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Gas emissions, particularly carbon monoxide (CO) and nitrogen oxide (NOx), pose 

significant operational and environmental challenges in gas-fired power plants, especially 

under low ambient temperatures that reduce turbine efficiency and power output. This 

study introduces a hybrid model that combines Particle Swarm Optimization (PSO) with a 

Feedforward Neural Network (FNN) to enhance the prediction accuracy of CO and NOx 

emissions. The PSO method optimizes the FNN weights, improving prediction 

capabilities. A unique feature of the PSO is its integration of a K-Nearest Neighbor (KNN) 

algorithm in its random number selection strategy, aiming to minimize prediction errors. 

Constructed, trained, and validated using publicly accessible datasets, the model 

demonstrated significant improvements in prediction accuracy, evidenced by low values 

of Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error 

(RMSE). The model's efficacy was further validated through sensitivity analysis of 

hyperparameters and comparisons with conventional models like multiple linear regression 

and standalone neural networks. These tests confirmed the superior predictive accuracy 

and reliability of our hybrid model, suggesting its potential as a valuable tool for optimizing 

operational efficiency and environmental compliance in power plants. 
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1. INTRODUCTION

Gas turbines, recognized for their versatility and efficiency, 

are pivotal in diverse sectors including oil and gas exploration, 

aviation, and power generation. These systems operate by 

compressing air and fuel, igniting the mixture to produce a 

high-temperature airflow that drives a turbine, which in turn 

generates electricity via a shaft generator. Despite their 

efficacy, the combustion process in gas turbines inevitably 

leads to the emission of pollutants such as carbon monoxide 

(CO) and nitrogen oxides (NOx) due to incomplete 

combustion reactions. These emissions contribute to 

environmental and health issues, including ozone depletion, 

alterations in atmospheric chemistry [1], acid rain [2], and 

oxygen depletion, which could otherwise react with gaseous 

fuels [3]. 

The impact of carbon monoxide is twofold: directly, by 

affecting respiratory health-manifesting as headaches, fatigue, 

dizziness, weakness, and mental disorientation [4]; and 

indirectly, by contributing to broader global challenges such 

as acid rain, climate change, and global warming [5, 6]. 

Mitigating these emissions is thus crucial not only for 

environmental preservation but also for public health. Given 

these concerns, developing precise and efficient models for 

predicting gas emissions from turbines is vital. Such models 

not only facilitate the creation of cleaner energy production 

technologies but also enhance operational efficiency and 

environmental compliance. This paper proposes a machine 

learning-based approach to predict CO and NOx emissions, 

integrating ambient weather conditions, emission outputs, and 

gas turbine operational parameters. By employing advanced 

algorithms such as Neighbor Component Analysis (NCA), the 

model assesses the correlation between process parameters 

and emission levels, thereby identifying critical factors that 

influence emissions. This methodology is supported by 

conventional statistical techniques to validate the performance 

of the proposed machine learning models, ensuring robust and 

reliable predictions. 

2. LITERATURE SURVEY IN GAS TURBINE

EMISSION PREDICTIONS

Monitoring industrial plant emissions, such as flue gas 

emissions from turbines, especially CO and NOx emissions, 

are of increasing environmental and regulatory concern, and 

there is an increasing demand for monitoring them by 

estimation and measurement precision. While direct 

measurement is an effective approach, such measurements 

often involve high maintenance, equipment and operating 
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costs. As a result, there has been much interest in estimating 

or predicting these emissions using other, simpler-to-measure 

variable, such as temperature and pressure in various parts of 

the turbine. 

Many emission prediction approaches have been developed 

by many researchers, including but not limited to Zhao et al. 

[7], who developed a numerical model for predicting CO and 

NOx emissions using computational fluid dynamics (CFD). 

Numerical simulations were used to determine the NOx 

formation mechanism and CO behavior concerning changes in 

inlet air temperature and evaluating the model's ability to 

forecast the isothermal flow field inside the combustor by 

contrasting the numerical outcomes with the atmospheric 

observations test rig for the primary and dilution zones' 

velocities. Said et al. [8] implemented a statistical method to 

optimize the diesel engine NOx and CO emissions prediction 

using a Box-Behnken design based on response surface 

methods. 

On the other hand, data-driven approaches are embraced 

because they can predict outcomes by learning from data. This 

simplifies calculations and reduces the possibility that the 

physics laws will be missing during model development. Data-

driven approaches commonly use three approaches: 

supervised, unsupervised, and semi-supervised. In emissions 

prediction, supervised learning is mainly used to predict the 

amount of emissions. Gordon et al. [9] and Faqih et al. [10] 

implemented a Support Vector Machine (SVM) regressor for 

NOx emission prediction for diesel engines and gas turbines, 

respectively. Tuttle et al. [11] used SVM and a Neural 

Network (NN) to categorize and predict fuel emissions. 

Coelho et al. [12] also used many methods to estimate carbon 

oxides (CO) and nitrogen oxides (NOx) emissions from a gas 

turbine using the predictive emission monitoring systems 

dataset. First, four methods were developed for feature 

generation: Principal Component Analysis, t-Distributed 

Stochastic Neighbor Embedding, Uniform Manifold 

Approximation and Projection, and Potential of Heat-diffusion 

for Affinity-based Trajectory Embedding. Then Feature 

Relevance-based Unsupervised Feature Selection was 

evaluated for ranking features. With all features generated, the 

regression models Ridge Regression, Least Absolute 

Shrinkage and Selection Operator, k-Nearest Neighbor, Cubist 

Regression, Random Forest, Light Gradient Boosting Machine, 

Categorical Boosting, and Deep Forest Regression (DFR) 

were evaluated. The hyperparameters were tuned with 

Randomized Search Cross Validation using a 5-fold cross-

validation (CV) procedure. Rezazadeh [13] used a non-

parametric supervised method known as k-Nearest Neighbor 

(KNN) to predict NOx. 

Si et al. [14], who employed neural networks to predict NOx 

for conventional and Dry Low Emissions (DLE) gas turbines, 

respectively. Furthermore, Qader et al. [15] showed that neural 

network nonlinear autoregressive time series and Gaussian 

Process Regression (GPR) gave the best results in predicting 

CO2 emissions from power plants located in Bahrain. Further 

research on gas turbine emissions prediction using Artificial 

Neural Networks (ANNs) was carried out by Zhao et al. 

implement. [16], using a Recurrent Neural Network (RNN) to 

predict Turbine Exhaust Pressure (TEP) and turbine exhaust 

temperature (TET). While Kaya et al. [17] and Sun and Huang 

[18] predicted NOx and CO exhaust gases using Extreme 

Learning Machines (ELM). Bhowmik et al. [19] developed an 

ANN model for mapping ternary blends with engine power 

performance and exhaust emissions in diesel engines. Adams 

et al. [20] showed that Deep Neural Networks (DNN) could 

effectually reduce the computation time for SOx and NOx 

emissions prediction through data preprocessing and feature 

selection methods. The ensemble DNN model demonstrated 

higher prediction ability in predicting NOx emissions by 

Wang et al. [21]. A fuzzy inference system with an adaptive 

network as a type of artificial neural network has been verified 

by dos Santos Coelho to predict NOx emissions [2] accurately. 

Furthermore, AlKheder and Almusalam [22] found a Deep 

Learning-based FNN model suitable for predicting CO2 

emissions for a specific energy sector in Kuwait; Ağbulut's [23] 

effectively implemented SVM and DNN models for predicting 

CO2 emissions in Turkey. 

However, from the above work, it has been noted all the 

metaheuristics algorithms coupled with the machine learning 

approaches have never utilized the Particle Swarm 

Optimization (PSO) algorithm for tuning the machine learning 

approach weights for achieving more accurate prediction of 

gas emission in natural-gas power plants and hence, the aim of 

this work was established. It should not be ignored that gas 

emissions prediction plays a vital role in environmental 

management and public health protection. Therefore, a new 

hybrid model of FNN-based Improved PSO is introduced to 

predict the emissions of carbon monoxide (CO) and nitrogen 

oxides (NOx) from gas turbines. 

The contribution of this paper is as follows: 

 To develop an objective comparison of different 

machine learning methods based on characteristics of 

open gas turbine CO and NOx emission datasets. 

 The CO and NOx emission prediction error can be 

minimized by developing a model based on hidden 

layer FNN and improved PSO algorithm. 

 A KNN algorithm is introduced to obtain the optimal 

weight for FNN and improve model performance by 

randomly selecting the velocity value in the velocity 

equation of the PSO algorithm. 

Here are the remaining sections of the paper: Section 3 

introduces the theoretical background of FNN models, 

architecture optimization, and the proposed PSO algorithm. 

Section 4 offers the results and discussions, followed by a 

comparison study with available hybrid FNN models used in 

previous works on the same dataset. As a final word, in section 

5, we present the conclusions of our analysis and discuss future 

directions. 

 

 

3. METHODOLOGY 

 

This section details the methodology, which consists of the 

FNN model used for emission prediction, the improved PSO 

used for FNN weights tuning, and the performance matrices to 

evaluate model performance. 

 

3.1 The FNN prediction model 

 

Feedforward Neural Networks are well-known for their 

capability to learn complicated problems and provide 

solutions through learning the (hidden) underlying structural 

relations of the input strings [24]. For basic single hidden layer 

FNN (𝑛𝑒𝑡) illustrated in Figure 1, supervised learning would 

begin by using inputs vector 𝑟 = [𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑖], and targets 

vector 𝑡 = [𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑖] . Achieving output with the 

minimal possible error requires adjusting the weight 

coefficients (w) between layers [25]. The correlation between 
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the output and target vectors will be used to identify errors. 

 

( )R net r=  (1) 

 

R w r B=  +  (2) 

 

R represents the output vector, B is the model bias, and r is 

a random variable. Therefore, the net can adjust the w 

coefficient to obtain the highest correlation between output 

and target vectors [26]. In other words, the main goal of the 

learning process is to find the minimum of Eq. (4). 
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where, e represents the error vector, MSE is regarded as a 

measure of training/learning performance [27]. 

 

 
 

Figure 1. Structure of the FNN layers showing the input, 

weights/biases, and output 

 

3.2 Improved PSO (IPSO) method 

 

In applications in science and engineering, the PSO 

algorithm handles multidimensional problems with 

remarkable efficiency. The PSO's heuristics are modeled after 

the social and biological ways that birds forage for food [24]. 

Using the assumption that the population is on the y-axis and 

consists of N particles, standard PSO iteratively changes the 

particle's position and velocity to ascertain which particle in 

the swarm is the best [28]. The 𝑖𝑡ℎ particle in the population is 

denoted by  𝑚𝑖 , and its position within the population is 

indicated by 𝑝𝑖 . As a result, the following represents the 

location of a particle moving in the y-dimension: 

 

1 2 3( , , ,..., )i i i i iyp p p p p=  (5) 

 

The 𝑚𝑖 Particle updates its position as it moves through the 

population region with velocity. 𝑣𝑖 , which is given by the 

following vector: 

 

1 2 3( , , ,..., )i i i i iyv v v v v=  (6) 

 

Therefore, PSO can try to evaluate the optimal position of 

particles 𝑚𝑖 in the population and pass them into a vector, as 

Eq. (7): 

 

1 2 3( , , ,..., )i i i i iyo o o o o=  (7) 

 

Other terms commonly used in PSO include social and 

cognitive acceleration constants ( 𝑐2 𝑎𝑛𝑑 𝑐1 ) and inertial 

weights (𝑊) [29]. To mathematically represent the additional 

PSO parameters, the inertia weights are first expressed as: 

 

min min max[ ( )]
k

W W W W
K

= +  − +  (8) 

 
1

1 1 2 2( ) ( )k k k k k k k

ix iy iy gy iy iyv r c o p r c u p v W+ = − + − +  (9) 

 
1 1k k k

iy iy iyp p v+ += +  (10) 

 

Among them, K represents the maximum number of 

iterations, 𝑟1, 𝑟2,  and 𝑟3 are random numbers with a value 

ranging between (0,1) [27]. Population generation represents 

the first step in PSO optimization. In order to execute the PSO 

algorithm, parameters include population size (swarm) (N), 

random distribution number ( 𝑟1 , 𝑟2 ), social and cognitive 

coefficients (𝑐1, 𝑐2), global best performance (GP), and inertia 

weight coefficient (𝑊) must be set [30]. PSO searches for the 

weight (particles) while maintaining the most accurate 

approximation of the fitness function [31]. Therefore, the gas 

leak-based prediction model uses the PSO algorithm to find 

the optimal weight coefficients in the FNN model to improve 

the leak prediction accuracy. This study enhances PSO 

performance by tuning the velocity coefficients using KNN 

algorithm as a third-party regressor. The velocity of the 𝑖𝑡ℎ 

particle is updated using KNN to get the optimal position. 

Taking 𝑣𝑖  to be the velocity of the 𝑖𝑡ℎ  particle at 𝑡 = 𝑡0 ; 

therefore, the velocity at 𝑡 = 𝑡1 can be expressed as Eq. (11). 

 

𝑣𝑖
𝑡1 = 𝑊 × 𝑣𝑖

𝑡0 + 𝑐1 × 𝑅 × 𝑝𝑖
𝑑𝑖𝑓𝑓

+ 𝑐2 × 𝑅 × 𝑝𝐼
𝑑𝑖𝑓𝑓

 (11) 

 

In order to determine the optimal velocity, the KNN 

algorithm is used to guess the 𝑣𝑖
𝑡1, we use the following : 

(1) According to the 𝑣𝑖
𝑡0, the 𝑣𝑖

𝑡1 should be assigned to the 

optimal velocity among its nearest neighbors. If the k is an 

even number, then the 𝑣𝑖
𝑡1 is the optimal velocity of its nearest 

neighbor . 

(2) It is recommended by the random rule that the 𝑣𝑖𝑡1 is 

assigned to the optimal velocity among the nearest neighbors. 

In that case, the k would be an even number, and the nearest 

neighbors' 𝑣𝑖
𝑡1 would be decided at random. 

 
b

diff i ip p p= −  (12) 

 

where, 𝑅 represents a random variable, and 𝑝𝑖
𝑏 represents the 

best position of the 𝑖𝑡ℎ  particle. In order to determine the 

optimal velocity, the KNN algorithm is used to guess the 𝑣𝑖
𝑡1. 

KNN was used to choose the optimal random variables 𝑟1 and 

𝑟2  for updating the velocity. A pseudo-random number 

generator (PRG) is used to generate a reproducible stream of 

random numbers directly dependent on the initial seed used to 
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select 𝑟1  and 𝑟2 . However, most classical random number 

generators cannot run because they must define a current state 

and a seed value. In our case, the weights that give the highest 

accuracy obtained from plain FNN are considered initial seeds. 

In this case, the other seeds can be obtained from the initial 

seeds. The applied seed number generator demonstrated as Eq. 

(13): 

 

𝑆𝑒𝑒𝑑𝑅𝐺 = [𝑙𝑒𝑛𝑔𝑡ℎ(𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡), 
[𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐹𝑁𝑁] + 𝑃𝑅𝐺(𝑟1, 𝑟2, [1,1])] 

(13) 

 

Figure 2 below shows the IPSO process, while Table 1 

describes the setups of the IPSO algorithm. 

 

 
 

Figure 2. IPSO optimization flow diagram 

 

Table 1. Value of IPSO configuration parameters 

 
Parameter Value 

Swarm (Population) Size (s) 100 

Social Constants (c1) 2 

Cognitive Constants (c2) 2 

Inertia Weight Coefficient (W) 1 

No. of Iterations 150 

 

Eq. (14) provides the fitness function for the IPSO 

mentioned above. 

 

[𝑊𝑖𝑒𝑔ℎ𝑡]𝐹𝑁𝑁

= 𝑎𝑟𝑔{𝑅1,𝑅2}[ 𝑅1, 𝑅2, 𝑚𝑖𝑛{
∑ (𝑛𝑒𝑡(𝑥[𝑖]) − 𝑇)2𝐼

𝑖=1

𝐼
}] 

(14) 

 

where, i is the total input vectors, X(i) is the ith input array, and 

T is the predicted target. New configurations, as given in Table 

2, are made, and the IPSO algorithm is used to optimize the 

FNN model results. IPSO is used to generate the best weight 

coefficients and apply those coefficients to the FNN model. 

Figure 3 demonstrates the Improved PSO-FNN paradigm. 

 

Table 2. IPSO-FNN model configurations 

 
Parameter Values 

Number of hidden layers Single (1) 

Goal training performance 

(MSE) 
1 × 𝑒−201 

Training model 
Levenberg-Marquardt algorithm 

(LM) 

Minimum gradience 1 × 𝑒−101 

Maximum fails 100 

Epochs 25 

Training time goal (seconds) 30 

PSO-search space upper 

bound 
+1.09 

PSO-search space lower 

bound 
-1.09 

 

 
 

Figure 3. An overview of the proposal IPSO-FNN procedure 

 

3.3 Measurements of performance 

 

The hybrid IPSO-FNN model is used to predict both CO and 

NOx gas leakages. For such configurations, performance 

metrics are determined as Eq. (15): 

 
E T TR= −  (15) 
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If assumed that T is the optimum label of the predictions 

files and TR is the predicted (classifier results) label, Eq. (15) 

expresses the error relationship. However, the non-zero values 

in the error vector represent the number of errors in the 

prediction results; otherwise, the zero values represent the 

correct decisions in the prediction results. MSE, RMSE, and 

MAE can be given the following equations: K is the total 

number of errors, and the error count propagates from 1 to K. 

The accuracy can be calculated as Eq. (19): 

 

𝐴𝐶𝐶𝑈𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
 (19) 

 

 

4. FEATURE SELECTION AND PREPROCESSING OF 

DATASETS 

 

This section discusses dataset preprocessing methods, FNN, 

and PSO algorithms for CO and NOx emissions prediction. 

According to Bhowmik et al. [19], CO and NOx leakage can 

be tracked by observing the entire gas turbine operation. In 

addition, gas-fired power generation involves natural air going 

through five stages, beginning with air filtration and ending 

with reducing the air temperature. Each stage has inlet and 

outlet variables such as inlet and outlet pressure, inlet and 

outlet temperature, ambient temperature, ambient pressure, etc. 

In order to maintain the power generation performance of the 

gas turbine, these variables should be kept at known levels [24]. 

The leakage levels of gases such as CO and NOx are related to 

the gas turbine mechanical limitations mentioned above. The 

dataset used to build the predictive model includes the factors 

that affect the condition of the air and those that affect gas 

turbine operating conditions. The gas leakage level from the 

turbine entities is the “amount of gas turbine emissions”. 

 

4.1 Preprocessing methods for datasets 

 

The dataset encountered several preprocessing stages before 

using it in prediction operations. In order to be familiar with 

the preprocessing procedures, it is essential to conduct 

statistical analysis on this dataset. This dataset represents the 

features from the machine learning point of view, so those 

features need to be reformed to maintain forecasting with 

reliable decision-making. After one year of monitoring and 

data capturing, statistical analysis is performed, and the results 

are presented in Tables 3 to 6. Firstly, the level of CO leakage 

is studied Table 3, it was obtained that the maximum leakage 

of CO gas is 41. 097mg/m3, and the minimum leakage of it is 

0.2128mg/m3. The median and mean of CO leakage are 

measured too. 

The dataset used to build the predictive model includes the 

factors that affect the condition of the air and those that affect 

gas turbine operating conditions. The gas leakage level from 

the turbine entities is the “amount of gas turbine emissions”. 

The data presented in this study are openly available [32]. 

The given values in Tables 3 and 4 reflect the amount of CO 

and NOx emission in mg/m3. In order to understand the amount 

of emission during the year in the test data, the frequency of a 

particular gas emission level every hour for 7385 hours is 

calculated in Tables 5 and 6. 

Knowing that leakage levels of two different gases are being 

monitored on this dataset, monitoring is taking place on the 

biases of nine parameters, e.g., Ambient Temperature (AT), 

Air Filter Difference Pressure (AFDP), Ambient Humidity 

(AH), Turbine Inlet Temperature (TIT), Ambient Pressure 

(AP), Turbine Energy Yield (TEY), Gas Turbine Exhaust 

Pressure (GTEP), Compressor Discharge Pressure (CDP), 

Turbine After Temperature (TAT)). NOx and CO emission 

ranges are 25.905mg/m3-119.69mg/m3 and 0.2128mg/m3-

41.09mg/m3, respectively. From Tables 3 to 6, the NOx and 

CO range widely vary between the minimum and maximum 

ranges. Thus, both targets are represented in more abstract 

forms, so each gas leakage is labelled according to the 

emission ranges in Tables 5 and 6. 

 

Table 3. CO emission levels value analysis 

 
Min 0.2128 

Max 41.097 

Med 2.533 

Mean 3.1287867 

 

Table 4. NOx emission levels value analysis 

 
Min 25.905 

Max 119.68 

Med 56.8385 

Mean 59.8905095 

 

Table 5. CO emission distribution over 7385 hours 

 

Emission Range 𝒎𝒈/𝒎𝟑 BINS (label) Frequency 

<1 1 184 

1.1-2 2 2342 

2.1-5 5 3970 

5.1-10 10 740 

10.1-15 15 134 

15-20 20 7 

 More 7 

 

Table 6. NOx emission distribution over 7385 hours 

 

Emission Range 𝒎𝒈/𝒎𝟑 BINS (Label) Frequency 

<30 30 1 

31-40 40 5 

41-50 50 977 

51-60 60 3611 

61-70 70 1665 

71-80 80 687 

 More 438 

 

 
 

Figure 4. Preprocessing data augmentation 

 

Five years of monitoring data are obtained, and similar 

features are monitored yearly. Features fusion involves 

performing the so-called data augmentation. The 

augmentation process is one of the measures taken to uplift 

prediction models' accuracy. Features from each year are fused 

so that essential elements are augmented. Augmentation 
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provides more possibilities for the same qualities in the 

prediction model, supporting the so-called training. Figure 4 

demonstrates the augmentation process. Furthermore, data 

post-augmentation is normalized to reduce the variance 

between data elements. Normalization takes place by 

identifying the maximum value in each feature and then 

dividing each weight of that feature by this maximum value. 
 

4.2 Feature selection stage 
 

The so-called features selection will be used to reduce the 

number of features in the prediction model in order to lessen 

the burden on it. There are various approaches that can be used 

in the features selection strategy. The goal of all feature 

selection techniques is to create a shortlist of features that are 

more relevant to the target. All other traits, however, are 

insignificant because they only have a slight effect on the 

target. As was seen in the previous section, the target vectors' 

statistical examination of each feature can produce the 

necessary data for feature selection. The correlation between 

each feature and the goal (s) is also ascertained using an 

algorithm such as Neighbor Component Analysis (NCA). Two 

types of input are accepted by neighbor component analysis: 

the target and the features to be chosen (abstracted). In order 

to maximize the output of the correlation calculation, NCA 

computes the characteristics. The correlation coefficient factor 

is represented by the algorithm's output. Using our case study 

as an example, we can feed the Neighbor component analysis 

algorithm nine columns of features in addition to the first 

target, which is the CO levels. The algorithm will generate 

nine coefficients, each of which has a different correlation 

level with the output target. Procedures are repeated with a 

different objective, for example, applying NOx levels rather 

than CO. The important thing to remember is that each time 

the algorithm runs, the number of characteristics included in 

the correlation formula is changed, resulting in a random 

determination of those coefficients. The outputs in Tables 7 

and 8 are obtained after three consecutive algorithm runs for 

CO and NOx gases, taking into account the gas leakage dataset. 
 

Table 7. Weights for three neighbor component analysis 

trails with CO target 
 

Iteration No. Iteration 1 Iteration 2 Iteration 3 

AP 49.50 57.34 55.12 

TIT 40.87 44.91 43.65 

TAT 38.61 50.92 49.01 

AFDP 23.94 21.25 32.34 

GTEP 17.57 28.79 30.84 

CDP 16.76 2.34 2.35 

AT 10.44 12.73 17.13 

AH 7.28 8.93 11.01 

TEY 8.31 1.87 1.19 
 

Table 8. Weights for three neighbor component analysis 

trails with NOx target 
 

Iteration No. Iteration 1 Iteration 2 Iteration 3 

AP 31.40 28.36 25.41 

TIT 23.86 22.08 20.11 

TAT 19.63 21.07 20.75 

AFDP 17.33 19.51 20.45 

CDP 15.20 16.83 17.84 

AT 13.62 10.33 8.46 

GTEP 11.49 15.35 17.33 

AH 7.28 8.74 8.90 

TEY 2.72 2.31 1.99 

The maximum obtained coefficient features are the best 

input to train the ANN model. Hence, the highly correlated 

features with the emission of the two gases in Table 7 (AP, 

TIT, TAT, AFDP, GTEP, and CDP) and Table 8 (AP, TIT, 

TAT, AFDP, CDP, and AT) are considered as the number of 

features column in the dataset. 

 

 

5. ANALYSIS OF RESULTS AND DISCUSSION 

 

IPSO improves the plain model's (FNN, for example) gas 

leakage forecast ability. As a result of this integration, the 

model's performance for gas prediction was enhanced. Table 

9 presents the accuracy metrics of CO and NOx gas leakage by 

an 11-cross-fold validation algorithm. The model is developed 

using MATLAB/Simulink (R2022b) environment. 

Based on the results shown in Table 9, fold number one 

indicates the highest potential for prediction accuracy, which 

is 99.68 percent for CO and 82.62 percent for NOx. The 

accuracy measure for CO Figure 5 (a) and NOx Figure 5 (b) is 

shown using a box plot for each fold. 
 

Table 9. Accuracy measures per fold for CO and NOx gas 

leakage using the IPSO-FNN model 
 

Fold Number Accuracy (CO) Accuracy (NOx) 

1 99.68 82.61 

2 99.24 81.22 

3 99.57 81.23 

4 99.46 80.54 

5 99.30 80.43 

6 99.62 82.62 

7 99.30 80.92 

8 99.22 80.21 

9 99.57 82.12 

10 99.58 81.00 

11 98.89 80.89 

 

 
(a) 

 
(b) 

 

Figure 5. An illustration of the accuracy measures per-fold 

(a) CO and (b) NOx gas leakage using the IPSO-FNN model  
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Boxplots, where the red lines within the boxes indicate the 

median values, the blue boxes represent the lower and upper 

quartiles, the black lines represent the minimum and maximum 

accuracy values, and the dotted lines represent outliers, show 

the differences between the actual and predicted values of 11-

fold cross-validation for CO and NOx emission. 

 

 

6. COMPARISON STUDY 
 

This section's goal is to provide evidence for the suggested 

hybrid model's superiority over other pertinent, related models. 

Comparing the outcomes of the several models suggested in 

earlier studies using the same dataset with the model proposed 

in this work, Table 10 presents the findings. 

The similarity mentioned above in Table 10 as the acquired 

performance matrix results show that the upgraded PSO model 

may greatly increase the plain FNN model's performance, 

Table 10 shows that the IPSO-FFN model performs relatively 

better than other models. Our state-of-the-art results show 

improvements in the MSE, RMSE, and MAE for CO gas 

leakage prediction of 87.52 to 98.79%, 62.35 to 98.38%, and 

46.73 to 99.84%, respectively, when compared to other 

previously presented models in [17, 33-45]. On the other hand, 

there is an improvement of 4.25 to 73.33%, 30.95 to 95.71%, 

and 59.75 to 98.22% in the MSE, RMSE, and MAE for NOx 

gas leakage prediction. 

 

 

Table 10. Comparison study 

 
Reference CO Prediction Performances NOx Prediction Performances 

 MSE RMSE MAE Improvement% MSE RMSE MAE Improvement% 

Our Proposal (IPSO-FNN) algorithm 0.13 0.23 0.12 ــ   ــ 0.29 0.54 0.30 ــــ  ــــ

Kaya et al. [17] ــ   ــ ــــ  ــ MAE by 98.94 0.93 ــــ  ــ ــــ  MAE by 97.72 7.91 ــــ

Dirik [33] 0.265 0.515 ــ   ــــ
MSE by 95.71 

RMSE by 79.27 
 ــ  ــ ــــ  ــ ــــ  ــ ــــ  ــــ

Etemadi and Khashei [34] 0.670 ــ   0.532 ــــ
MSE by 98.29 

MAE by 98.15 
 ــ 0.670  0.532 ــــ

MSE by 72.83 

MAE by 66.19 

Wei et al. [35] ــ   ــ 0.0751 ــــ  ــ ــــ  ــ ــــ  ــ 0.0751 ــــ  ــ ــــ  ــــ

Tessoni and Amoretti [36] ــ   ــ ــــ  ــ MAE by 46.73 0.018 ــــ  ــ ــــ  ــ 0.018 ــــ  ــــ

Dong et al. [37] 0.0846 ــ   1.367 ــــ
MSE by 86.52 

MAE by 99.34 
 ــ 0.084  MAE by 86.83 1.367 ــــ

Nino-Adan et al. [38] ــ   0.364 0.284 ــــ
RMSE by 62.35 

MAE by 97.30 
 1.220 1.559 

RMSE by 65.02 

MAE by 88.46 

Leblanc and Germain [39] 0.190 ــ   ــ ــــ  ــ MSE by 94.00 0.190 ــــ  ــ ــــ  MSE by 4.25 ــــ

Wood [40] ــ   0.894 1.499 ــــ
RMSE by 89.53 

MAE by 98.90 
 ــ  6.613 8.921 ــــ

RMSE by 95.21 

MAE by 97.27 

Mahfuz et al. [41] ــ   ــ 0.475 ــــ  ــ RMSE by 77.53 ــــ  ــ ــــ  ــ ــــ  ــ ــــ  ــــ

Awasthi et al. [42] ــ   0.774 1.454 ــــ
RMSE by 92.65 

MAE by 98.73 
 ــ  0.774 1.454 ــــ

RMSE by 70.65 

MAE by 76.75 

Berikov and Litvinenko [43] ــ   ــ ــــ  ــ ــــ  ــ ــــ  ــ ــــ  ــ ــــ  MAE by 71.62 0.634 ــــ

Botsas et al. [44] ــ   ــ ــــ  ــ ــــ  ــ ــــ  0.447 0.618 0.382 ــــ

MSE by 52.32 

RMSE by 30.95 

MAE by 59.75 

Potts and Leontidis [45] ــ   ــ ــــ  ــ MAE by 98.22 0.50 ــــ  ــ ــــ  MAE by 92.83 2.51 ــــ

 

 

7. CONCLUSIONS AND FUTURE WORKS 

 

In order to predict gas emissions from natural gas power 

plants, this paper developed a hybrid predictive emissions 

monitoring model based on Particle Swarm and Neural 

Network methods. Optimal weights for neural network 

training were found by combining FNN with the enhanced 

PSO method to create an integrated predictive model. The 

velocity generation and, consequently, the selection quality of 

the FNN weights coefficients are improved in the PSO with 

the application of the KNN algorithm. Using k-fold cross-

validation, the dataset is partitioned elevenfold to assess the 

model's performance under various feed existence. Statistical 

performance metrics such as accuracy, MSE, RMSE, and 

MAE were used to evaluate the prediction ability of the 

integrated model. Statistical metrics of the IPSO-FNN model 

for CO gas emissions are Accuracy=99.68, MSE, RMSE, and 

MAE equal to 0.13, 0.23, and 0.12, respectively. On the other 

hand, NOx gas emissions had Accuracy=82.62 and MSE, 

RMSE, and MAE values of 0.30, 0.54, and 0.29, respectively. 

A Feedforward Neural Network with enhanced PSO 

performed better on prediction than one without enhanced 

PSO. In addition, Table 10 shows that hybrid PSO algorithm 

performance can be improved when compared with various 

performance metrics. 

Developing a mechanism for assessing the technological 

viability and economics of the proposed approach for reducing 

CO, NOx, SOx, and other important emissions will be the 

focus of future work, according to Islam et al. [46]. 
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