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In this paper, two distinct strategies were used to enhance problem-solving abilities. The 

first strategy involved developing a conjugate gradient algorithm in which several new 

parameters were derived and proposed. The second strategy included hybridizing the dwarf 

mongoose optimization (DMO) algorithm in two ways, the first using the community by 

taking advantage of the developed conjugate gradient algorithm that was extracted from 

the first strategy and obtaining the hybrid algorithm (CG-DMO) that gives better results 

than the results of the original algorithm. The second method is to combine the sand cat 

swarm optimization algorithm (SCSO) and the dwarf mongoose optimization algorithm 

(DMO), and a hybrid algorithm (SCSO-DMO) is obtained. The dwarf mongoose 

optimization (DMO) algorithm uses three mongoose social groups: the alpha group, the 

scout group, and the babysitter group to replicate their foraging behavior. The Alpha group 

underwent hybridization, using the attack method of sand cats, known for their keen 

hearing of low-frequency sounds and their adeptness at detecting prey by digging. This 

hybrid approach led to the development of an equation for identifying candidate food sites 

within the alpha group. The proposed algorithms (CG-DMO) and (SCSO-DMO) 

underwent extensive testing on standard test functions, resulting in superior results 

compared to the original algorithm. 
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1. INTRODUCTION

The great difference between living organisms in trying to 

survive in nature, searching for food, attacking, or hiding, has 

prompted many scientists to create mathematical models 

(algorithms) that simulate the social behavior of these living 

organisms. These models have become a major role in solving 

optimization problems, but due to the rapid development in 

various fields, individual algorithms have become It does not 

always lead to optimal solutions, so it becomes necessary to 

combine algorithms and obtain a better mathematical model. 

In the realm of solving optimization problems, 

methodologies are typically categorized into two primary 

types: deterministic algorithms and stochastic algorithms [1]. 

Within classical algorithmic frameworks, deterministic 

strategies have historically held precedence. However, in the 

realm of stochastic algorithms, two distinct sub-types emerge: 

heuristic and meta-heuristic algorithms [2]. Heuristic 

algorithms are grounded in a straightforward trial-and-error 

methodology. On the other hand, meta-heuristic algorithms 

commence with a diverse set of initial solutions, which are 

progressively refined through iterations. This approach is 

exemplified in various algorithms such as the particle swarm 

[3], gray wolf [4], bee colony [5], and genetic algorithms [6]. 

Nature's mechanisms have profoundly influenced the 

development of many meta-heuristic algorithms. Researchers 

have harnessed natural processes to create algorithms capable 

of solving complex problems across  Various domains, 

including but not limited to the traveling salesman problem 

and optimal control, and medical image processing [7-10]. The 

efficacy of these nature-inspired algorithms stems from their 

capacity to replicate the most efficient characteristics observed 

in natural phenomena.  An example of such innovation is the 

Dwarf Mongoose Optimization (DMO) algorithm, a meta-

heuristic technique inspired by the foraging patterns observed 

in dwarf mongooses. This algorithm incorporates three 

primary social groups found within mongoose communities: 

the alpha group, the babysitter group, and the scout group to 

mimic their natural foraging strategies.  Dwarf mongooses 

exhibit specialized behavioral adaptations for effective 

feeding, including strategies related to prey size, spatial 

utilization, group dynamics, and food distribution. The 

algorithm models this by having the alpha female lead the 

group, while a subset of the population, the babysitters, cares 

for the young during foraging. These babysitters are 

dynamically replaced as the algorithm progresses. Unlike their 

real-life counterparts, which don't use permanent nests and 

frequently change their foraging locations, the algorithm 

adapts these behaviors into its operational framework [11]. 

The work that we did was to hybridize the Dwarf Mongoose 

Optimization (DMO) algorithm using two algorithms, 

Specifically the Formulated conjugate gradient algorithm that 
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was derived in the first part of this paper, which is a Progress 

to the initial population of the (DMO) and obtained the (CG-

DMO) algorithm. The second hybridization was by merging 

the Dwarf Mongoose Optimization (DMO) algorithm with the 

Sand Cat Swarm Optimization (SCSO) algorithm to develop 

the hybrid SCSO-DMO algorithm. The SCSO algorithm a 

meta-heuristic technique, draws inspiration from the survival 

instincts observed in sand cats, particularly their ability to 

detect low-frequency sounds under 2 kilohertz and their 

exceptional digging skills for hunting prey [12, 13]. The newly 

formulated SCSO-DMO algorithm has demonstrated its 

effectiveness in solving complex optimization problems. 

Empirical results have shown its ability to achieve optimal 

solutions, as evidenced by its performance on five global test 

functions, consistently reaching the optimal solution, which is 

zero . 

The paper follows a structured framework outlined as 

follows: Section 2 developed conjugate gradient algorithm. 

Section 3 introduces the sand cat swarm optimization (SCSO) 

algorithm. Section 4 presents the dwarf mongoose 

optimization (DMO) algorithm.  Section 5 presents the 

proposed algorithms (CG-DMO) and (SCSO-DMO). Section 

6 provides conclusions drawn from the study.  

 

 

2. DEVELOPED CONJUGATE GRADIENT 

ALGORITHM 

 

It is one of the mathematical methods used to solve 

problems of finding the minimum or maximum of functions. 

This method is usually used in problems searching for 

solutions to systems of linear equations or improving 

performance in numerical research problems. The conjugate 

gradient method is based on the use of conjugate directives to 

quickly optimize the function being optimized. Instead of 

using traditional regression directions, the conjugate gradient 

method uses directions that are interconnected with each other. 

You start moving towards the initial downhill direction. A 

conjugate direction of progress is then determined based on 

the previous step and the interconnected trends. This process 

is repeated until the solutions improve simultaneously in the 

directions of all regressions. 

 

Definition 1: The optimization [14] 

It means finding the best solution to the given problem, and 

finding the minimum or maximum value of a function 

consisting of n variables, where n can be any integer greater 

than zero. 

                                    

Definition 2: Global and local minimum [14] 

A- The global minimum value: represents the lowest value 

of the function in the entire research field. 

B- Local minimum value: represents the lowest value of the 

function in specific locations within the search field. 

Algorithms that trend toward a global minimum are known as 

globally convergent algorithms, while algorithms that trend 

toward a local minimum are known as locally convergent 

algorithms.  

 

2.1 Derivation of new conjugation coefficients 

 

In three term conjugates gradient direction  Babaie-Kafaki 

and Ghanbari [15] proposed a new value of 𝑡∗as follow: 

𝑡∗ =
‖𝑦𝑘‖

‖𝑠𝑘‖
+

𝑠𝑘
𝑇 𝑦𝑘

‖𝑠𝑘‖
2
 

 

Ibrahim and Shareef [16] proposed another value of 𝑡 as 

follow: 

 

𝑡𝑘 = 𝛾 
‖𝑦𝑘‖

‖𝑠𝑘‖
+ (1 − 𝛾)

𝑠𝑘
𝑇 𝑦𝑘

‖𝑠𝑘‖
2
, where 𝛾 ∈ (0,1) 

 

Here, we drive a new conjugacy coefficient with a new 

value of 𝑡 as [16, 17]: 

 

𝛼𝑘 = 𝑡𝑘 = 
(𝑠𝑘

𝑇𝑔𝑘/2)2

(𝑓𝑘+1 − 𝑓𝑘)
2
 

 

𝑑𝑘+1
𝐶𝐺3 = −𝑔𝑘+1 + 𝛽𝑘  𝑑𝑘 − 𝑡𝑘 ( 

𝑔𝑘+1
𝑇   𝑑𝑘

𝑑𝑘
𝑇 𝑦𝑘

) 𝑦𝑘  

 

Let 𝑑𝑘+1
𝐶𝐺2 = 𝑑𝑘+1

𝐶𝐺3  

 

−𝑔𝑘+1 + 𝛽𝑘
𝑁𝑒𝑤  𝑑𝑘 = −𝑔𝑘+1 + 𝛽𝑘  𝑑𝑘 − 𝑡𝑘( 

𝑔𝑘+1
𝑇   𝑑𝑘

𝑑𝑘
𝑇 𝑦𝑘

) 𝑦𝑘  

 

Multiply both sides of the above equation by  𝑦𝑘
𝑇  we get: 

 

− 𝑦𝑘
𝑇 𝑔𝑘+1 + 𝛽𝑘

𝑁𝑒𝑤  𝑦𝑘
𝑇 𝑑𝑘 = − 𝑦𝑘

𝑇 𝑔𝑘+1 

+ 𝛽𝑘  𝑦𝑘
𝑇  𝑑𝑘 − 𝑡𝑘 ( 

𝑔𝑘+1
𝑇  𝑑𝑘

𝑑𝑘
𝑇 𝑦𝑘

) ‖𝑦𝑘‖2  

 

𝛽𝑘
𝑁𝑒𝑤 = 𝛽𝑘 − 𝑡𝑘 ( 

𝑔𝑘+1
𝑇   𝑑𝑘

(𝑑𝑘
𝑇 𝑦𝑘)

2
) ‖𝑦𝑘‖2 (1) 

 

where, 𝑡𝑘 =
(𝑠𝑘

𝑇𝑔𝑘/2)2

(𝑓𝑘+1 − 𝑓𝑘)
2

> 0 

 

From Ibrahim and Shareef [16], 

 

The first case: If 𝛽𝑘 = 𝛽𝐻𝑆 =
𝑔𝑘+1

𝑇  𝑦𝑘 

𝑑𝑘
𝑇 𝑦𝑘

 then Eq. (1) become: 

 

𝛽𝑘
𝑁𝑒𝑤1  =

𝑔𝑘+1
𝑇   𝑦𝑘  

𝑑𝑘
𝑇 𝑦𝑘

 − 𝑡𝑘 ( 
𝑔𝑘+1

𝑇  𝑑𝑘

(𝑑𝑘
𝑇 𝑦𝑘)2

) ‖𝑦𝑘‖
2 

 

The second case: If 𝛽𝑘 = 𝛽𝐹𝑅 =
‖𝑔𝑘+1‖2

‖𝑔𝑘‖2  then Eq. (1) 

become: 

 

𝛽𝑘
𝑁𝑒𝑤2  =

‖𝑔𝑘+1‖
2

‖𝑔𝑘‖
2

 − 𝑡𝑘 ( 
𝑔𝑘+1

𝑇   𝑑𝑘

(𝑑𝑘
𝑇 𝑦𝑘)

2
) ‖𝑦𝑘‖2 

 

The third case: If 𝛽𝑘 = 𝛽𝑃𝑅 =
𝑔𝑘+1

𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

 then Eq. (1) become: 

 

𝛽𝑘
𝑁𝑒𝑤3 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

− 𝑡𝑘 ( 
𝑔𝑘+1

𝑇  𝑑𝑘

(𝑑𝑘
𝑇 𝑦𝑘)2

) ‖𝑦𝑘‖
2 

 

2.2 Convergence analysis of the new conjugate vector 

method  

 

In this section, we will show that the proposed algorithm 

that has been identified achieves the property of sufficient 
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regression that satisfies the property of convergence . 

Assumption (1):  If f is bounded on the set 𝑠 = {𝑥 ∈
𝑅𝑛: 𝑓(𝑥) ≤ 𝑓(𝑥0)}  and is differentiable with the gradient ∇𝑓 

and there is a Lipchitz Constant 𝐿 > 0, then 

 

‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖ < 𝐿‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝑠. 

 

Theorem (1): The search direction 𝑑𝑘  generated by the 

proposed algorithm of the developed CG achieves the property 

of sufficient steepness for each k, when the step size 𝜆𝑘 

satisfies Wolfe conditions. 

Proof: Using the principle of mathematical induction. 

When k=0, 𝑑0 = −𝑔0 ⟹ 𝑑0
𝑇𝑔0 = −‖𝑔𝑘‖

2 < 0  then the 

theorem is true. 

Now we assume that the theorem is true for all values of 

𝑘 ≥ 0, i.e 

 

𝑔𝑘
𝑇𝑑𝑘 < 0, 𝑔𝑘

𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖
2, 𝑐 > 0 

 

We will now explain that the theorem is true when k+1 . 

 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 (2) 

 

By multiplying both sides of Eq. (2) above by 𝑔𝑘+1
𝑇  we get: 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 + 𝛽𝑘  𝑔𝑘+1
𝑇 𝑑𝑘 (3) 

 

The first case: If 𝛽𝑘 = 𝛽𝑘
𝑁𝑒𝑤1 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 + 𝛽𝑘
𝑁𝑒𝑤1 𝑔𝑘+1

𝑇 𝑑𝑘 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 

+ [
𝑔𝑘+1

𝑇  𝑦𝑘  

𝑑𝑘
𝑇 𝑦𝑘

 − 𝑡𝑘 ( 
𝑔𝑘+1

𝑇  𝑑𝑘

(𝑑𝑘
𝑇 𝑦𝑘)2

) ‖𝑦𝑘‖
2] 𝑔𝑘+1

𝑇 𝑑𝑘 
(4) 

 

From Wolff's second strong condition, as shown in Eq. (5) 

below: 

 

𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇 𝑑𝑘 ≤ −𝜎 𝑔𝑘

𝑇𝑑𝑘   
⟹ 𝑔𝑘+1

𝑇  𝑑𝑘 ≤ −𝜎 𝑔𝑘
𝑇𝑑𝑘 

(5) 

 

It is known that 

 

𝑔𝑘+1
𝑇  𝑦𝑘 = 𝑔𝑘+1

𝑇 (𝑔𝑘+1 − 𝑔𝑘)‖𝑔𝑘+1‖
2 − 𝑔𝑘+1

𝑇  𝑔𝑘  
 

Taking advantage of one direction of Powell's recovery 

condition, as shown in Eq. (6): 

 

𝑔𝑘+1
𝑇  𝑦𝑘 ≤ ‖𝑔𝑘+1‖

2 + 0.2 ‖𝑔𝑘+1‖
2 = 1.2 ‖𝑔𝑘+1‖

2 (6) 

 

From Wolff's strong condition we get the following Eq. (7): 

 

−(1 − 𝜎)𝑔𝑘
𝑇𝑑𝑘 ≤ 𝑦𝑘

𝑇  𝑑𝑘 ≤ −(1 + 𝜎)𝑔𝑘
𝑇𝑑𝑘 (7) 

 

Substituting Eqs. (5), (6) and (7) into Eq. (4) results in: 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖

2 

+
𝑐𝜎 ‖𝑔𝑘‖

2

𝑑𝑘
𝑇 𝑦𝑘

[1.2 ‖𝑔𝑘+1‖
2 − 𝑡𝑘  

𝑐𝜎 ‖𝑔𝑘‖
2

𝑑𝑘
𝑇 𝑦𝑘

. ‖𝑦𝑘‖2] 

 

Since 𝑑𝑘
𝑇 𝑦𝑘 > 0,  𝑐 > 0 , 0.5 < 𝜎 < 1 , therefore the part 

is 𝑊 =
𝑐𝜎 ‖𝑔𝑘‖2

𝑑𝑘
𝑇 𝑦𝑘

> 0. This leads to 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖

2 + 1.2𝑊 ‖𝑔𝑘+1‖
2 −𝑡𝑘  𝑊

2. ‖𝑦𝑘‖
2 

 

Since 𝑡𝑘 > 0, 𝑡𝑘 𝑊
2. ‖𝑦𝑘‖2 > 0, this leads to 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −(1 − 1.2𝑊) ‖𝑔𝑘+1‖

2 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ − Ω1‖𝑔𝑘+1‖

2 

 

where, Ω1 = 1 − 1.2𝑊,when 1 − 1.2𝑊 > 0. 
 

The second case: If 𝛽𝑘 = 𝛽𝑘
𝑁𝑒𝑤2 in Eq. (3), we get: 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 + 𝛽𝑘
𝑁𝑒𝑤2 𝑔𝑘+1

𝑇 𝑑𝑘 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 

+[
‖𝑔𝑘+1‖

2

‖𝑔𝑘‖
2

− 𝑡𝑘 ( 
𝑔𝑘+1

𝑇  𝑑𝑘

(𝑑𝑘
𝑇 𝑦𝑘)2

) ‖𝑦𝑘‖
2] 𝑔𝑘+1

𝑇 𝑑𝑘 
(8) 

 

Substituting Eq. (5) into Eq. (8) we get: 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖

2 

+[
‖𝑔𝑘+1‖

2

‖𝑔𝑘‖
2

 − 𝑡𝑘 ( 
𝑐𝜎 ‖𝑔𝑘‖

2

(𝑑𝑘
𝑇 𝑦𝑘)2

) ‖𝑦𝑘‖
2] (𝑐𝜎 ‖𝑔𝑘‖

2) 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 

+𝑐𝜎 ‖𝑔𝑘+1‖
2 − 𝑡𝑘 ( 

𝑐2𝜎2 ‖𝑔𝑘‖
4

(𝑑𝑘
𝑇  𝑦𝑘)2

) ‖𝑦𝑘‖
2 

 

Since 𝑡𝑘 > 0 , 𝑡𝑘 ( 
𝑐2𝜎2 ‖𝑔𝑘‖4

(𝑑𝑘
𝑇 𝑦𝑘)

2 ) ‖𝑦𝑘‖2 > 0. This leads to 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −(1 − 𝑐𝜎 ) ‖𝑔𝑘+1‖

2 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −Ω2‖𝑔𝑘+1‖

2 

 

where, Ω2 = 1 − 𝑐𝜎,when 1 − 𝑐𝜎 > 0, 𝑐 > 0, 0.5 < 𝜎 <
1. 

 

The third case: If 𝛽𝑘 = 𝛽𝑘
𝑁𝑒𝑤3 in Eq. (3) we get: 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 + 𝛽𝑘
𝑁𝑒𝑤3 𝑔𝑘+1

𝑇 𝑑𝑘 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 

+[
𝑔𝑘+1

𝑇 𝑦𝑘

‖𝑔𝑘‖
2

− 𝑡𝑘 ( 
𝑔𝑘+1

𝑇  𝑑𝑘

(𝑑𝑘
𝑇 𝑦𝑘)

2
) ‖𝑦𝑘‖2] 𝑔𝑘+1

𝑇 𝑑𝑘  
(9) 

 

Substituting Eqs. (5) and (6) into Eq. (9) we get: 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖

2 

+ [
1.2 ‖𝑔𝑘+1‖

2

‖𝑔𝑘‖
2

 − 𝑡𝑘 ( 
𝑐𝜎 ‖𝑔𝑘‖

2

(𝑑𝑘
𝑇 𝑦𝑘)2

) ‖𝑦𝑘‖
2] (𝑐𝜎 ‖𝑔𝑘‖

2) 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2  + 1.2 𝑐𝜎 ‖𝑔𝑘+1‖
2

− 𝑡𝑘 ( 
𝑐2𝜎2 ‖𝑔𝑘‖

4

(𝑑𝑘
𝑇 𝑦𝑘)

2
) ‖𝑦𝑘‖

2 

 

Since 𝑡𝑘 > 0, 𝑡𝑘 ( 
𝑐2𝜎2 ‖𝑔𝑘‖4

(𝑑𝑘
𝑇 𝑦𝑘)

2 ) ‖𝑦𝑘‖
2 > 0. This leads to 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −(1 − 1.2 𝑐𝜎) ‖𝑔𝑘+1‖

2 
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𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −Ω3‖𝑔𝑘+1‖

2,  
 

where, Ω3 = 1 − 1.2 𝑐𝜎,when 1 − 1.2 𝑐𝜎 > 0, 𝑐 > 0, 

0.5 < 𝜎 < 1 

 

2.3 Comprehensive convergence analysis of the proposed 

algorithm 

 

Lemma (1): Suppose that Assumption (1)  is fulfilled and 

that the conjugate gradient method is fulfilled, since 𝑑𝑘 is a 

slope search direction, and ∝𝑘  is generated from the strong 

Wolff conditions (SWP) if  ∑
1

‖𝑑𝑘+1‖2
∞
𝐾=1 = ∞  then 

lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. 

Theorem (2): Suppose that Assumption (1) is fulfilled and 

that the proposed conjugate gradient method is fulfilled in the 

direction of the search slope 𝑑𝑘, and that the step length ∝𝑘 is 

generated from the conditions (SWP) then lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. 

Proof: Using Lemma (1), and since the algorithm fulfills 

theorem (1), and if 𝑔𝑘+1 ≠ 0, then we must prove that ‖𝑑𝑘+1‖ 

is constrained from above, we take ‖. ‖ for both sides of the 

Eq. (2), we get 

 
‖𝑑𝑘+1‖ = ‖−𝑔𝑘+1 + 𝛽𝑘  𝑑𝑘‖ 

 

⇒ ‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + |𝛽𝑘  |‖𝑑𝑘‖ (10) 

 

The first case: If 𝛽𝑘 = 𝛽𝑘
𝑁𝑒𝑤1 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤1‖ ≤ ‖𝑔𝑘+1‖ + |𝛽𝑘

𝑁𝑒𝑤1 |‖𝑑𝑘‖ 

 

|𝛽𝑘
𝑁𝑒𝑤1| = |

1

𝑑𝑘
𝑇 𝑦𝑘

[ 𝑔𝑘+1
𝑇  𝑦𝑘  − 𝑡𝑘 ( 

𝑔𝑘+1
𝑇  𝑑𝑘

𝑑𝑘
𝑇 𝑦𝑘

) ‖𝑦𝑘‖2 ]| 

 

Using Eqs. (5) and (6) we get the following 

 

|𝛽𝑘
𝑁𝑒𝑤1| ≤  |

1

𝑑𝑘
𝑇 𝑦𝑘

[ 1.2 ‖𝑔𝑘+1‖
2 − 𝑡𝑘  

−𝜎 𝑔𝑘
𝑇𝑑𝑘

𝑑𝑘
𝑇 𝑦𝑘

 . ‖𝑦𝑘‖
2 ]|  

⇒ |𝛽𝑘
𝑁𝑒𝑤1| ≤ A1 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤1‖ ≤ ‖𝑔𝑘+1‖ + A1‖𝑑𝑘‖ 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤1‖ ≤ 𝑇1  + A1 U1 ≤ M1 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤1‖ ≤ M1 ⇒

1

‖𝑑𝑘+1
𝑁𝑒𝑤1‖

≥
1

M1

 

 

⇒ ∑
1

‖𝑑𝑘+1
𝑁𝑒𝑤1‖2

≥ ∑
1

M1
2

∞

𝑘=1

∞

𝒌=𝟏

=
1

M1
2 ∑ 1

∞

𝑘=1

= +∞ 

 

According to Lemma (1), this leads to  

 

lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0 

 

The second case: If 𝛽𝑘 = 𝛽𝑘
𝑁𝑒𝑤2 in Eq. (10) we get: 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤2‖ ≤ ‖𝑔𝑘+1‖ + |𝛽𝑘

𝑁𝑒𝑤2 |‖𝑑𝑘‖ 

 

|𝛽𝑘
𝑁𝑒𝑤2| = |

‖𝑔𝑘+1‖
2

‖𝑔𝑘‖
2

 − 𝑡𝑘 ( 
𝑔𝑘+1

𝑇  𝑑𝑘

(𝑑𝑘
𝑇  𝑦𝑘)2

) ‖𝑦𝑘‖
2| 

 

Using Eq. (5) we get the following 

 

|𝛽𝑘
𝑁𝑒𝑤2| ≤  |

‖𝑔𝑘+1‖
2

‖𝑔𝑘‖
2

 − 𝑡𝑘 ( 
𝑐𝜎 ‖𝑔𝑘‖

2

(𝑑𝑘
𝑇 𝑦𝑘)2

) ‖𝑦𝑘‖
2|  

⇒ |𝛽𝑘
𝑁𝑒𝑤2| ≤ A2 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤2‖ ≤ ‖𝑔𝑘+1‖ + A2‖𝑑𝑘‖ 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤2‖ ≤ 𝑇2  + A2 U2  ≤ M2 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤2‖ ≤ M2 ⇒

1

‖𝑑𝑘+1
𝑁𝑒𝑤2‖

≥
1

M2

 

 

⇒ ∑
1

‖𝑑𝑘+1
𝑁𝑒𝑤2‖2

≥ ∑
1

M2
2

∞

𝑘=1

∞

𝒌=𝟏

=
1

M2
2 ∑ 1

∞

𝑘=1

= +∞ 

 

According to Lemma (1), this leads to 

 

lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0 

 

The third case: If 𝛽𝑘 = 𝛽𝑘
𝑁𝑒𝑤3 in Eq. (10) we get: 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤3‖ ≤ ‖𝑔𝑘+1‖ + |𝛽𝑘

𝑁𝑒𝑤3 |‖𝑑𝑘‖ 

 

|𝛽𝑘
𝑁𝑒𝑤3| = |

𝑔𝑘+1
𝑇 𝑦𝑘

𝑔𝑘
𝑇𝑔𝑘

 − 𝑡𝑘 ( 
𝑔𝑘+1

𝑇  𝑑𝑘

(𝑑𝑘
𝑇 𝑦𝑘)

2
) ‖𝑦𝑘‖2| 

 

Using Eqs. (5) and (6) we get the following 

 

|𝛽𝑘
𝑁𝑒𝑤3| ≤ |

1.2 ‖𝑔𝑘+1‖
2

‖𝑔𝑘‖
2

− 𝑡𝑘 ( 
𝑐𝜎 ‖𝑔𝑘‖

2

(𝑑𝑘
𝑇 𝑦𝑘)

2
) ‖𝑦𝑘‖2|  

⇒ |𝛽𝑘
𝑁𝑒𝑤3| ≤ A3 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤3‖ ≤ ‖𝑔𝑘+1‖ + A3‖𝑑𝑘‖ 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤3‖ ≤ 𝑇3 + A3 U3 ≤ M3 

 

⇒ ‖𝑑𝑘+1
𝑁𝑒𝑤3‖ ≤ M3 ⇒

1

‖𝑑𝑘+1
𝑁𝑒𝑤3‖

≥
1

M3

 

 

⇒ ∑
1

‖𝑑𝑘+1
𝑁𝑒𝑤3‖2

≥ ∑
1

M3
2

∞

𝑘=1

∞

𝒌=𝟏

=
1

M3
2 ∑ 1

∞

𝑘=1

= +∞ 

 

According to Lemma (1), this leads to  

 

lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0 

 

 

3. SAND CAT SWARM OPTIMIZATION (SCSO) 

ALGORITHM 
 

Sand cats, belonging to the family of mammals, thrive in 

harsh desert environments such as the Arabian Peninsula, 

Central Asia, and the African Sahara. Their ability to endure 

high temperatures is facilitated by dense fur covering the soles 

of their feet, providing insulation against extreme desert 

conditions. Moreover, the unique properties of their fur make 

detection and tracking processes challenging. 

Sand cats typically have a body length ranging from 45 to 

57 cm, with a tail length of approximately 28 to 35 cm, and an 
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adult weight ranging from 1 to 3.5 kg. The ears of the sand cat 

play a crucial role in prey detection and tracking processes. 

The nocturnal, subterranean, and speedy nature of these cats 

makes them distinctive, which is why sand cats reveal that 

their prey (insects and rodents) moves under the ground, 

Figure 1 shows sand cats in their natural habitat [18, 19]. 

 

 
 

Figure 1. Sand cats in their natural habitat, depicted in 

various activities including living, searching, and hunting 

 

3.1 Mathematical model for SCSO 

 

The Sand Cat Swarm Optimization (SCSO) algorithm 

draws its inspiration from the unique hunting technique of 

sand cats, which relies on detecting low-frequency sounds. 

This aspect is integrated into the SCSO algorithm by assigning 

a sensitivity range to each virtual 'cat', enabling them to detect 

frequencies below 2 kilohertz. The algorithm is designed to 

decrease this detection threshold, 𝑟𝐺
→, linearly from 2 kilohertz 

to zero as the algorithm progresses through its iterations. 

To simulate the exploratory behavior of sand cats, the SCSO 

algorithm begins with a randomly initialized search space. 

Each virtual cat in the algorithm is assigned a random initial 

position, emulating the way sand cats explore new territories 

in their natural habitat. This approach allows the algorithm to 

cover a wide and varied search area, enhancing its ability to 

discover optimal solutions [10]. In this way, cats can explore 

new areas as described in the equations below [13]: 

 

𝑟𝐺
→ = 𝑆𝑚 − (

2 ∗ 𝑆𝑚 ∗ 𝑖𝑡𝑒𝑟𝑐
𝑖𝑡𝑒𝑟𝑚𝑎𝑥  𝑖𝑡𝑒𝑟𝑚𝑎𝑥

 ) (11) 

 

𝑅→ = 2 ∗ 𝑟𝐺
→ ∗ 𝑟𝑎𝑛𝑑(0,1) − 𝑟𝐺

→ (12) 

 

𝑟→ = 𝑟𝐺
→ ∗ 𝑟𝑎𝑛𝑑(0,1) (13) 

 

𝑅→  is the carrier responsible for the conversions and 

depends on the general sensitivity range 𝑟𝐺
→. The locations of 

the sand cats are updated based on the best candidate location 

( 𝑝𝑜𝑠𝑏𝑐
→ ) obtained so far  and its sensitivity range 𝑟→. Eq. (14) 

represents the exploration phase. 

 

𝑝𝑜𝑠→(𝑖 + 1) = 𝑟→. ( 𝑝𝑜𝑠𝑏𝑐
→ (𝑖) − 𝑟𝑎𝑛𝑑(0,1)

∗ 𝑝𝑜𝑠𝑐
→(𝑖)) 

(14) 

 

𝑝𝑜𝑠𝑟𝑎𝑑
→ = |𝑟𝑎𝑛𝑑(0,1) ∗ 𝑝𝑜𝑠𝑏

→(𝑖) − 𝑝𝑜𝑠𝑐
→(𝑖)| (15) 

 

𝑝𝑜𝑠→(𝑖 + 1) = 𝑝𝑜𝑠𝑏
→(𝑖) − 𝑟→ ∗ 𝑝𝑜𝑠𝑟𝑎𝑑

→ ∗ cos(𝜃) (16) 

 

During the exploitation phase of the Sand Cat Swarm 

Optimization (SCSO) algorithm, the methodology for 

updating the position of each agent 'cat' is based on calculating 

the distance between the optimal position (𝑝𝑜𝑠𝑏
→)  and its 

current position (𝑝𝑜𝑠𝑐
→) . This process is visualized as 

navigating the periphery of a circle. Key to this phase is the 

implementation of a random angle 𝜃 , which dictates the 

direction of each cat's movement. The angle is randomly 

chosen within a full circular range, translating to values 

between 0 and 360 degrees. This is mathematically 

represented as a range between -1 and 1, ensuring 

comprehensive coverage of all possible movement directions 

on the circle.  

To enhance the algorithm's efficiency and avoid getting 

local solution, the SCSO utilizes the roulette wheel selection 

algorithm. This approach randomly selects an angle 𝜃, thereby 

diversifying the search and exploration paths of each agent.  

The incorporation of this random angle in Eq. (15) is crucial. 

It significantly influences the approach and direction of each 

individual in the population towards the target (hunting). Eq. 

(16) then provides the formula for updating the position of 

each cat in this phase, reflecting their movement towards the 

optimal point while considering the randomized directional 

input. This approach effectively balances the exploration and 

exploitation capabilities of the algorithm, thereby enhancing 

its overall effectiveness in discovering optimal solutions. 

 

3.2 Algorithm for SCSO 

 

1-Start and Set maximum iteration count. 

2-Evaluate the fitness function of the objective function. 

3-Initialization of variables: 𝑟→, 𝑟𝐺
→ , R. 

4-While ( 𝑖 ≤ maximum iteration) 

5-For each search agent 

6-Generate a random angle based on the roulette wheel 

selection.  

7-IF (|𝑅 ≤ 1|) then 

8-Update the search agent's position using Eq. (16):  

𝑝𝑜𝑠𝑏
→(𝑖) − 𝑟→ ∗ 𝑝𝑜𝑠𝑟𝑎𝑑

→ ∗ cos(𝜃) 

9-Else 

10-Update the search agent's position using Eq. (14): 

𝑟→. ( 𝑝𝑜𝑠𝑏𝑐
→ (𝑖) − 𝑟𝑎𝑛𝑑(0,1) ∗ 𝑝𝑜𝑠𝑐

→(𝑖)) 

11-End 

12-End 

13-Increment iteration count. 

14-End 

 

 
4. DWARF MONGOOSE OPTIMIZATION (DMO) 

ALGORITHM  

 

The habitat of the dwarf mongoose typically includes 

regions abundant in termite mounds, rocks, and hollow trees, 

providing ample shelter, particularly in semi-desert areas and 

savannah shrublands across Africa. Remarkably, the dwarf 

mongoose ranks among the smallest carnivorous animals 

known. Its body length is approximately 47 cm. The weight of 

an adult ferret is about 400 grams. Females outperform males 

and children outperform their older brothers. Division of labor 

and altruism are the highest recorded in mammals. The dwarf 

mongoose relies on a semi-nomadic lifestyle, covering a 

relatively long distance. Therefore, it detects hunting areas 

better without returning to its previous sleeping mound, so it 

does not exploit it well and does not exhaust all its prey. The 

group of dwarf mongooses operates cohesively during feeding, 

guided by the chirps emitted by the alpha female. The distance 

covered by a dwarf mongoose group is contingent upon factors 

such as the presence of offspring and the overall size of the 

group. Figure 2 shows The optimization procedures of the 

DMO. 
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Figure 2. The optimization procedures of the proposed DMO 

 

4.1 Mathematical model for DMO 
 

The initial population is randomly initialized within the 

search space defined by the upper bound (UB) and lower 

bound (LB) for the given optimization problem. This process 

is represented by Eq. (17). 
 

X =

[
 
 
 
x1,1

x1,2 … x1,d−1 x1,d

x2,1 x2,2
… x2,d−1 x2,d

⋮ ⋮ … ⋮ ⋮
xn,1 xn,2

… xn,d−1 xn,d]
 
 
 

 (17) 

 

 

The population of current candidates, denoted as X , is 

randomly generated using Eq. (18), where, xi,j represents the 

position of dimension (j) of the population (i), n refers to the 

size of the population, and d refers to the dimension of the 

problem. 

 

𝑥𝑖,𝑗 = 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(𝑉𝑎𝑟𝑚𝑖𝑛, 𝑉𝑎𝑟𝑚𝑎𝑥, 𝑉𝑎𝑟𝑠𝑖𝑧𝑒) (18) 

 

where, 𝑢𝑛𝑖𝑓𝑟𝑛𝑑  is a random number uniformly distributed 

between the lower and upper limits of the problem (𝑉𝑎𝑟𝑚𝑖𝑛, 

𝑉𝑎𝑟𝑚𝑎𝑥). 𝑉𝑎𝑟𝑠𝑖𝑧𝑒 is the dimension size of the problem. The 

social structure of the dwarf mongoose is segmented into three 

groups: the alpha group, the scouts, and the babysitters. Each 

group plays a role in contributing to compensatory behavioral 

conditioning, as outlined below. 

 

4.1.1 Alpha group 

After preparing the population, the fitness of each solution 

is evaluated by calculating the population fitness using Eq. 

(19). Subsequently, the alpha female (∝) is selected based on 

this probability. 

 

∝=
𝑓𝑖𝑡𝑖

∑  𝑓𝑖𝑡𝑖
𝑛
𝑖=1

 (19) 

 

To determine the position of the food candidate  (𝑥𝑖+1) , 

DMO uses Eq. (20). 

 

𝑥𝑖+1 = 𝑥𝑖 + 𝑝ℎ𝑖 ∗ 𝑝𝑒𝑒𝑝 (20) 

 

So that 𝑝ℎ𝑖  is a random number uniformly distributed 

between [-1,1]. The alpha female’s vocalization that keeps the 

family within a path is denoted by peep. The initial sleep stack 

is set to ∅ in which all the dwarf mongoose sleep. After each 

iteration, the sleep hill is calculated as shown in Eq. (21) . 

 

𝑠𝑚𝑖 =
𝑓𝑖𝑡𝑖+1 − 𝑓𝑖𝑡𝑖

𝑚𝑎𝑥 {|𝑓𝑖𝑡𝑖+1, 𝑓𝑖𝑡𝑖|}
 (21) 

 

The average value of the sleep hill is obtained using Eq. (22). 

∅𝑖 =
∑  𝑠𝑚𝑖

𝑛
𝑖=1

𝑛
 (22) 

 

4.1.2 Scouting group 

The dwarf mongoose optimization algorithm starts with the 

exploration phase, so that the scout group searches for the new 

sleeping pile, so that the mongoose does not visit the previous 

sleeping pile, which ensures the exploration process. This 

stage is to evaluate the success or failure in knowing where the 

next sleeping pile [20]. Eq. (23) simulates the scouting 

mongoose. 

 

𝑥𝑖+1 = 

{

𝑥𝑖 − 𝑐𝑓 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ [𝑥𝑖 − 𝑚𝑖] 𝑖𝑓 ∅𝑖+1 > ∅𝑖

𝑥𝑖 + 𝑐𝑓 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ [𝑥𝑖 − 𝑚𝑖] 𝑒𝑙𝑠𝑒 
 

(23) 

 

The variable rand represents a random number between 0 

and 1.  𝑐𝑓 = (1 −
𝑖𝑡𝑒𝑟

max _𝑖𝑡𝑒𝑟
)
(

2.𝑖𝑡𝑒𝑟

max _𝑖𝑡𝑒𝑟
)
 It denotes the parameter 

responsible for the collective voluntary movement of the ferret 

group, and it decreases linearly with iterations. The vector m 

determines the direction of movement of the mongoose 

towards the new sleeping pile. 

 

4.1.3 Babysitters group 

The care of the young within the group is typically assigned 

to lower-ranking members who take turns in this role. This 

arrangement permits the alpha female, often the mother, to 

guide the others in daily food-gathering activities. She 

typically revisits the young midday or during the evening to 

nurse them. The quantity of caregivers is influenced by the 

overall number of the group. This dynamic is factored into the 

population algorithm, adjusting the total count in accordance 

with a predetermined percentage. 

 

4.2 Algorithm for DMO 

 

1-Start 

2-Define algorithm parameters: [peep]. 

3-Create initial mongoose population (search agents): n. 

4-Set the initial number of caregivers: bs. 

5-Adjust the population: n = n - bs. 

6-Define the caregiver rotation threshold L. 

7-For 𝑖 =  1: maximum iteration. 

8-Assess mongoose fitness and start the time counter. 

9-Identify the alpha mongoose using Eq. (19). 

10-Generate a potential food location according to Eq. (20).   

11-Evaluate new fitness of 𝑥𝑖+1 . 

12-Determine the sleeping mound location with Eq. (21). 
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13-Calculate the average of the sleeping mound from Eq. (22). 

14-Formulate the movement vector,  𝑚 = ∑
𝑥𝑖 smi

𝑥𝑖

𝑛
𝑖=1 .  

15-Exchange babysitters if C > L and set. 

16-Initialize bs position and calculate fitness, 𝑓𝑖𝑡𝑖 ≤∝. 

17-Simulate the scout mongoose next position using Eq. (23). 

18-Update best solution so far 

19-End of Iteration Loop 

20-Output Best Solution 

21-End of Algorithm 

 

 

5. HYBRID THE DWARF MONGOOSE 

OPTIMIZATION (DMO)  
 

Metaheuristic algorithms are a modern and innovative 

approach to artificial intelligence. Swarm-based algorithms 

are an effective tool for solving complex problems and 

achieving common goals through continuous interaction and 

collaboration among individual and members.  

In this section, the two proposed algorithms will be 

presented (CG-DMO) and (SCSO-DMO). 

 

5.1 Hybrid the dwarf mongoose optimization (DMO) by 

developed conjugate gradient algorithm 

 

Conjugate gradient is an iterative method that starts from a 

specific point in a direction and generates a sequence of 

iterations until the minimum value of the function is reached. 

The hybridization process occurs by linking two methods, 

such as if, for example, one of the two methods has good 

computational properties and the second method has strong 

comprehensive convergence properties. Figure 3 shows the 

steps of hybridization using  developed conjugate gradient 

algorithm . 

 

 
 

Figure 3. The steps of the CG-DMO 

5.2 Hybridization of dwarf mongoose optimization (DMO) 

algorithm by sand cats swarm optimization (SCSO) 

 

In this section, the dwarf mongoose optimization (DMO) 

algorithm tool was improved using some equations of the sand 

cat swarm optimization (SCSO) algorithm, that is, the desired 

features were used that contributed to improving the 

performance of the dwarf mongoose optimization algorithm. 

Hybridization was the use of equations to obtain the optimal 

solution. 

 

5.2.1 Mathematical model for SCSO-DMO 

The hybridization that we conducted differs from the 

hybridization used previously, which depends only on the 

initial population, that is, introducing the best solutions for the 

first algorithm as an initial population for the second algorithm, 

and it does not always reach the global optimal solution , while 

the hybridization that we performed is the use of mathematical 

models (equations), that is, entering a step by step, the Dwarf 

Mongoose Optimization (DMO) algorithm was improved in 

the Alpha group and an equation was developed to determine 

the location of food candidate in this group using the sand cat 

attack method, which is characterized by its ability to hear 

low-frequency sounds less than 2 kilohertz and an amazing 

ability to dig in search of prey. In addition to developing a 

Scouting Group using the vector 𝑅→ is the carrier responsible 

for the conversions and depends on the general sensitivity 

range 𝑟𝐺
→. 

 

Alpha group. After preparing the population using Eq. (7), 

the suitability of each solution is calculated by calculating the 

population fitness using Eq. (9), so that an alpha female (∝) is 

chosen. To know the location of the candidate food, the 

distance between the current position and any location (k) for 

any element of group Alpha (∝) is calculated as shown in Eq. 

(24). 

 

𝑅𝑎𝑛𝑑 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑎𝑏𝑠(𝑟𝑎𝑛𝑑(0,1) ∗ (𝑥𝑖 − 𝑥𝑘)) (24) 

 

So that the position of the food candidate, is determined as 

in Eq. (25) using Eqs. (12), (13). 𝑅→refers to the carrier, which 

is responsible for the conversions and depends on the general 

sensitivity range 𝑟𝐺
→ Each search agent updates its position and 

its sensitivity range 𝑟→. 

 

𝑥𝑖+1 = 𝑟→ ∗ 𝑅→ ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ 𝑅𝑎𝑛𝑑 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
+ 𝑝ℎ𝑖 ∗ 𝑝𝑒𝑒𝑝 

(25) 

 

𝑝𝑒𝑒𝑝 = 𝑥𝑖 − 𝑟→ ∗ 𝑐1 ∗ 𝑥𝑘 (26) 

 

𝑐1 = 2 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ (
𝑖

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

) (27) 

 

The initial sleep stack is set to ∅ in which each search agent 

sleeps. After each iteration, the sleep hill is computed using 

Eq. (21), and the average value of the sleep hill is also 

determined using Eq. (22). The evaluation of the next food 

source or sleeping pile occurs once the babysitter exchange 

criterion is satisfied. 

 

Scouting group. The proposed algorithm (SCSO-DMO) 

moves to the exploration stage if ∅𝑖+1 > ∅𝑖 as in Eq. (28). 

 

𝑥𝑖+1 = 𝑥𝑖 − 𝑐𝑓 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑥𝑖 − 𝑅→] (28) 
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If ∅𝑖+1 ≤ ∅𝑖 , then the proposed algorithm (SCSO-DMO) 

begins with the exploitation phase, and this is done using Eq. 

(29). 

 

𝑥𝑖+1 = 𝑥𝑖 + 𝑐𝑓 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑥𝑖 − 𝑅→] (29) 

 

The vector 𝑅→  determines the direction of movement of 

thesearch agent towards the new sleeping pile, which depends 

on the general sensitivity range 𝑟𝐺
→ of the search agents. 

 

5.2.2 Algorithm of SCSC-DMO 

 

1-Initialize the population (search agent(n)). 

2-Initialize the r, rG, R, ns, ∅. 

3-set n=ns. 

4-While (𝑖 <= maximum iteration) 

5-Calculate the fitness function of the objective  

function. 

6-Use Eq. (19) to identify the alpha, the best performing agent. 

7-Apply Eq. (25) to produce a candidate food position. 

8-Evaluate the fitness of the new position 𝑥𝑖+1. 

9-Use Eq. (21) to determine the sleeping mound's position. 

10-Use Eq. (22) to find the average value of ∅ for the sleeping 

mound. 

11-For each search agent  

12-IF (∅𝑖+1 > ∅𝑖) then 

13-Update the search agent position based on the Eq. (28): 

𝑥𝑖+1 = 𝑥𝑖 − 𝑐𝑓 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑥𝑖 − 𝑅→] 

14-Else 

15-Update the search agent position based on the Eq. (29): 

𝑥𝑖+1 = 𝑥𝑖 + 𝑐𝑓 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑥𝑖 − 𝑅→] 
16-End 

17-End 

18-𝑖 = 𝑖 + 1 

19-End 

 

In general, the above tables showed the success of the two 

proposed algorithms (SCSO-DMO) and (CG-DMO) in 

obtaining the optimal solution. This result puts the two 

proposed algorithms (SCSO-DMO) and (CG-DMO) at the 

forefront for solving complex optimization problems. In 

addition to comparison with some contemporary algorithms 

(MFO, GWO, ZOA, MGO) refer to Moth-Flame Optimization, 

Zebra Optimization, Mountain Gazelle Optimizer, and Gray 

Wolf Optimizer respectively. The success rate of the hybrid 

algorithm reached 100%. The results were verified by 

applying the program to five standard test functions shown in 

Table 1. The results were for two possibilities, shown in 

Tables 2 and 3, for 20 and 40 search items respectively, and 

500 iterations. In our work, we relied on the MATLAB 

R2021a program. The hybridization efficiency (SCSO - DMO) 

and (SCSO - CG) can also be observed in Figures 4-8, where 

the dark red color indicates (SCSO - DMO). The light red 

color indicates (SCSO - CG).  Blue color indicates (DMO), 

while green color indicates (SCSO). In addition to the colors 

that indicate contemporary algorithms (MFO, GWO, ZOA, 

MGO). 

 

Table 1. Introducing standard benchmark test function (unimodal, multimodal) that is used to assess the efficiency of algorithms 

 
𝒇𝒎𝒊𝒏 Range D Function Function Name 𝑭𝒏 

0 [−100,100] 30 ∑ 𝑥𝑖
2

𝑛

𝑖=1
 Sphere 𝐹1 

0 [−10,10] 30 ∑ |𝑥𝑖| + ∏ |𝑥𝑖| 
𝑛

𝑖=1

𝑛

𝑖=1
 Schwefe l2.22 𝐹2 

0 [−100,100] 30 ∑ (∑ 𝑥𝑗

𝑖

𝑗−1
)

2𝑛

𝑖=1
 Schwefel 1.2 𝐹3 

0 [−100,100] 30 𝑚𝑎𝑥𝑖{|𝑥𝑖|. 1 ≤ 𝑖 ≤ 𝑛} Schwefel 2.21 𝐹4 

0 [−5 · 12,5 · 12] 30 ∑ [𝑥𝑖
2 − 10cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 Rastrigin 𝐹5 

 

Table 2. Comparison outcomes of SCSO, DMO,CG-DMO and SCSO-DMO using the number of elements along with 20 

elements and the number of Iterations 500. In addition to a comparison with some contemporary algorithms (MFO, GWO, ZOA, 

MGO) 

 
Function Symbol MFO [21] GWO [22] ZOA [23] MGO [24] SCSO DMO CG-DMO SCSO-DMO 

F1 4.9375e-13 2.1672e-23 2.7909e-248 1.3478e-64 2.2387e-118 3.3605e-19 0 0 

F2 2.367e-09 5.5197e-14 1.2354e-134 1.0463e-39 2.9216e-59 9.0712e-14 1.6552e-247 0 

F3 0.02506 6.1997e-06 7.841e-155 6.6492e-07 3.5931e-104 0.74749 0 0 

F4 0.2942 4.3426e-06 4.6546e-115 2.499e-23 1.7584e-53 0.0084269 8.227e-201 0 

F5 17.9092 7.7541 0 0 0 13.7479 0 0 

 

Table 3. Comparison outcomes of SCSO, DMO, CG-DMO and SCSO-DMO using the number of elements along with 40 

elements and the number of iterations 500. In addition to a comparison with some contemporary algorithms (MFO, GWO, ZOA, 

MGO) 

 
Function Symbol MFO [18] GWO [19] ZOA [20] MGO [21] SCSO DMO CG-DMO  SCSO-DMO 

F1 7.8551e-15 5.5123e-30 1.8334e-259 1.6377e-80 6.6202e-125 1.7882e-22 0 0 

F2 2.4263e-09 1.8844e-18 1.3374e-137 1.0374e-45 6.0859e-64 2.4793e-15 4.7298e-252 0 

F3 0.00050369 7.7464e-10 1.7967e-168 2.5048e-14 9.9133e-110 0.1238 0 0 

F4 0.015684 4.5393e-08 1.562e-116 3.0226e-28 7.6933e-54 0.0021931 3.2201e-205 0 

F5 13.9294 1.7053e-13 0 0 0 10.7216 0 0 
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Figure 4. Function graph for F1 
 

 
 

Figure 5. Function graph for F2 
 

 
 

Figure 6. function graph for F3 
 

 
 

Figure 7. function graph for F4 

 
 

Figure 8. Function graph for F5 

 

 

6. CONCLUSIONS 

 

The hybridization of the (DMO) Algorithm has given rise 

to two new hybrid algorithms (SCSO-DMO) and (CG-DMO). 

These two algorithms have several properties, including their 

ability to work with complex, multi-dimensional problems. 

And the efficiency of their speed compared to the speed of the 

two original algorithms, so that the two proposed algorithms 

(SCSO-DMO) and (CG-DMO) gave better numerical results 

than the results of the two original algorithms with less time 

and effort, as can be seen from Tables 2 and 3 above for five 

of the standard test jobs. Which shows comparative results 

with 500 iterations and 30 and 60 search items, respectively. 

Through these features, the two proposed algorithms 

(SCSO-DMO) and (CG-DMO) can be exploited to solve many 

problems, including improving performance, reducing cost, 

and improving engineering and mathematical design. 

Thanks to these advantages, the two proposed algorithms 

(SCSO-DMO) and (CG-DMO) can be used to solve a wide 

range of problems in different fields. 
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