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Addressing the challenge of meeting power demand with high reliability at low cost in 
Renewable energy (RE) generation is vital issue. The Autonomous Hybrid Energy Storage 
System (AHESS) to cover electrical deficit in Zigen clinic in southern Libya is introduced. 
It designed to produce 4 kW. The system comprises of photovoltaic (PV), Battery Energy 
Storage System (BESS) Flywheel Storage System (FESS) and Supercapacitance Storage 
System (SCSS). Six PV-BESS combinations, six criteria and three scenarios are studied. 
The research aim is to find the optimal PV-BESS combination based on low cost and high 
reliability. Multi-Criteria Decision Methods (MCDM) is implemented to select the optimal 
combination. The study utilizes Net Present Costs (NPC), Loss Power Supply Probability 
(LPSP), and Levelized Cost of Energy (LCOE) to assess each criterion. Six combinations 
of AHESS are implemented in MATLAB. Three MCDM methods are used to determine 
the optimal sizing of PV-BESS. Simulation results show that 30 PV panels and BESS 60 
Ah are the optimal choices based on these results NPC = 19801 $/kWh, LPSP = 0.104 
$/kWh, and LCOE = 0.032 $/kWh. 
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1. INTRODUCTION

The cost of installation and the reliability of an AHESS
system are the main factors in its implementation. To 
determine the correct number of AHESS components, that 
might help to decrease the net present cost and increase the 
reliability of the system. A control system is implemented to 
reduce costs and increase reliability [1]. An autonomous 
system, PV, Wind Turbine (WT), SCSS, BESS, and hydrogen 
tank are presented to minimize costs and increase reliability. 
BESS is reduced to 56%, and the level of hydrogen is 
increased to 98% [2]. Selecting a suitable battery for a 
renewable hybrid energy storage system by using MCDM 
based on different criteria is implemented [3]. Based on the 
MCDM analysis, selecting the BESS according to customer 
opinion is implemented [4]. MCDM is used to select the RE 
system projects based on four main criteria and 30 sub-criteria, 
The MCDM selects social acceptance, net presented cost, and 
noise which have a high impact [5]. Nine configurations of 
Energy Storage System (ESS) are implemented with MCMD 
based on ten economic-reliability-environmental criteria to 
select the optimal configuration [6]. The selection of RE 
source for the RE power plant is conducted with five RE 
sources, and six criteria (efficiency, emission, production, 
cost, land, and maintenance) are analyzed with MCDM to 
select the proper Renewable Energy Sources (RES) for the 

plant [7]. AHESS for remote villages in India is selected by 
MCDM based on the three criteria of cost, investment, and 
environmental impact. The selected cost is $0.21/kWh [8]. Six 
barriers criteria and nineteen sub-criteria prevent the RE 
system installation in Malawi; the Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS) is 
implemented to select the high-impact barrier. The economic 
and investment costs are determined [9]. A study in Ghan for 
five different types of RE sources with thirteen criteria was 
implemented with MCDM, and the result was that the hydro 
source was the optimal one [10]. To reduce the carbon 
emissions caused by transportation, a suitable battery-electric 
vehicle is studied based on its economic and technical 
specifications. MCDM is applied to select the suitable battery-
electric vehicle [11]. Off-grid generates 5.75 kW with a PV, 
and a hydrogen Fuel Cell (FC) system is applied based on the 
LCOE and lowest NPC [12]. To develop the battery’s aging, 
hybrid PV/BESS with FESS and without FESS are presented. 
The BESS lifetime has improved by 1.72% and increased by 
two years with a low cost of 22,128.54 and 1.82% of LPSP 
[13]. An AHESS of PV/WT/BESS/FESS is introduced to 
minimize the total cost, and an operation cost is introduced 
[14]. Two system configurations to cover ruler healthcare in 
Northern Nigeria, PV/Deasil Generator (DG)/BESS and 
WT/DG/BESS, are presented to select the economic 
configuration based on the total cost [15]. Three different 
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types of BESS are used with the off-grid system: PV, FC, and 
BESS to determine the appropriate type, it is conducted based 
on reliability and economic factors. The results showed the 
lithium iron phosphate battery with fuel cell and retired 
electric vehicle battery are more economical with LPSP < 1%. 
The LPSP from 10% to 0.98% is very high at 12745$ [16]. To 
minimize the LCOE of an AHESS, the power pinch analysis 
is applied in literature [17]. Two loops of optimization are 
implemented. Energy management strategy, economic model 
predictive control, and Genetic Algorithm Optimization 
(GAO) are used to find the optimum numbers of components 
[18]. Three different loads are applied to PV/BESS with GAO 
to find the optimal sizing based on economic, residential, and 
industrial loads [19]. Nine configurations of PV / WT / BESS 
/ SCSS are implemented in Hybrid Optimization of Multiple 
Energy Resources (HOMER) based on technical and 
economic concepts [20]. PV/BESS configuration is 
implemented based on technical and economical concepts to 
satisfy village demand [21]. As a critic, most of the previous 
papers on AHESS systems used the PSPL, LCOE based on 
various BESS, configurations, cost to select the optimal 
solution. To select the number of PV panels with BESS 
capacity based on six related parameters such as NPC, LPSP 
and LCOE is not supported therefore PV/BESS with MCDM 
methods for six criteria and 10 sub-criteria are introduced. 

The research presented in this paper focuses on the 
implementation of MCDM techniques, specifically F- Single 
Value Neutrosophic Logic Linear Scale Transformation, Max 
Method (F-SVNS), Additive Ratio Assessment (ARAS), and 
TOPSIS, to determine the optimal number PV and BESS 
capacity configuration for AHESS. The study aims to address 
the energy needs of the Zegin village clinic in south Libya by 
proposing a system design with 4 kW. The proposed system 
includes different numbers of PV panel ranging from 20 to 36 
panels, and BESS capacities from 40 to 75 Ah. In this 
proposed system, fixed FESS and SCSS are maintained 
constant. 

This study aims to select the most suitable PV number and 
BESS capacity based on six main criteria and 10 sub-criteria. 
These criteria include LCOE, NPC, LPSP, Current 
consumption (I), Charging Energy (Q), and Discharging Time 
(DT). By evaluating these criteria, the optimal system 
configuration AHESS should meet the energy demand of the 
Zegin village clinic. 

The main motivations behind this research lie in addressing 
the pressing need for sustainable and reliable energy solutions 
in remote locations. The motivations and contribution of this 
study can be summarized as following. 

-Three intelligent methods for decision-making MCDM 
have been implemented to ensure selection accuracy: F-
SVNS, TOPSIS, and ARAS. These methods have been applied 
to six combinations, labelled PV1 to PV6 based on six factors: 
NPC, LCOE, LPSP, I, DT, and Q. 

-The criteria weights selection is a critical undertaking for 
decision-makers. The MCDM has been used for different 
purposes, such as determining the optimal RE reign, RE 
economic, political, and social aspects. Study on reliability and 
economics for BESS, Hydrogen Storage System (HSS), and 
DG without considering the number of PV and WT [6]. The 
most cost-effective renewable energy sources (PV, WT, 
biomass, solar thermal, and hydropower) have been 
implemented [10]. All literature studies do not take the PV 
panel numbers and the battery capacity based on NPC, LCOE, 
LPSP, I, DT, and Q into consideration therefore, this study is 

unique because it fills the gap of knowledge in AHESS.  
The applicability methodology's effectiveness is 

demonstrated, through its application in a case study, 
specifically focusing on the PV-BESS selection for the Zigen 
clinic's AHESS. This case study involves handling uncertain, 
indeterminate, and inconsistent information. 

The article is organized into nine sections. The introduction 
and literature review are presented in the first section. The 
system description is located in the second part. The third 
section covers AHESS system modelling. The fourth section 
describes the system cost. The data set for the system is 
organized in the fifth section. MCDM methodology and 
applications are covered in sections six and seven, 
respectively. Finally, the eighth and ninth sections summarize 
the results and conclusions. 
 
 
2. SYSTEM DESCRIPTION 
 

The AHESS comprises variable component PV, BESS, and 
constant component FESS, and SCSS. This proposed system 
integrates three distinct ESS technologies to capitalize on their 
unique strengths and advantages in charging and discharging 
capabilities. The FESS, known for its high efficiency of 
approximately 95%, minimal maintenance requirements, and 
extended lifespan. The BESS and SCSS complement each 
other in the system, each offering unique characteristics to 
enhance overall performance. The BESS mainly functions as 
a backup generator during periods of solar energy 
unavailability. On the other hand, the SCSS characterizes 
attributes such as low energy density, high power density, and 
rapid responsiveness, it is quickly adapting the changes in 
power demand. One of the key advantages of the proposed 
AHESS system is its environmentally friendly, as it operates 
without the need for fossil fuels, thereby promoting 
environmental sustainability. To ensure optimal system 
performance, the control system is implemented to manage the 
charging and discharging of the ESS. 
 

Table 1. Clinic power consumption 
 

Item NO Power 
Consump./W 

Working 
Hours 

Item Total 
Power/Wh 

Computer 1 500 3 1500 
Printer 1 450 1 450 
Bulb 6 10 8 480 

Abdominal 
Ultrasound 1 400 1 400 

Air 
condition 1 1000 2 2000 

Slit Lab. 1 1650 0.5 820 
 

 
 

Figure 1. Average daily Ampere consumption of the clinic 
 

Table 1 illustrates the load profile of electrical equipment 
and the clinic's electricity consumption. With a designed 
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capacity to produce 4 kW to meet the clinic's demand load, the 
average ampere consumption throughout the year is shown in 
Figure 1, fluctuating around 8.5 A at 380 V AC, with an 
average power consumption of approximately 3230 W. 
Notably, the peak load during the year reaches up to 3914 W, 
with a maximum current draw of 10.3 A, while the system 
generates around 4180 W at 11 A and 380 V AC. Figure 2 
presents a schematic diagram of the AHESS, depicting the 
schematic layout of the six PV and BESS criteria under 
consideration. 
 

 
 

Figure 2. Schematic diagram of the proposed system 
 
 
3. SYSTEM MODELLING 
 
3.1 Photovoltaic component 

 
PV is widely used, especially in sunny regions like Africa. 

There are two types of PV methods: The Single-diode Method 
(SDM) and the Double-diode Method (DDM) [22]. the solar 
cells temperature has a significant impact on the current-
voltage and power-voltage curves, which is why PV energy 
generation is relatively expensive. The PV current can be 
obtained by Eq. (1) [23]. 
 

𝐼𝐼 = 𝐼𝐼𝐿𝐿 − 𝐼𝐼𝑜𝑜 �𝑒𝑒
𝐼𝐼𝑅𝑅𝑆𝑆
𝑎𝑎 − 1� −

𝐼𝐼𝑅𝑅𝑠𝑠
𝑅𝑅𝑠𝑠ℎ

 (1) 

 
where the 𝐼𝐼𝐿𝐿  is the diode current, 𝐼𝐼𝑜𝑜 is the reverse saturation 
current, 𝑅𝑅𝑠𝑠 is the series resistance, 𝑎𝑎 is the modified ideality 
current, 𝑅𝑅𝑠𝑠ℎ is the shunt resistance [23]. PV power output can 
be obtained by Eq. (2) [24]. 
 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑌𝑌𝑃𝑃𝑃𝑃−𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑃𝑃𝑃𝑃
𝐻𝐻𝑇𝑇
𝐻𝐻𝑆𝑆

�1 + 𝐾𝐾𝑃𝑃𝑃𝑃�𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟�� (2) 

 
where 𝑌𝑌𝑃𝑃𝑃𝑃−𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 is the rated power of PV based on Standard 
Test Conditions (STC), 𝑓𝑓𝑃𝑃𝑃𝑃 is the derating factor of PV, HT is 
incident solar radiation on the surface, Hs is constant (1kW/m2 

STC), 𝐾𝐾𝑃𝑃𝑃𝑃  is the temperature coefficient. Tc is the PV cell 
temperature and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟  is constant STC (25℃) [24]. Table 2 
illustrates PV profile. 
 

Table 2. PV array profile 
 

Vmp/V Imp/A P PV 
/W 

Price/ 
One 

Rsh/ 
Ω 

Rs/ 
Ω 

Life- 
Time 

50.3 8.15 410 82$ 202.2 0.378 25 
 
3.2 Battery energy storage system component 
 

Energy storage system technologies are used in a variety of 
ways to reduce costs and increasing reliability. BESS is 
divided into two types: primary BESS and secondary BESS 
(rechargeable BESS) [25]. The BESS can maximize returns by 
storing surplus energy and using it when needed or selling it 
when it is pricey [26]. The design and development of BESS 
began 140 years ago. The technology evolved from lead-acid 
BESS to NaS and LiFePO4 BESS [27]. The BESS lifecycle is 
1200–1800 cycles, with an efficiency of 75–80% and a 
lifespane of 5–15 years [28]. Table 3 shows the technical data 
for BESS. State of Charge (SoC) can be obtained from Eq. (3) 
[28]. 
 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) =
𝑄𝑄(𝑡𝑡)
𝑄𝑄𝑛𝑛

 (3) 

 
where 𝑄𝑄(𝑡𝑡) is the current capacity of BESS, 𝑄𝑄𝑛𝑛  is the nominal 
capacity of BESS. The initial SoC and final SoC have a strong 
relationship with charging time replacement, the BESS 
charging time 𝑇𝑇𝐵𝐵_𝐶𝐶ℎ𝑟𝑟 can be calculated by Eq. (4) [29]. 
 

𝑇𝑇𝐵𝐵 𝐶𝐶ℎ𝑟𝑟 =
(𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑛𝑛𝑟𝑟 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑟𝑟𝑖𝑖)𝑊𝑊𝐵𝐵

𝑃𝑃𝐶𝐶ℎ 𝑎𝑎
 (4) 

 
where 𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑛𝑛𝑟𝑟  and 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑟𝑟𝑖𝑖  represent the finished SoC and 
initial SoC respectively, 𝑊𝑊𝐵𝐵 represent battery-rated capacity, 
and 𝑃𝑃𝐶𝐶ℎ 𝑎𝑎  constant charging power. Table 3 illustrates the 
BESS which technical data of proposed system. 

Table 3. Technical data of BESS 
 

BESS Type BESS Energy/Ah Price/$ Lifecycle Parallel Series Total Cost/$ Lifetime/Year 

Ni-Cd 
48 V 
2 kW 

40 100 

3000 1 8 

800 

10 50 120 960 
60 140 1120 
75 160 1280 

 
3.3 Flywheel energy storage system component 

 
The flywheel is a mechanical storage mechanism used in a 

variety of applications. FESS characteristics include large life 
cycles, a long lifespan, rapid response, and environmental 
[30]. FESS has a high efficiency of 90–95% [31]. The cycle 
lifetime of FESS is more than 1,000,000 cycles [32]. FESS 
energy storage depends on angular velocity and moment of 
inertia [13]. FESS applications are increasing; they can be 

utilized in aerospace, renewable energy systems, power 
smoothing, military vehicles, and uninterruptible power 
supplies (USP) [33]. FESS is made from many materials. 
Table 4 shows various different types of FESS [34]. FESS's 
negative aspects include a high capital cost for high rotation, a 
high self-discharge rate, and a low energy density [35]. 

A FESS based on the maximum and minimum speeds can 
be calculated in Eq. (5) [36]. 
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Table 4. Different type of FESS [28] 
 

Material Density (kg/m3) Tensile Strength (MPa) Max Max. Energy Density (for 1 kg) (MJ/kg) Cost ($/kg) 
Composites E-glass 2000 100 0.05 11.0 

S2-glass 1920 1470 0.76 24.6 
Carbon T1000 1520 1950 1.28 101.8 
Carbon AS4C 1510 1650 1.1 31.3 

 

𝐸𝐸 =
1
2

 𝐼𝐼 𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚2 �1 −
(𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛)2

(𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚)2� (5) 

 
where 𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛 and  𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚  represent minimum and maximum 
velocity respectively. I, represents the moment of inertia. The 
main parameters of FESS parameters are maximum stress 
𝜎𝜎𝑚𝑚𝑎𝑎𝑚𝑚  and energy density [36]. Table 5 shows FESS technical 
data which is used in this paper. 

 
Table 5. FESS technical data 

 
FESS Parameters 

Material of FESS Carbon AS4C 
Density 1510 𝐾𝐾𝐾𝐾/𝑚𝑚3 

Tensile strength 1650 ∗ 106 𝑃𝑃𝑎𝑎𝑃𝑃𝑇𝑇𝑎𝑎𝑃𝑃 
The energy density of the material 0.30 𝑘𝑘𝑊𝑊ℎ/𝑘𝑘𝐾𝐾 

Mass of FESS 10 kg 
The energy density of FESS 0.31 ∗ 10 = 3.1𝐾𝐾𝐾𝐾ℎ 

Speed 1500 rpm 
Diameter 25.4 cm 

Width 2 cm 
FESS efficiency 90% - 95% 

Lifetime 25 years 
Life cycle Handers thousands 
FESS cost 31.3*10 = 313 $ 

Backup time 10s – 2 m 
 
3.4 Supercapacitor storage system component  
 

Electric double-layer capacitors (EDLC) are a type of SCSS 
[37]. EDLC stores the energy in the physical process [38] The 
combination of the supercapacitor and battery provides a 
complementary strength [39]. The supercapacitor's energy 
capacitance can be obtained using Eq. (6) [40]. Table 6 shows 
SCSS technical data which is used in the proposed system. 
 

𝑆𝑆𝑠𝑠𝑠𝑠 =
2𝐸𝐸𝑠𝑠𝑠𝑠

𝑉𝑉𝑎𝑎2 − 𝑉𝑉𝑏𝑏2
 (6) 

 
where Esc is the energy requirement of the SCSS, Va and Vb 
represent the maximum and minimum operating voltage of the 
SCSS, respectively. 

The selection of ESSs in this study is based on detailed 
evaluations of technical parameters, characteristics, and 
advantages. For example, the nickel-cadmium BESS is 
favored for its longer lifecycle and extended lifespan 
compared to lithium-ion and lead-acid, making it suitable for 
applications like Uninterruptible Power Supply (UPS) and 
renewable energy (RE) systems. FESS is preferred for its long 
lifespan, high efficiency of 90% to 95%, quick response time, 
low maintenance needs, and environmental friendliness. The 
Carbon AS4C type of FESS was selected for this study due to 
its outstanding features, including a high tensile strength of 
1650*106 Pascal and an energy density of approximately 3.1 
kWh. Additionally, the SCSS distinguishes itself with rapid 
charging and discharging cycles that can potentially reach up 
to a million cycles, highlighting its reliability and durability. 

The SCSS and BESS properties complement each other, with 
the SCSS offering a balance of low energy density and high-
power density. SCSS rated at 3 V and 3400 F is employed in 
the system design. By strategically selecting these diverse ESS 
types based on their technical attributes and performance 
capabilities to enhance overall efficiency and reliability. 
 

Table 6. Technical data of SCSS 
 

Supercapacitor Parameters 
Cell Capacity 3 V/3400 F 

Number of series 65 pcs 
Number of parallel 3 pcs 
Delivered power 300 W 
Discharged time 2 min 

Price for Cell 35 $ 
Price for the system 2240 $ 
Lifetime / Lifecycle >15 y/500000 

 
 
4. SYSTEM COST 
 

In the proposed system, the main factor is the total cost of 
all equipment. Three cost elements are considered: NPC, 
Replacement Cost (RC), and Operating and Maintenance Cost 
(O&M). Table 7 shows the costs, quantities, and lifetimes of 
each system component. It is important to note that the 
quantities of PV panels and BESS are still being evaluated. 
The cost analysis for each criterion is computed. Additionally, 
the LPSP serves as a metric for system reliability, ranging 
from 0, which represents low reliability, to 1, which represents 
high reliability. The reliability factor is positively correlated 
with the number of PV panels and BESS capacity, thereby 
increasing system reliability. The LPSP for each criterion, 
denoted from PV1 to PV6, is calculated using a specified Eq. 
(7). Table 8 illustrates the data set for the six combinations. 

 
 

5. DATASET OF THE SYSTEM 
 

MCDM methods play a crucial role in ranking criteria based 
on specific constraints. Within the context of the AHESS, the 
combination of PV panels and BESS is evaluated using 
various combinations (PV1 to PV6) through implementation 
in MATLAB. Six combinations are implemented in MATLAB 
to generate data for each criterion, which is subsequently 
utilized in the MCDM method. Key parameters considered for 
each criterion include Q, I, DT, BESS capacity, NPC, LCOE, 
and LPSP. Notably, LCOE and LPSP are of significant 
importance as they reflect the economic viability and 
reliability of the system, respectively. Table 8 presents the 
dataset obtained for the six combinations, with varying 
numbers of PV panels ranging from 20 to 36 and BESS 
capacities ranging from 45 Ah to 75 Ah. By utilizing this data 
and employing MCDM methods, the study aims to derive 
optimal solutions for PV and BESS capacity for AHESS. 
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Table 7. System’s components cost 
 

Items Number of Items PT / kW Total Price / $ Lifetime / Years 
PV Array 20-24-28-30-32-36 4 - 25 

Boost Converter 1 1 395 15 
FESS 1 3 313 > 20 
BESS 40-50-60-75 Ah (8) 3 - 10 
SCSS 64 0.3 2000 >15 

DC/AC Inverter 1 10 2100 10 
Bidirectional converters 1 4 350 10 
Bidirectional converters 1 4 350 10 
Bidirectional converters 1 0.3 100 10 

DC motor 1 2 400 15 
 

Table 8. Data set of six combinations of the proposed system 
 

PV / Panels BESS / Ah LCOE / $ / kWh NPC / $ LPSP / % I / A Q / Ah DT / Min 
(PV1)20  40 0.028 17,587 0.188 4.2 33.8 150 
(PV2)24  40 0.029 17,948 0.175 4.48 35.8 228 
(PV3)28  50 0.03 18,965 0.145 5.6 45 324 
(PV4)30  60 0.032 19,801 0.104 6.4 51 390 
(PV5)32  60 0.033 19,982 0.041 6.8 55 426 
(PV6)36  75 0.034 20,999 0.0 8.8 70 588 

 
Average charging current (I) of the system for 20 panels = 

134/380 +50/380+... +707/380 = 4.2 A 
 

Energy charged capacity Q = 4.2 A* 8 h = 33.8 Ah. (BESS 
capacity = 40 Ah) 

 
14 h with 1A = 14 Ah (clinic is closed) 

 
Battery energy at 8 clock = 33.8 -14 = 19.8 Ah 

 
Average current of Clinic = 8 A 

 
Discharging Time (DT) from 8 clock = 19.8Ah/8A = .2.5 h 

(clinic is open) 
 

The LPSP is defined as the ratio between the sum of the lost 
power supply and the sum of the demand load. NPC, LCOE, 
and LPSP can be obtained using Eq. (7) [41], Eqs. (8) and (9) 
[42]. 
 

𝐿𝐿𝑃𝑃𝑆𝑆𝑃𝑃 =
∑ 𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃 𝑝𝑝𝑆𝑆𝐾𝐾𝑒𝑒𝑝𝑝 𝑃𝑃𝑠𝑠𝑝𝑝𝑝𝑝𝑃𝑃𝑠𝑠 (ℎ)𝑇𝑇
𝑟𝑟=1

∑ 𝑑𝑑𝑒𝑒𝑚𝑚𝑎𝑎𝑑𝑑𝑑𝑑 𝑃𝑃𝑆𝑆𝑎𝑎𝑑𝑑𝑇𝑇
𝑟𝑟=1

 (7) 

 

𝑁𝑁𝑃𝑃𝑆𝑆 =
𝑆𝑆

𝑆𝑆𝑅𝑅𝐶𝐶(𝑖𝑖,𝑃𝑃(𝑙𝑙𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚𝑟𝑟)
 (8) 

 
where C is total annualized cost, i is real interest rate per 
annual, Plifetime is the project lifetime. The LCOE can be 
calculated by the Eq. (9). 
 

𝐿𝐿𝑆𝑆𝑆𝑆𝐸𝐸 =
𝑇𝑇𝑆𝑆𝑡𝑡𝑎𝑎𝑃𝑃 𝑎𝑎𝑑𝑑𝑑𝑑𝑠𝑠𝑎𝑎𝑃𝑃 𝑇𝑇𝑆𝑆𝑃𝑃𝑡𝑡 ($)

𝐸𝐸𝑃𝑃𝑒𝑒𝑇𝑇𝑡𝑡𝑝𝑝𝑖𝑖𝑇𝑇𝑎𝑎𝑃𝑃 𝑃𝑃𝑆𝑆𝑎𝑎𝑑𝑑 𝑃𝑃𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑑𝑑 (𝑘𝑘𝑊𝑊ℎ)
 (9) 

 
 
6. MULTI CRITERIA DECISION MAKER METHODS 

 
The MCDM is a multifaceted method and complexity 

reaches heightened levels [43]. Various methods to decision-
making have been employed in several fields [44]. MCDM is 
regarded as the finest method for criteria ranking [45]. MCDM 
is used for RE ranking based on energy production [46]. In 

recent years the MCDM has been implemented for the optimal 
selection of energy sources based on various criteria [47]. The 
toolkit of MCDM includes methodologies like the Analytic 
Hierarchy Process (AHP), Analytic Network Process (ANP), 
TOPSIS, ARSA, Decision-Making Trial and Evaluation 
Laboratory (DEMATEL), Elimination and Choice Translating 
Reality (ELECTRE), along with various hybrid approaches 
[48]. MCDM is widely used, and based on the “ScienceDirect” 
database (between 2012–2022), 7619 articles from 10,116 are 
conducted by MCDM [49]. They have steps to rank their 
objectives [50]. Experts have turned to MCDM methods 
because of the multiplicity of aspects that must be taken into 
consideration [51]. Three types of MCDM are illustrated 
below: F-SVNS, TOPSIS, and ARAS, all of which have 
benefits that motivate researchers to employ them. They are 
generally simple to learn, apply, and adapt to a wide range of 
research applications, and they can deal with ambiguity and 
partial information. Weight each criterion depending on its 
relative value. They can estimate the relative closeness of each 
possibility by taking into account both its positive and negative 
qualities. 
 
6.1 Fuzzy single valued neutrosophic with linear scale 
transformation, max method 

 
Sometimes, due to a lack of knowledge, the decision-maker 

cannot make an optimal decision. Also, the limitations of the 
classical and intelligent algorithms could affect the final 
decision to overcome these drawbacks [52]. All membership 
functions independently in the range of [0, 1]. To define the 
Single Valued Neutrosophic Set (F-SVNS), the SVNS is 
represented by the Eq. (10). 
 

�𝑥𝑥, �𝑇𝑇𝑠𝑠(𝑥𝑥), 𝐼𝐼𝑠𝑠(𝑥𝑥),𝐶𝐶𝑠𝑠(𝑥𝑥)�𝑥𝑥 ∈ 𝑈𝑈� 
𝑇𝑇𝑠𝑠(𝑥𝑥), 𝐼𝐼𝑠𝑠(𝑥𝑥),𝐶𝐶𝑠𝑠(𝑥𝑥):𝑈𝑈 → [0,1], 0 < 𝑇𝑇𝑠𝑠(𝑥𝑥) +
𝐼𝐼𝑠𝑠(𝑥𝑥) + 𝐶𝐶𝑠𝑠(𝑥𝑥) ≥ 3, for each point of x ∈ U 

(10) 

 
where x is the object, Ts is the truth membership function, Is 
indeterminacy membership function and Fs falsity 
membership function. 

The methodology of the intelligent decision-making method 
can be implemented by following steps [53]. 
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Step 1. Identify the objective of MCDM for selection, 
ranking, sorting, and evaluation for decision-making. 

Step 2. Collection of various alternatives and attributes 
involved in the selection procedure. 

Step 3. Preparation of the Decision Matrix. 
Step 4. Conversion of qualitative data into quantitative data. 
Step 5. Generalization/ Normalization of matrix for 

beneficial criteria and non- beneficial criteria normalization 
are carried out with Eqs. (11) and (12) respectively: 
 

𝑅𝑅𝑖𝑖𝑖𝑖 =
𝑋𝑋𝑖𝑖𝑖𝑖

�∑ 𝑋𝑋𝑖𝑖𝑖𝑖2𝑚𝑚
𝑖𝑖=1

 ∀𝑖𝑖, 𝑗𝑗 (11) 

 

𝑅𝑅𝑖𝑖𝑖𝑖∗ = 1 −
𝑋𝑋𝑖𝑖𝑖𝑖

�∑ 𝑋𝑋𝑖𝑖𝑖𝑖2𝑚𝑚
𝑖𝑖=1

 ∀𝑖𝑖, 𝑗𝑗 (12) 

 
where the xij performance of the alternative value i concerning 
criterion j. 

Step 6. The positive ideal solution and the negative ideal 
solution are given by the Eqs. (13) and (14) respectively: 
 

�𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥), 𝐼𝐼𝑖𝑖𝑖𝑖(𝑥𝑥),𝐶𝐶𝑖𝑖𝑖𝑖(𝑥𝑥)� 
= �𝑅𝑅𝑖𝑖𝑖𝑖(𝑥𝑥), 1 − 𝑅𝑅𝑖𝑖𝑖𝑖(𝑥𝑥), 1 − 𝑅𝑅𝑖𝑖𝑖𝑖(𝑥𝑥)� 

(13) 

 
�𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥), 𝐼𝐼𝑖𝑖𝑖𝑖(𝑥𝑥),𝐶𝐶𝑖𝑖𝑖𝑖(𝑥𝑥)� 

= �1 − 𝑅𝑅𝑖𝑖𝑖𝑖(𝑥𝑥),𝑅𝑅𝑖𝑖𝑖𝑖(𝑥𝑥),𝑅𝑅𝑖𝑖𝑖𝑖(𝑥𝑥)� 
(14) 

 
where 𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥), 𝐼𝐼𝑖𝑖𝑖𝑖(𝑥𝑥) and 𝐶𝐶𝑖𝑖𝑖𝑖(𝑥𝑥)  represent truth value, 
indeterminacy and falsity considering criterion j respectively. 

Step 7. Find the ideal solution for beneficial and non-
beneficial attributes that can be obtained by the Eqs. (15) and 
(16) respectively: 
 

𝐵𝐵𝐵𝐵𝐼𝐼𝑆𝑆 = (𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚∗ (𝑥𝑥), 𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛∗ (𝑥𝑥),𝐶𝐶𝑚𝑚𝑖𝑖𝑛𝑛∗ (𝑥𝑥)) = (1,0,0) (15) 
 

𝐵𝐵𝐵𝐵𝐼𝐼𝑆𝑆 = (𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛∗ (𝑥𝑥), 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚∗ (𝑥𝑥),𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚∗ (𝑥𝑥)) (16) 
 
where T*max is truth max value, I*min is indeterminacy min 
value and F*min is falsity min value. 

Step 8. and Step 9. Calculation then ranking, the 
calculation of the alternative weight can be calculated by the 
Eq. (17): 
 

𝐵𝐵𝐾𝐾 = ����𝑇𝑇𝑖𝑖𝑖𝑖(x) × 𝑇𝑇𝑖𝑖𝑖𝑖∗ (𝑥𝑥)� + (𝐼𝐼𝑖𝑖𝑖𝑖(𝑥𝑥) × 𝐼𝐼𝑖𝑖𝑖𝑖∗ (𝑥𝑥)
𝑚𝑚

𝑖𝑖=1

+ (𝐶𝐶𝑖𝑖𝑖𝑖(𝑥𝑥) × 𝐶𝐶(𝑥𝑥)�� 

(17) 

 
6.2 Additive Ratio Assessment (ARAS) 

 
Chatterjee and Chakraborty [54] adopted the ARAS 

technique to solve a problem related to gear selection. 
Likewise, Nguyen et al. [55] harnessed this method to tackle 
the issue of selecting conveyor equipment in scenarios 
characterized by uncertainty. The ARAS methods offer a 
structured approach to dealing with intricate decision 
scenarios by offering a quantitative framework to evaluate and 
compare options. The fundamental idea is that a higher value 
of the weighted sum indicates a more favorable alternative. 

The ARAS method is a MCDM techniques. In summary, the 
entire ARAS procedure can be distilled into a series of six 
steps. 

Step 1. and Step 2. Creating the decision matrix and 
standardize matrix, that can be obtained by Eqs. (18) and (19). 
 

𝑥𝑥𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑖𝑖

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1

 (18) 

 

𝑥𝑥𝑖𝑖𝑖𝑖 =
1
𝑥𝑥𝑖𝑖𝑖𝑖∗

 (19) 

 
where xij is the performance value of the alternative i 
concerning criterion j; x*ij represent the normalized values of 
the normalized decision-making matrix X and xij* stands for 
the original value of minimized criteria. 

Step 3. Creating the weighted-normalized matrix X using 
the following Eq. (20): 
 

𝑥𝑥�𝑖𝑖𝑖𝑖 = �̅�𝑥𝑖𝑖𝑖𝑖𝐾𝐾𝑖𝑖 ;  ∀𝑖𝑖 = 1, … . ,𝑚𝑚 𝑎𝑎𝑑𝑑𝑑𝑑 𝑗𝑗 = 1, …𝑑𝑑 (20) 
 
where, �̅�𝑥𝑖𝑖𝑖𝑖  is the normalized value of the criterion j; 𝐾𝐾𝑖𝑖is the 
weight of the criterion j. 

Step 4. and Step 5. Establishing the values of the optimality 
function Si and the relative efficiency Ki of a viable alternative, 
that can be find by Eqs. (21) and (22) respectively: 
 

𝑆𝑆𝑖𝑖 = �  𝑥𝑥�𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ∀𝑖𝑖 = 1, … ,𝑚𝑚 (21) 

 

𝐾𝐾𝑖𝑖 =
𝑆𝑆𝑖𝑖
𝑆𝑆𝑜𝑜

 ∀𝑖𝑖 = 1, … ,𝑚𝑚 (22) 

 
where, S0 is the optimal value (i.e., the maximum value of Si) 
and the calculated values Ki are in the interval [0,1]. 

Step 6. Arranging the utility degree values Ki in ascending 
order for the ranking the alternatives. 

 
6.3 Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) 

 
The operational concept of the TOPSIS is rooted in the 

assessment of alternatives within the context of MCDM. This 
approach involves gauging the relative closeness of these 
alternatives to both the optimal and suboptimal benchmarks 
[56]. It encompasses the evaluation of a set of alternatives in 
alignment with pre-established criteria. This methodology 
finds practical utilization across a spectrum of business 
sectors, emerging as a valuable instrument for instances 
demanding judicious, data-oriented analytical choices. 
Generally, the TOPSIS can be distilled into a sequence of 
seven steps [57, 58]. 

Step 1. Formulate a matrix comprising M alternatives and 
N criteria, commonly referred to as an "evaluation matrix." 

Step 2. and Step 3. Normalize evaluation matrix and 
compute the weighted normalized decision matrix, that can be 
calculated by the Eqs. (23), (24) and (25). 
 

𝛼𝛼𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑖𝑖

�∑ �𝑥𝑥𝑖𝑖𝑖𝑖�
2𝑀𝑀

𝑖𝑖=1

 
(23) 
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where 𝛼𝛼𝑖𝑖𝑖𝑖  is normalized value and 𝑥𝑥𝑖𝑖𝑖𝑖  represents the 
performance of the i-th alternative with respect to the j-th 
criterion. The metric performance can be improved by Eq. 
(24). 
 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑖𝑖×𝐾𝐾𝑖𝑖  (24) 
 

𝐾𝐾𝑖𝑖 =
𝐾𝐾𝑖𝑖

∑ 𝐾𝐾𝑖𝑖𝑀𝑀
𝑖𝑖=1

;�𝐾𝐾𝑖𝑖

𝑀𝑀

𝑖𝑖=1

= 1 (25) 

 
where wj represents the criteria weights. 

Step 4. Identify the best and worst alternatives for each 
criterion. That can be calculated by Eqs. (26) and (27). 
 

𝑥𝑥𝑖𝑖𝑏𝑏 = 𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖=1𝑚𝑚  𝑥𝑥𝑖𝑖𝑖𝑖 (26) 
 

𝑥𝑥𝑖𝑖𝑤𝑤 = 𝑚𝑚𝑖𝑖𝑑𝑑𝑖𝑖=1𝑚𝑚  𝑥𝑥𝑖𝑖𝑖𝑖  (27) 
 
where 𝑥𝑥𝑖𝑖𝑏𝑏 represents the best alternative and 𝑥𝑥𝑖𝑖𝑤𝑤 represents the 
worst alternative. 

Step 5. and Step 6. Compute the Euclidean distance 
separating the target alternative and compute the likeness to 
the least favourable alternative for each option. That can be 
calculated by Eqs. (28), (29) and (30).  
 

𝑑𝑑𝑖𝑖𝑏𝑏 = ���𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑏𝑏�
2

𝑁𝑁

𝑖𝑖=1

 (28) 

 

𝑑𝑑𝑖𝑖𝑤𝑤 = �∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑤𝑤�
2𝑁𝑁

𝑖𝑖=1   (29) 

 

𝑆𝑆𝑖𝑖 =
𝑑𝑑𝑖𝑖𝑤𝑤

𝑑𝑑𝑖𝑖𝑤𝑤 + 𝑑𝑑𝑖𝑖𝑟𝑟
 (30) 

 

where 𝑑𝑑𝑖𝑖𝑏𝑏  is separating distance of best alternative, 𝑑𝑑𝑖𝑖𝑤𝑤  is 
separating distance of worst alternative and 𝑆𝑆𝑖𝑖  is optimal 
solution. 

Step 7. Rank the alternatives in descending order based on 
their TOPSIS scores. 
 
 
7. MCDM APPLICATION 
 

SVNS, TOPSIS, and ARAS methods have been 
implemented based on six criteria and ten sub-criteria in this 
study. These criteria can be categorized into two different 
groups: benefits criteria and non-benefits criteria. The benefits 
criteria pertain to positive attributes that should be maximized 
or increased, while the non-benefits criteria encompass 
negative attributes that should be minimized or decreased. 
fundamentally, the ideal alternatives are those that optimize 
benefit attributes and minimize cost attributes, whereas the 
negative ideal alternatives strive to minimize benefit attributes 
and maximize cost attributes. Table 9 provides a 
comprehensive overview of the classification of criteria and 
sub-criteria within the proposed system, delineating the 
specific attributes that fall under each category. This structured 
approach enables the identification of solutions that strike a 
balance between maximizing positive attributes and 
minimizing negative attributes, ultimately leading to decision-
making in the system design and implementation process. 

NPC, LPSP, and LCOE are assigned greater importance 
among the variables due to their immediate significance to cost 
and reliability. To conduct MCDM based on these important 
criteria, it is necessary to classify the significant criteria. Table 
10 illustrates the criteria classification; they assigned positive 
and negative criteria. The MCDM selection will be conducted 
based on their importance. For example, BESS is assigned a 
value of 1 as a positive criterion, while I is assigned a value of 
0 as a negative criterion, which indicates that BESS is 
considered more important than I. that means four criteria are 
more significant than others. 

 
Table 9. Criteria and sub-criteria 

 
Criteria Benefits Sub Criteria 

NPC Minimize -Increase of the business investment of RES 
-Decrease of environment pollution 

LCOE Minimize -Decrease the electrical payment of residential 
-Sealing of the surplus power 

LPSP Maximize -System stability 
-Cover the load demand 

Current Maximize -A guarantee of an equipment operation 

Energy Charging Maximize -A guarantee of the ESS supports the RESS 
-Increase of the load -supporting of all equipment on the same time 

Discharging Time Maximize -Decrease the number of ESS 
 

Table 10. The positive and negative criteria 
 

 BESS LCOE NPC LPSP I Q DT 

F-SVNS (+) (+) (+) (+) (-) (-) (-) 
1 1 1 1 0 1 1 

TOPSIS (+) (+) (+) (+) (-) (-) (-) 
1 1 1 1 0 1 1 

ARAS (+) (+) (+) (+) (-) (-) (-) 
1 1 1 1 0 1 1 
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8. RESULTS AND DISCUSSION

Criteria dataset of the AHESS is used for MCDM, F-SVNS
with, TOPSIS, and ARSA. The objective is to determine the 
PV panel number and BESS capacity based on the dataset in 
Table 8 and the classified criteria, positive and negative in 
Table 10. 

8.1 The simulation results of three methods MCDM, F-
SVNS, TOPSIS and ARAS  

-Results using F- SVNS N- LST-MM

% 06 Attributes BESS (+) LCOE (+) NPC (+) I (-) LPSP (+) 
Q (-) DT (-) 

PV1=1, PV2=2, PV3=3, PV4=4, PV5=5, PV6=6 

PV = 4 1 6 2 3 5 

Rnk = 1 2 3 4 5 6 

-Results using TOPSIS
Enter 1 for benefit and 0 for cost criterion

identn = PV = 6 4 5 1 2 3 

Rnk = 1 2 3 4 5 3 
-Results using ARAS

identn = PV = 5 4 6 1 3 2 

Rnk = 1 2 3 4 5 6 

The optimal number of PV panels and BESS capacity are 
determined using MCDM methods, F-SVNS, ARAS, and 
TOPSIS. The simulation results of MCDM methods based on 
positive and negative criteria are presented in Table 11. 
According to the results, F-SVNS selects PV4 (30 panels and 
BESS 60 Ah) as the optimal solution, ranking it in the first 
position. TOPSIS also selects PV4 (30 panels and BESS 60 
Ah), ranking it in the second position. Similarly, ARAS selects 
PV4 (30 panels and BESS 60 Ah) and ranks it in second place. 
Based on these simulation results, it is evident that PV4 
emerges as the optimal solution since it achieves three 
favourable positions (first, second, and second) compared to 
other alternatives. 

Table 11. Simulation results by MCDM methods 

F-SVNS TOPSIS ARAS 
Six Configuration Ranking Six Configuration Ranking Six Configuration Ranking 

PV4 4 PV6 6 PV5 5 
PV1 1 PV4 4 PV4 4 
PV6 6 PV5 5 PV6 6 
PV2 2 PV1 1 PV1 1 
PV3 3 PV3 3 PV3 3 
PV5 5 PV2 2 PV2 2 

Figure 3. Selected configuration diagram of AHESS 
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8.2 Optimal system operating 
 
The proposed AHESS features two fixed energy storage 

systems, FESS and SCSS, and one variable energy storage 
system integrated with PV. The optimal configuration of PV 
panels and BESS capacity is determined through the 
application of intelligent MCDM methods. The selected 
system comprises 30 PV panels and a BESS capacity of 60 Ah, 
SCSS, and FESS. This configuration is chosen based on their 
criteria, including the minimization of NPC, LCOE, and the 
maximization of LPSP. Figure 3 shows an optimal 
configuration diagram of AHESS. Table 12 shows the system 
component values, which are used for AHESS. The chosen 
system is capable of generating approximately 4 kW, thereby 
satisfying the demand load of the clinic while ensuring low 
costs and high reliability, as validated by three intelligent 
methods. 

 
Table 12. System components values 

 
Component Symbol Value 

Boost converter 
LPV 15e-3 H 
C1 900e-5 F 
C2 10e-3 F 

BESS 

LB 50e-3 H 
RB1 0.1 Ω 
RB2 0.1 Ω 
CB1 1 µF 
CB2 30 mF 

SCSS 

LSC 1.3e-2 H 
RSC1 0.1 Ω 
RSC2 400 Ω 
CSC1 0.03 F 
CSC2 900e-5 F 

FESS 

LFL 50e-3 H 
RFL1 0.1 Ω 
RFL2 0.1 Ω 
CFL1 1 µF 
CFL2 30 mF 

Controller 1 PI(z)1 P = 0.85 I = 10 
Controller 2 PI(z)2 P = 0.01 I= 10 

Pulse generator PWM Freq. =5000 Hz 
 

8.2.1 Boost converter  
The DC-DC boost converter is a key component in RE 

systems. It works by converting input power to a higher output 
based on the duty cycle. When the transistor switch activates, 
the inductor current rises until fully charged. Conversely, 
when the transistor switch is off, the inductor current flows to 
the capacitor and the load [59]. The DC-DC boost converter is 
crucial in renewable energy systems (RES), with practical 
efficiencies ranging from 70% to 95% [60]. Table 13 provides 
the parameters of the boost converter. The input of the boost 
converter, supplied by the PV system, is approximately 271 
VDC and 16 A, through the converter, it is regulated to achieve 
380 VDC and 11 A. The gain of the boost converter's output 
voltage (Vout) and the peak-to-peak ripple current (ΔIL) can be 
calculated using Eqs. (31) and (32) [61]. 
 

𝑉𝑉𝑜𝑜𝑜𝑜𝑟𝑟 =
𝑉𝑉𝑃𝑃𝑃𝑃

(1 − 𝑘𝑘) (31) 

 

∆𝐼𝐼𝐿𝐿 =
𝑉𝑉𝑃𝑃𝑃𝑃𝑘𝑘
𝑓𝑓𝐿𝐿

 (32) 

 
where 𝑉𝑉𝑃𝑃𝑃𝑃 is voltage output of PV system, and k is duty cycle, 
f is Switching Frequency, L is inductor value. 

Table 13. Boost converter parameters 
 

Parameters Values 
Voltage Input Vin 271 V DC 
Current Input In 16 A 

Voltage output Vout 380 V DC 
Current output Iout 11 A 
Power output Pout 4.180→ 

 
8.2.2 Bidirectional buck boost converter 

Continuous advancements in power electronics sciences 
contribute to improved electrical power conversion in 
renewable energy systems [62]. These converters feature a 
bidirectional structure that combines elements of both buck 
and boost converters. In buck mode, Q1 is in the ON state while 
Q2 is in the OFF state. Conversely, in the boost mode, Q1 is in 
the OFF state and Q2 is in the ON state. The duty cycle of the 
converter determines the sequence of these modes [63] The 
primary function of the bidirectional converter is to facilitate 
charging and discharging processes, which are controlled by 
the system's control. 

 
8.2.3 DC/AC inverter 

DC/AC inverter is technically classified into two types: 
Pulse Width Modulation (PWM) and multilevel modulation 
[64]. The switching losses in PWM are a significant issue in 
DC/AC inverters; 1/3 PWM has more features than 2/3 PMW 
and 3/3 PMW [65]. A three-phase inverter with three legs is 
used in this model. DC/AC inverter of three-phase full-bridge 
inverter at 180° is used. The input of the DC/AC inverter is 
380 VDC and 11 A. The output of the inverter is 380 VAC, 
and the maximum power of the inverter is 7 kW. 

 
8.2.4 Control system 

The control system is implemented to manage the charging 
and discharging BESS, SCSS, and FESS. The role of the 
control is to enhance the energy storage system to increase the 
power reliability of the proposed system. The system has three 
scenarios: the first scenario is the power load less than the 
power bus (PL < Pbus), the second scenario is the power load 
equal to the power bus (PL = Pbus), and the third scenario is the 
power load more than the power bus (PL > Pbus). The VBUS 
represents the power generated by the AHESS. Vref represents 
the set point value, which is set at 380 V. 

The first summing comparator takes the difference between 
the Vref and the VBUS to obtain the error e(t)V of the BESS. 
That error passes through the first desecrate Proportional 
Integral (PI) controller of BESS to generate two values (8 or 
0); these values represent the Iref. The second comparator will 
take the difference between the BESS current IB and the Iref to 
obtain the e(t)IB of BESS for the second PI; the role of the 
second desecrate PI is to generate 1 or 0 for PMW; the output 
control is complementing values (1 or 0); and finally, the 
complement values are connected to the S1 - Sʹ1 of the BESS 
bidirectional converter to determine the power direction form 
or to the DC bus. 

The same procedure is applied for S2 Sʹ2 of the FESS 
bidirectional converter and S3 Sʹ3 of the SCSS directional 
converter. At night, the PV system is not available, so the 
controller will compare the VBUS, which is zero at this moment, 
with the set point Vref (380 V). At this time, the controller will 
set the BESS bidirectional converter to discharge the power 
from BESS to the DC bus. This situation is contentious until 
the PV generates more power than the set point, then the 
controller sets BESS to be charging, and the PV system 
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becomes a supplier to the DC bus. This procedure is applied to 
SCSS and FESS as well. 

 
8.2.5 System output  

Figures 4-6 illustrate the system output of the AHESS to 
meet the demand load requirements of a clinic. The control 
system plays a crucial role in managing the priority of ESS for 
charging and discharging operations. In scenarios where the 
PV is not available, BESS/SCSS/FESS serves as the primary 
energy source to support the demand load based on control 
system sequences, which are reflected in the system output 
curves. 
 

 
 

Figure 4. PV/BESS/SCSS/FESS output 
 

Figure 4 shows the PV/BESS/SCSS/FESS output, it is 
presented with distinct curves representing each ESS: a red 
line for PV, a black line for BESS, a green line for SCSS, and 
a yellow line for FESS. The power source exchange among 
these components is visible during specific time intervals, such 
as 11:35 to 11:49, 12:68 to 12:87, and 14:66 to 14:84, showing 
the power charging and discharging of the AHESS. 
 

 
 

Figure 5. PV/BESS/SCSS output 
 

 
 

Figure 6. PV/BESS output 
 
Figure 5 shows the PV/BESS/SCSS, illustrating the power 

sources exchange between these components during different 
time intervals, such as from (0:12 to 0:30) minutes, (8:11 to 

8:30) as the SCSS response based on BESS drops, and (11:17 
to 11:26), showing the relationship between the energy sources 
as the behavior of PV and BESS fluctuates. 

Figure 6 shows the power sources exchange between PV 
and BESS in time intervals from 11:00 h to 17:00 h. The 
Figures 4-6 show the response of energy storage systems based 
on the decrease and increase in PV, as well as on the energy 
stored in the ESS. All of these sequences are based on the 
control system. 
 
 
9. CONCLUSION 
 

The implementation of an AHESS system integrating 
components PV/BESS/SCSS/ FESS has been proposed to 
address the energy requirements of the Zigen clinic in southern 
Libya. The primary focus of this system is to ensure cost-
effectiveness and reliability, as measured by the metrics NPC, 
LCOE, LPSP, DT, Q, I, and BESS capacity. To determine the 
optimal number of PV panels and BESS capacity, MCDM 
methods were employed based on six criteria and six 
combinations. Specifically, three intelligent decision-making 
methods, F-SVNS with LST-MM, TOPSIS, and ARAS, were 
utilized in MATLAB to assess the various criteria and identify 
the most efficient solution based on the criteria. The MCDM 
analysis revealed that the combination of (P4) 30 PV panels 
and a 60 Ah BESS capacity was considered optimal solution 
based on the determined criteria. In particular, the results 
highlighted the PV4 over others, with rankings placing it in the 
first and second positions across different MCDM methods. 
Consequently, selecting PV4 with specific conditions was 
identified as the most suitable choice for the proposed AHESS, 
offering a favorable LCOE of 0.032 and NPC of 19801$.  

Future work is to find the optimal configurations for 
AHESS, potentially integrating an air compressor storage 
system with PV, including more criteria, such as technical as 
well as costs and reliability criteria to determine the optimal 
configuration of components. 
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NOMENCLATURE 

Acronyms 

LPSP loss power supply probability 
NPC net present cost 
LCOE levelized cost of energy 
MCDM multi criteria decision maker 
F-SVNS F- single value neutrosophic logic
LST-MM linear scale transformation, max method

TOPSIS technique for order preference by similarity
to ideal solution

ARAS additive ratio assessment
SCSS suppercondenser storage system
BESS battery energy storage system
FESS flywheel energy storage system
EDLC electric double-layer capacitor
RC replacement cost
PWM pulse width modulation
AHESS autonomous hybrid energy storage system
GAO genetic algorithm optimization
AHP analytic hierarchy process
ANP analytic network process
RE renewable energy
RES renewable energy source
PV photovoltaic
PWM pulse width modulation
ANP analytic network process

DEMATEL decision-making trial and evaluation 
laboratory  

WT wind turbine 
HSS hydrogen storage system 
I current  
DT discharging time  
Q energy capacity 
ESS energy storage system 
DG deasil generator  
FC fuel cell 
SDM single diode method 
DDM double diode methods 
UPS uninterruptible power supplies 
EDLC electric double-layer capacitor 
O&M operation and maintance 
ELECTRE elimination and choice translating reality 
STC standard test condition 
SoC state of charge  

HOMER hybrid optimization of multiple energy 
resources 

STC standard test condition 
AC alternative current 
DC direct current 

Symbols 

IL Diode current 
Io Reverse saturation current 
a Modified ideality current 
Rs Series resistance 
Rsh Shunt resistance 
C Total annualized cost 
Plifetime Project lifetime 
CSC Supercapacitor energy capacitance 
𝑊𝑊𝐵𝐵 Battery-rated capacity 
𝑃𝑃𝐶𝐶ℎ 𝑎𝑎 Constant charging power 
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𝑌𝑌𝑃𝑃𝑃𝑃−𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟  Rated power 
𝐻𝐻𝑇𝑇  Incident solar radiation 
𝐻𝐻𝑆𝑆 Constant (1kW/m2 STC) 
𝐾𝐾𝑃𝑃𝑃𝑃 Temperature coefficient 
𝑇𝑇𝑇𝑇 PV cell temperature 
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟  Constant STC (25℃) 
𝑄𝑄(𝑡𝑡) BESS current capacity 
𝑄𝑄𝑛𝑛 BESS nominal capacity 
𝑇𝑇𝐵𝐵𝐶𝐶ℎ𝑟𝑟 BESS charging time 
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑟𝑟𝑖𝑖 Initial SoC 
𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑛𝑛𝑟𝑟  Finished SoC 
𝑃𝑃𝐶𝐶ℎ 𝑎𝑎 Constant charging power 
𝐸𝐸𝑠𝑠𝑠𝑠  Energy requirement 
Va SCSS max. operating voltage 
Vb SCSS min. operating voltage 
C Total annualized cost 
i Real interest rate per annual 
Plifetime Project lifetime 
𝑉𝑉𝑃𝑃𝑃𝑃 Voltage output 
k Duty cycle 
f Switching frequency 
L Inductance 
𝑥𝑥𝑖𝑖𝑖𝑖  Performance of the Alternative value 
𝑅𝑅𝑖𝑖𝑖𝑖 Beneficial criteria 
𝑅𝑅𝑖𝑖𝑖𝑖∗  Non- beneficial criteria 
𝐵𝐵𝐾𝐾 Alternative weight 
T*max Truth max value 
I* min  Indeterminacy min value 
F* min  Falsity min value 
𝑥𝑥𝑖𝑖𝑖𝑖  Decision matrix 
𝑥𝑥�𝑖𝑖𝑖𝑖  Weight of normalized matrix 
𝑆𝑆0 Optimal value 

𝐾𝐾𝑖𝑖 Relative efficiency 
𝐾𝐾𝑖𝑖  Weight 
𝑥𝑥𝑖𝑖𝑏𝑏 Best alternatives of criterion. 
𝑥𝑥𝑖𝑖𝑤𝑤 Worst alternatives of criterion. 
𝑑𝑑𝑖𝑖𝑏𝑏 Separating distance of 𝑥𝑥𝑖𝑖𝑏𝑏 
𝑑𝑑𝑖𝑖𝑤𝑤 Separating distance of 𝑥𝑥𝑖𝑖𝑤𝑤 
𝑆𝑆𝑖𝑖 Optimal solution 
𝐵𝐵𝐵𝐵𝐼𝐼𝑆𝑆 Benefit attribute ideal solution 
TS Truth-membership function 
IS Indeterminacy-membership function 
FS Falsity-membership function 
Q1 and Q2 Transistor Switches 
PL Power Load 
Pbus  Power Bus 
Vref  Reference voltage 
VBUS Bus Voltage 
IB BESS current 
Iref Reference current 
PI Proportional Integration 
S1 - Sʹ1 BESS bidirectional converter switches 
S2 - Sʹ2 FESS bidirectional converter switches 
S3 - Sʹ3 SCSS bidirectional converter switches 

Greek symbols 

Ω Ohm 
𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛  Minimum velocity 
𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚  Maximum velocity 
∆𝐼𝐼𝐿𝐿 Ripple current 
Ʃ Summing 
𝛼𝛼𝑖𝑖𝑖𝑖 Normalize evaluation matrix 
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