best model's learning curves across training and 

cross-validation cycles are displayed in Figure 15, 

demonstrating its effectiveness. Based on its flawless 

performance in both the training and cross-validation stages, 

the RF model stands out as the top choice, as illustrated in the 

figure. In particular, advancement is impossible when the non-

fluctuating curve is present. Due to the high degree of 

congruence between the training and cross-validation curves, 

the model is likewise effective. 

The best classification accuracy technique's recall and 

precision correlation is shown in Figure 16. After all the ML 

models have been exhausted, we will simply show the 

accuracy-recall metric for the best RF model. In terms of 

reliably determining which events are safe and which are not, 

the RF model has never failed. 

 

 
 

Figure 13. The evaluation metric for different classifiers of 

Cairo Elsokhna curve 

 
 

Figure 14. Confusion matrix of the proposed RF algorithm 

for Cairo Elsokhna curve 

 

 
 

Figure 15. The learning curves of the RF proposed algorithm 

for Cairo Elsokhna curve 

 

 
 

Figure 16. RF model’s precision and recall for Cairo 

Elsokhna curve 
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Figure 17. ROC curves of the proposed RF model for Cairo 

Elsokhna curve 

 

In order to see how the TP and FP rates of the projected 

class relate to one another, the ROC curve can be a helpful 

tool. Our findings indicate that when compared to its rivals, 

the RF model routinely achieves superior classification 

accuracy. The improved RF model was used to classify events 

as safe or unsafe, and the resulting ROC curves are displayed 

in Figure 17. Classification success rates are 100% for both the 

safe "1" and unsafe "0" classes. 

 

7.4 Train-test split and tuned hyperparameters 

 

Table 4 presents the train-test split as well as the tuned 

hyperparameters (HPs) for different ML models applied to 

various curves. HPs play an essential role in determining the 

performance and behavior of ML algorithms. Through 

systematic changes, optimal values are selected to enhance 

model efficiency and generalization ability across different 

scenarios. 

The potential of ML models in predicting non-compliance 

and assessing traffic safety, surpassing traditional statistical 

models, is a crucial topic for discussion. Unlike traditional 

statistical methods, ML algorithms can manage the 

complicated and nonlinear interactions included in traffic 

safety data, resulting in risk assessments and predictions that 

are more accurate. These models can influence large datasets 

to identify indirect trends and insights, enabling practical 

measures to mitigate potential risks and enhance overall traffic 

safety. Additionally, the flexibility of ML algorithms in 

incorporating different features and optimizing 

hyperparameters further boosts their effectiveness in capturing 

the complex dynamics of road safety. 

In assessing ML classifiers for road curve safety, the 

discussion of evaluation metrics is crucial, the confusion 

matrix serves as a foundational tool, offering a detailed 

breakdown of actual and predicted class memberships, 

facilitating computation of essential metrics like recall, 

accuracy, precision, and F1-score. These metrics hold 

particular significance in the area of traffic safety, where 

accurate classification of safe and unsafe vehicles is 

paramount. For instance, a high accuracy indicates the 

percentage of correctly classified cases, while precision 

highlights the accuracy of positive predictions, crucial for 

identifying traffic safety. Similarly, recall measures the 

classifier's ability to capture all positive instances, thereby 

minimizing the risk of false negatives, which could lead to 

overlooked safety concerns. The F1-score, as a harmonic mean 

of precision and recall, strikes a balance between these 

metrics, providing a comprehensive assessment of classifier 

performance. Improvements in these metrics translate directly 

into enhanced traffic safety outcomes, enabling more precise 

identification of potential risks and facilitating proactive 

interventions to mitigate them effectively. Therefore, a 

comprehensive understanding and optimization of these 

evaluation metrics are essential for effectively leveraging ML 

classifiers in real-world traffic safety applications.

 

Table 4. Train-test split and tuned HP for different curves and adopted ML models 

 

Curve No. of Samples Train-Test Split RF HP [11] Gaussian NB HP [21] XGB HP [24] 

Ring Road 150 90%-10% 

n_estimators = 100 

max_depth = 30 

min_samples_split =2 

min_samples_leaf = 2 

max_features = log2 

var_smoothing = 10-9 

n_estimators =150 

max_depth =5 

learning_rate =0.01 

subsample =0.5 

colsample_bytree =0.5 

Cairo Alex desert 100 85%-15% 

n_estimators = 150 

max_depth = 230 

min_samples_split =2 

min_samples_leaf = 2 

max_features = log2 

var_smoothing = 10-9 

n_estimators =200 

max_depth =3 

learning_rate =0.01 

subsample =0.5 

colsample_bytree =0.5 

Cairo Elsokhna 50 70%-30% 

n_estimators = 50 

max_depth = 20 

min_samples_split =2 

min_samples_leaf = 2 

max_features = log2 

var_smoothing = 10-9 

n_estimators =100 

max_depth =3 

learning_rate =0.01 

subsample =0.7 

colsample_bytree =1.0 

 

 

8. CONCLUSIONS AND RECOMMENDATIONS 

 

From analyzing the results, the following conclusions are 

obtained: 

Building roads that can accommodate the diverse range of 

vehicle speeds is vital to ensure both safety and functionality. 

Instead of depending solely on static speed limits, designers 

must take into account the potential variations in driver speeds 
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on the road. Designers should embrace a nuanced 

comprehension of the spectrum of speeds vehicles might adopt 

on a specific road segment. This strategy enables the 

development of a more practical and flexible design that aligns 

with the dynamic nature of traffic. 

The results suggest that when employing the 85th percentile 

speed analysis, the likelihood of non-compliance surpasses 

50% for all curves during off-peak hours, except for those two 

curves where it reaches 100%. This implies that nearly all 

vehicles engage in unsafe operations on these particular curves 

during off-peak hours. 

Results of the application of the ML classifiers for accuracy 

demonstrate that the RF classifier performs admirably with a 

perfect score of 1.0 followed by the XGB and then the NB 

classifier for all curves. 

Comparing the results of statistical analysis and ML in 

estimating curve safety proves that ML is better than statistical 

analysis. 

Steps should be taken to force vehicles to work with speeds 

less than the design speed in all cases. 

Based on the research findings, the authors recommend 

several practical activities for road authorities to address the 

problem of noncompliance. These recommendations are 

summarized as follows: 

• Enhanced Signage and Road Markings: Installing 

highly visible and reflective signs indicating upcoming curves, 

speed limits, and warnings. Additionally, using road markings 

such as chevrons or rumble strips to alert drivers to reduce 

speed and enhance lane discipline. 

• Speed Management: Implementing dynamic speed 

limit signs that adjust based on real-time traffic and weather 

conditions. Moreover, increasing the enforcement of speed 

limits through automated speed cameras, especially in high-

risk areas. 

• Driver Education and Awareness: Launching 

public awareness campaigns to highlight the dangers of 

speeding and noncompliance on curves. 

• Technology Integration: Equipping vehicles with 

advanced driver-assistance systems (ADAS) that warn drivers 

of upcoming curves and potential non-compliance. Moreover, 

using vehicle-to-infrastructure communication to provide real-

time curve safety information to drivers. 

• Regular Maintenance and Monitoring: 

implementing regular maintenance of road surfaces to ensure 

they are free of hazards that could contribute to non-

compliance. Additionally, using data analysis and monitoring 

systems to identify and address areas with high rates of non-

compliance and accidents. 

This research studied the problem of non-compliance using 

only vehicle speed. Future research could consider the effects 

of other variables such as weather conditions, road conditions, 

vehicle conditions, and driver characteristics.  

Future research on horizontal curve safety could benefit 

from incorporating deep learning techniques. This approach 

may be particularly effective when working with large 

datasets. 
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