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This paper explores the field of FPGA implementation and emulation of memristor 

devices, providing insights into the advancements, challenges, and future directions. The 

paper discusses various techniques used for FPGA-based memristor emulation, 

emphasizing the importance of accurate memristor modeling and performance evaluation. 

It identifies challenges in the field, including improving accuracy, scalability, real-time 

adaptation, standardization, integration with design tools, and exploring novel applications. 

Additionally, the results of the study show that FPGAs are one of the viable solutions for 

emulating memristors. The study concludes that FPGA based memristor emulation holds 

a promise for studying memristor-based circuits and systems, with potential applications 

in neuromorphic computing, machine learning accelerators, and analog/mixed-signal 

circuit design. 
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1. INTRODUCTION

The rapid advancements in semiconductor technology have 

driven the need for novel electronic devices with improved 

performance, energy efficiency, and functionality. Memristors, 

short for memory resistors, have emerged as a promising 

technology that exhibits unique properties and capabilities. In 

contrast to the classical electronic elements like resistors, 

capacitors, and inductors, memristors possess the ability to 

retain and store information in the form of resistance variations 

[1]. This characteristic has attracted considerable attention as 

it opens up exciting possibilities for the development of new 

computing paradigms, memory systems, and signal processing 

applications. 

The integration and fabrication of physical memristor 

devices into existing electronic systems presents several 

challenges, including fabrication complexity, scalability, and 

compatibility [2]. In response to these challenges, researchers 

have explored alternative approaches such as FPGA-based 

implementation and emulation of memristor devices [3-12]. 

FPGAs, Field-Programmable Gate Arrays, supply adaptable 

and easily reconfigurable platforms that can mimic the 

behavior of complex circuits and devices. 

FPGA-based emulation of memristor devices involves 

creating a digital model of the memristor’s behavior and 

implementing it on an FPGA [11]. This approach allows 

designers to study and analyze the characteristics of 

memristors without relying on physical prototypes. For 

instance, FPGA-based emulation techniques include LUT, 

look-up table, based emulation [4], where the behavior of the 

memristor is stored in a lookup table within the FPGA, and 

HDL (hardware description language) modeling, where the 

behavior is described using specialized programming 

languages such as VHDL or Verilog. Alternatively, FPGA-

based implementation of memristor devices aims to physically 

realize memristor behavior using the reconfigurable resources 

available in FPGAs [3]. This approach involves mapping the 

memristor’s electrical characteristics and functionality onto 

the FPGA’s logic elements, routing resources, and 

configurable interconnects. Specialized reconfigurable 

architectures designed specifically for memristor circuits have 

also been proposed [13], leveraging the unique properties of 

memristors to enhance performance and energy efficiency. 

The main need for FPGA based memristor emulation is to 

allow designers to overcome the limitations associated with 

physical memristor devices, including fabrication costs, 

limited availability, and experimental constraints. FPGAs 

provide a flexible and accessible platform for rapid 

prototyping, testing, and evaluation of memristor-based 

systems and circuits. 

The objective of this study is to explore the advancements, 

challenges, and future prospects of using FPGAs for the 

implementation and emulation of memristor devices. It delves 

into the various FPGA-based emulation techniques, such as 

LUT-based emulation and HDL modeling, highlighting their 

advantages, limitations, and trade-offs. Additionally, it will 

investigate FPGA-based implementation methodologies, 

including mapping memristor behavior to FPGA primitives 

and leveraging specialized FPGA architectures. The paper will 

also discuss the performance evaluation and benchmarking 

approaches employed by designers to assess the effectiveness 

of FPGA-based memristor implementations. Furthermore, it 

will address the challenges associated with FPGA-based 

approaches, such as resource limitations, design complexity, 
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and the need for accurate memristor models. We will explore 

potential strategies and research directions for overcoming 

these challenges and optimizing FPGA-based memristor 

implementations. Lastly, the applications and impact of 

FPGA-based emulation and implementation of memristor 

devices in various domains will be discussed, such as 

neuromorphic computing, machine learning, hardware 

security, and reconfigurable computing. 

Through this paper, we aim to provide insights and guidance 

to researchers, engineers, and practitioners interested in 

exploring the potential of FPGAs for memristor-based 

technologies. 

 

 

2. OVERVIEW OF MEMRISTOR TECHNOLOGY 

 

Memristors are a class of electronic devices that have gained 

considerable interest recently due to their distinct 

characteristics and possible uses. Coined by Professor Leon 

Chua in 1971, the term” memristor” refers to a passive two-

terminal device that displays a relationship between electric 

charge and magnetic flux linking the device that is non-linear 

[14]. Unlike traditional electronic components such as 

resistors, capacitors, and inductors, memristors possess the 

ability to retain and store information in the form of resistance 

variations [15-17]. 

Memristors are characterized by their ability to change their 

resistance value based on the electrical current, magnitude and 

direction, passing through them. This phenomenon, known as 

resistance switching, allows memristors to exhibit multiple 

resistance states, that can be used to store and process 

information [16]. The memristor’s resistance state can be 

altered by applying a suitable voltage or current stimulus, 

leading to changes in its conductance and resistance levels. 

Importantly, these resistance states are non-volatile, meaning 

they persist even when the power supply is disconnected [18]. 

The underlying mechanism behind memristor behavior 

involves the migration and redistribution of defects or ions 

within the memristive material [19]. This process, known as 

the migration of dopant atoms, results in changes in the 

conductive pathways within the material, leading to alterations 

in resistance [20]. Memristors can exhibit different types of 

resistance switching behaviors, including unipolar and bipolar 

switching, depending on the specific materials and operating 

conditions [21, 22]. 

The distinctive attributes of memristors that make them 

appealing for various applications. In neuromorphic 

computing field, memristors have shown promise in emulating 

the synaptic behavior of biological neurons, enabling the 

advancement of energy-efficient and brain-inspired 

computing systems [23]. Memristors also hold potential in 

non-volatile memory applications, where they can provide 

high-density storage and faster access times compared to 

conventional memory technologies [20]. Additionally, 

memristors have been explored for applications in analog 

signal processing, where their resistance states can be 

exploited to perform complex mathematical operations [24]. 

Despite their potential, the integration and fabrication of 

physical memristor devices into existing electronic systems 

present several challenges [23]. Fabrication processes, 

scalability, and compatibility with established circuit design 

techniques are among the primary concerns [2]. As a result, 

researchers [3-5, 7] have explored alternative approaches to 

harness the benefits of memristor technology, including the 

use of FPGAs for memristor implementation and emulation. 

 

2.1 Resistance switching and hysteresis 

 

Memristor hysteresis refers to the phenomenon where the 

electrical resistance of a memristor depends not only on the 

instantaneous current or voltage applied to it but also on its 

past history [1]. That means, the memristor’s state resistance 

depends on the path it takes to reach its current state. This 

behavior is analogous to the hysteresis observed in magnetic 

materials, where the magnetic field strength depends on the 

previous magnetic history [25]. 

When a memristor is subjected to an increasing voltage or 

current stimulus, it changes from a low resistance state (LRS) 

to a high resistance state (HRS) [26]. This transition occurs at 

a particular voltage or current level, known as the SET 

threshold [27]. Conversely, when the voltage or current is 

decreased, the memristor transitions from HRS to LRS at a 

different voltage or current threshold, called the RESET 

threshold. The existence of these distinct threshold voltages or 

currents forms the basis of the hysteresis behavior in 

memristors [26]. 

The hysteresis in memristors can be visualized on a current-

voltage (I-V) graph as depicted in Figure 1 (d). When the 

applied voltage or current is swept from a negative value to a 

positive one and back, the I-V curve displays a loop-like curve. 

This loop represents the hysteresis loop, with the ascending 

branch corresponding to the SET process and the descending 

branch corresponding to the RESET process. The area 

enclosed by the hysteresis loop is an indication of the energy 

consumed during the resistance switching operation [1]. 

 

 
 

Figure 1. (a) memristor symbol, (b) HP memristor model 

structure, (c) memristor equivalent circuit representation, (d) 

memristor’s I-V characteristics (hysteresis loop) 

 

The hysteresis phenomenon in memristors has significant 

implications for their applications. One of the key advantages 

of hysteresis is that it allows the memristor to retain its 

resistance state even when the applied voltage or current is 

removed [28]. This non-volatile property makes memristors 

suitable for applications in non-volatile memory, where data 

can be stored even in the absence of power [20]. Moreover, the 

resistance switching characteristics, combined with the 
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hysteresis, allow memristors to emulate synaptic behavior, 

which is crucial for neuromorphic computing applications [16] 

 

2.2 Memristor hysteresis in emulation process 

 

The emulation of memristor hysteresis is a crucial aspect 

when simulating memristor behavior using digital models or 

implementing memristor functionality on FPGAs. Capturing 

hysteresis in the emulation process is essential to replicate the 

history dependent behavior of physical memristor devices. 

To emulate memristor hysteresis, various mathematical 

formulations and models can be employed. These models aim 

to reproduce the hysteresis loop and predict the memristor’s 

resistance state based on its electrical history. The choice of 

the model depends on the specific characteristics of the 

memristor being emulated and the desired level of accuracy. 

One common approach to capture hysteresis in memristor 

emulation is through the use of window functions. Window 

functions define different thresholds for the SET and RESET 

processes, similar to the voltage or current thresholds observed 

in physical memristors. These thresholds determine the 

transition points between the HRS and LRS. By incorporating 

window functions into the emulation process, the resistance 

switching behavior and hysteresis can be effectively 

reproduced. 

Another approach involves using sigmoidal functions or 

piecewise linear functions to model the resistance variation in 

response to the applied current or voltage. These functions 

map the input stimuli to the corresponding resistance states, 

considering the previous memristor’s history. By carefully 

selecting the parameters of these functions, such as slope and 

threshold values, the hysteresis behavior can be represented in 

the emulation. 

In addition to the mathematical models, other techniques 

can be employed to capture hysteresis in memristor emulation. 

For instance, data-driven approaches based on machine 

learning algorithms can be utilized to learn the hysteresis 

behavior from experimental data or physical memristor 

measurements. These algorithms can be used to predict the 

resistance state based on the input history, allowing for 

emulation of hysteresis. 

It is crucial to emphasize that the accuracy of the memristor 

hysteresis emulation depends not only on the chosen model 

but also on the fidelity of the emulation platform. FPGAs have 

been used for memristor emulation due to their reconfigurable 

nature and ability to mimic complex circuits. The selection of 

appropriate FPGA resources, such as look-up tables, digital 

signal processing blocks, or programmable interconnects, is 

crucial to achieve emulation of memristor hysteresis. 

Furthermore, the time scales involved in the resistance 

switching process should be considered in the emulation. 

Physical memristors exhibit varying switching speeds, and 

capturing this behavior accurately is essential for faithful 

emulation. The choice of simulation or emulation techniques, 

such as discrete-time models or real-time simulations, should 

be based on the desired time resolution and the specific 

dynamics of the memristor being emulated. 

 

 

3. FPGA-BASED EMULATION OF MEMRISTOR 

DEVICES 

 

A few research groups have developed FPGA-based 

emulation platforms for memristor devices. These platforms 

utilize the reconfigurable nature of FPGAs to implement 

digital models that capture the essential characteristics of 

memristors, including resistance switching and hysteresis. By 

programming the FPGA, designers can simulate the behavior 

of memristors and investigate their potential applications in 

various domains. 

 

3.1 Advanced mathematical models 

 

In the field of FPGA-based emulation of memristor devices, 

advanced mathematical systems have been established to 

capture the complex behavior exhibited by memristors. These 

models provide an enhanced comprehension of the underlying 

mechanisms. Several notable examples of advanced 

mathematical models for memristor emulation have been 

proposed, as discussed below. 

 

3.1.1 Extended SPICE models 

SPICE, which is an abbreviation for Simulation Program 

with Integrated Circuit Emphasis, is a well-known simulation 

tools. Several SPICE macromodels have been suggested for 

linear [29, 30] and nonlinear ion drift models [31]. In the study 

[32], the relationship between current and voltage is 

established using a hyperbolic sine function, while the 

derivative of the state variable is represented by an exponent. 

The other model called TEAM [33] utilizes polynomials to 

capture the behavior of the system. In general, SPICE 

macromodels requires more computational resources 

compared to Verilog-A model, which maintains a comparable 

level of accuracy in the results it produces [32]. 

 

3.1.2 Piecewise-linear models 

Piecewise-linear models provide an alternative approach to 

describe the behavior of memristors [34]. These models divide 

the voltage-current characteristic of the memristor into linear 

segments, capturing the essential non-linear behavior with a 

series of linear equations [35]. By fitting experimental data to 

these piecewise-linear segments, designers can achieve 

emulation of memristor behavior on FPGA platforms [36]. 

This modeling technique has been successfully employed in 

FPGA-based memristor emulation to study the impact of non-

linear dynamics on system-level performance [37]. 

 

3.1.3 Non-linear differential equations 

Non-linear differential equations provide a fundamental 

approach to model the dynamics of memristor devices. These 

equations describe the time-varying relationship between 

voltage and current and capture the essential non-linear 

behavior observed in memristors. Researchers have developed 

advanced numerical methods and algorithms to solve these 

non-linear differential equations efficiently on FPGA 

platforms [38]. By implementing these equations on FPGAs, 

researchers can precisely emulate the dynamic behaviors of 

memristors and study their impact on circuit performance. 

 

3.2 Hardware-software co-design 

 

Hardware-software co-design plays an essential part in 

ensuring efficiency and emulation effectivity of memristor 

devices on FPGA platforms. This approach leverages the 

strengths of both hardware and software components to 

achieve optimal performance, flexibility, and accuracy in 

memristor emulation. Below some examples of hardware-

software co-design methodologies for memristor emulation 
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have been proposed. 

 

3.2.1 High-level synthesis (HLS) 

High-level synthesis techniques enable the design of 

memristor emulators at a higher level of abstraction, allowing 

for faster development and optimization. Researchers have 

utilized HLS tools such as Vivado HLS or Intel HLS Compiler 

to convert high-level hardware description languages (HDL) 

into optimized hardware designs suitable for FPGA 

implementation [39]. By utilizing HLS, designers can achieve 

faster development cycles and explore different architectural 

optimizations. 

 

3.2.2 Custom instruction set architectures (ISA) 

To enhance the performance of memristor emulators on 

FPGAs, custom instruction set architectures (ISA) have been 

developed. These ISAs are tailored to accelerate specific 

memristor operations, resulting in flexible emulation. For 

example, researchers have proposed custom instructions for 

memristor read/write operations, voltage-controlled switching, 

or specific mathematical functions related to memristor 

behavior [40-42]. By implementing these custom ISAs on 

FPGA platforms, designers can achieve more flexibility in 

memristor emulation. 

 

3.2.3 Hybrid emulation platforms 

Hybrid emulation platforms combine the power of FPGA-

based hardware acceleration with the flexibility and versatility 

of software simulations. These platforms integrate FPGA-

based emulators with software-based memristor models or 

simulators to achieve a balance between speed and accuracy. 

For instance, researchers have developed frameworks that 

enable co-simulation between FPGA platforms and software 

memristor models, allowing for detailed memristor behavior 

to be simulated in software while leveraging FPGA 

acceleration for faster execution [43-45]. By utilizing hybrid 

emulation platforms, designers can explore larger and more 

complex memristor systems while maintaining accurate and 

efficient emulation. 

 

3.2.4 Runtime reconfigurability 

Runtime reconfigurability is another key aspect of 

hardware-software co-design in memristor emulation. It 

allows for dynamic reconfiguration of the FPGA fabric during 

runtime to adapt to varying emulation requirements or to 

implement different memristor models or algorithms on the fly. 

Researchers have explored runtime reconfigurable FPGA 

architectures and algorithms to enable efficient emulation of 

memristor devices with varying characteristics or to support 

real-time adaptation in response to dynamic system behavior 

[46, 47]. This capability enhances the flexibility and versatility 

of memristor emulation on FPGA platforms, enabling 

designers to explore a wide range of memristor-based systems 

and applications. 

 

3.3 Integration of real-time feedback 

 

The integration of real-time feedback is a significant aspect 

of FPGA-based emulation of memristor devices, as it allows 

for dynamic adaptation and control of the emulated memristor 

behavior. Real-time feedback enables the emulation platform 

to respond to changing conditions or external stimuli, 

enhancing the accuracy and versatility of the emulation 

process. Several notable examples of integrating real-time 

feedback in FPGA-based memristor emulation have been 

explored, as discussed below. 

 

3.3.1 Adaptive control strategies 

Adaptive control strategies are employed to dynamically 

adjust the emulated memristor’s behavior based on feedback 

from the system or the environment. These strategies aim to 

optimize the emulation accuracy by continuously updating the 

memristor model parameters or adjusting the input signals to 

match the desired behavior. For instance, researchers have 

proposed adaptive control algorithms such as PID, 

proportional-integral-derivative, controllers or fuzzy logic 

controllers to regulate the memristor’s conductance or 

switching dynamics based on real-time feedback signals [48, 

49]. Additionally, researchers have developed closed-loop 

systems that employ Kalman filters or neural networks to 

adaptively adjust the memristor model parameters based on 

real-time feedback from the emulated system [50]. By 

integrating adaptive control strategies, FPGA-based 

memristor emulators can emulate a wide range of memristor 

behaviors accurately. 

 

3.3.2 Sensing and measurement circuits 

In FPGA-based memristor emulation, real-time feedback 

often relies on the integration of sensing and measurement 

circuits to monitor the behavior of the emulated memristor. 

These circuits measure the memristor’s electrical properties, 

such as voltage, current, or resistance, and provide feedback 

signals to adapt the emulation accordingly. Researchers have 

developed custom measurement circuits and techniques, 

including voltage sensing circuits, current mirrors, or analog-

to-digital converters (ADCs), to accurately capture the 

memristor behavior in real-time [51]. By integrating these 

sensing and measurement circuits, FPGA-based emulators can 

capture the memristor’s dynamic behavior and adjust the 

emulation parameters accordingly. 

 

3.3.3 Hardware-in-the-loop (HIL) testing 

Hardware-in-the-loop (HIL) testing techniques are utilized 

to validate the accuracy and performance of FPGA-based 

memristor emulators in real-time. HIL testing involves 

coupling the FPGA-based emulator with real hardware 

components or systems, creating a closed-loop system where 

the emulated memristor interacts with the physical world. 

Researchers have implemented HIL testing setups where the 

emulated memristor interacts with external circuits, sensors, or 

actuators, allowing for realtime validation and optimization of 

the emulation platform [52]. By integrating HIL testing, 

FPGA-based memristor emulators can be validated under 

realistic operating conditions, ensuring the reliability and 

accuracy of the emulation results. 

 
3.4 FPGA-based implementation of memristor devices 

 
Several research groups have made notable contributions to 

the implementation of memristor devices on FPGA platforms. 

 
Example 1: 

Zhang et al. [3] developed an FPGA-based memristor 

emulator that emulates the behavior of a memristor model 

described in the study [53]. The model is capable of generating 

a symmetrical double-loop hysteresis, represented by Eq. (1). 
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𝐼(𝑡) = 𝑉(𝑡)(±𝑎 ± 𝑏 ∫ 𝑉(𝜏

𝑡

0

)𝑑𝜏) (1) 

 

where, 𝑉(𝑡)  is the normalized input voltage, 𝐼(𝑡)  is the 

normalized output current, and (𝑎, 𝑏)  are constants. To 

achieve memristive behavior, the condition |b|≤|a| must be 

maintained [3]. In order to implement the memristor model 

with threshold attribute, Zhang et al. suggested the 

conductance formula given in Eq. (2). 

 

𝐺𝑡 = {

𝐺𝑡−1 + 𝑐 × |𝑉|𝑛 if V ≥ VTH

𝐺𝑡−1  if −VTH < V < VTH

𝐺𝑡−1 − 𝑐 × |𝑉|𝑛 if V < −VTH

𝐺𝑖𝑛𝑖𝑡 if reset

 (2) 

 

where, 𝐺𝑖𝑛𝑖𝑡  is the initial value of the memristor’s conductance, 

𝐺𝑡  is the instantaneous conductance value, Gt−1 is the 

conductance value at the previous moment, VTH is the voltage 

threshold of the memristor, V is the input voltage, c is a 

parameter for fine-tuning the pinched hysteresis 

characteristics of the memristor, and n is the current 

adjustment parameter. The memristor’s conductance changes 

in response to positive or negative input voltage, either 

increasing or decreasing, when the absolute value of the input 

voltage exceeds the absolute value of the voltage threshold of 

the memristor. This behavior is in accordance with the 

physical properties inherent to a memristor [3]. 

To illustrate the implementation of the complete memristor 

model, the computational steps within the model are illustrated 

in Figure 2. First, the variables Ginit, VTH, Vin, T, n, and c, are 

initialized. Subsequently, the input voltage is compared with 

the threshold voltage level to determine the change in 

conductance. Then, the output current is obtained by 

multiplying the input voltage by the conductance value based 

on Ohm’s law. Lastly, the simulation time is assessed, and if 

the predefined duration is reached, the loop terminates; 

otherwise, the aforementioned steps are reapeted. The 

flowchart in Figure 3 shows the computational process within 

the memristor model, illustrating the realization of the entire 

model. Initially, the variables Ginit, VTH, Vin, T, n, and c are 

initialized. The input voltage is then compared with the 

voltage threshold to determine the alteration in conductivity. 

Using Ohm’s law, the input voltage is multiplied by the 

conductance value to obtain the output current. The process is 

repeated until reaching the designated simulation time, at 

which point the loop is exited [3]. 

 

 
 

Figure 2. FPGA based implementation of memristor model. (a) The model block diagram. (b) Circuit diagram of the 

reconfigurable memristor model [3] 

 

 
 

Figure 3. Flowchart of memristor implementation [3] 
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Their work involved designing custom circuits for 

memristor, as shown in Figure 3 in a block diagram and data 

path. Once the input voltage traverses the register, it undergoes 

a comparison with a predefined voltage threshold. At the same 

time, Eq. (2) is employed to determine the output conductance, 

with the resulting calculation being allocated to the 

conductance through result comparison. The emulator was 

capable of reproducing the resistance switching behavior and 

hysteresis of memristor devices. Additionally, they 

implemented a memristor array of their model on FPGA to 

conduct storage of binary image binarization using artificial 

neural network 

 

Example 2: 

Tolba et al. [4] use FPGA to build a memristors emulater 

circuit  for Binary Convolutional Neural Networks, utilizing a 

multi-bit XNOR gate as the primary component for binary 

convolution. The circuit incorporated a memristor-based 

pooling layer. The BCNN layer was achieved through a 

bitwise XNOR-cell followed by a wide NOR gate. The 

implemented design was implemented on Nexys4 FPGA, 

demonstrating less than 1% utilization resources have been 

used. 

The two states of the memristor hysteresis loop were 

determined using the formula y=(±a±b)x and y=(±a∓b)x, while 

maintaining the condition |b|≤|a|. The implementation of 

memristor’s emulator circuits could be either voltage-

controlled or current-controlled, depending on whether x(t) 

represented the input voltage and y(t) represented the output 

current, or vice versa. Additionally, a multi-state switching 

model (consisting of five states) was implemented to extend 

the two-state memristive model by incorporating additional 

conditions. The design utilized a 32-bit fixed-point 

representation, where the most significant bit (MSB) of ϕ 

selected between b and its inverted value. The output y was 

obtained by multiplying (a+b) with the input x. Figures 4 and 

5 [4] illustrated the two-state and multi-state memristor 

models, demonstrating the I-V pinched hysteresis loops for the 

five memristor states and their corresponding representations. 

Besides the above two examples, there are more approaches. 

For instance, the study [54] involved embedding fractional-

order systems into FPGA hardware through the utilization of 

the Xilinx System Generator toolbox within MATLAB 

Simulink. It further examined a discrete model of a chaotic 

system featuring a fourth-order memristor with fractional-

order dynamics, which was obtained through the conversion 

of the system’s differential version using a finite truncation 

method. The research also investigated the system’s dynamics 

by exploring the Lyapunov exponents and conducting a 

bifurcation analysis of the discrete fractional-order memristor 

system. 

Rajagopal et al. [55] introduced a new 4D no equilibrium 

memristor chaotic system and investigated its dynamic 

properties to demonstrate its chaotic behavior. They derived a 

fractional order model of the system from its integer model 

and analyzed its fractional order bifurcation property. The 

authors achieved synchronization of identical fractional order 

memristor chaotic systems utilizing genetically optimized PID 

controllers and adaptive sliding mode controllers. They 

conducted numerical simulations to confirm the theoretical 

findings and showcased the practical feasibility of the 

suggested system by implementing it on an FPGA. 

Zhang et al. [56] presented a behavioral modelling of a 

general multivalued memristor using FPGA, claiming that its 

capability of exhibiting behavior similar to electrochemical 

metallization memories, whether continuous or discrete in 

nature. The suggested solution was implemented on a Xilinx 

ZYNQ-7000 FPGA XQ7Z020, utilizing less than 1% of the 

hardware resources. In order to assess the functionality of the 

propsed model, the study constructed a quantized artificial 

neural network using 8-valued memristors in FPGA. 

Yu et al. [57] delved into the implementation of a PRNG, 

pseudo-random number generator, for neural network chaos-

based systems on FPGAs. The research addressed the issue of 

chaotic degradation that was caused by numerical accuracy 

limitations and had the potential to significantly impact the 

PRNG’s performance. The authors suggested a PRNG 

featuring a feedback controller derived from a Hopfield neural 

network chaotic oscillator, with a neuron subjected to 

electromagnetic radiation. The magnetic flux through the cell 

membrane of the neuron was chosen as a feedback condition 

for the controller, creating disturbances among other neurons 

and preventing periodicity. 

Alombah et al. [58] proposed a locally active memristor 

derived from a current-controlled generic memristor, 

demonstrating a broad locally active zone. The memristor 

based chaotic circuit consists of a memristor and an inductor 

was developed and numerically simulated using MATLAB 

then validated on FPGA. 

Vourkas et al. [59] implemented a bipolar memristor device 

model represented in Eq. (3), described in the study [60]. The 

memristance R, in this model, varies at different rates based 

on the applied voltage, whether it is higher or lower than the 

threshold voltage vT. The threshold voltage is considered 

symmetric for both switching  cases (SET and RESET). The 

memristance is limited by the upper and lower boundaries, 

denoted as RON, (RMIN) and ROFF (RMAX), respectively. The 

change in memristance is controlled by the step function (θ), 

indicating that R can only change within its limiting values. 

The change-rate constants α and β determine the rate of change 

when |v(t)|<v T and |v(t)|>vT, respectively. 

 

𝑅′ = 𝛽. 𝑣 +
1

2
(𝛼 − 𝛽). (|𝑣 + 𝑣𝑇|

− |𝑣 − 𝑣𝑇|. 𝜃(𝑅 − 𝑅𝑂𝑁). 𝜃(𝑅𝑂𝐹𝐹

− 𝑅) 

(3) 

 

Figure 6 illustrates the block diagram of the memristor’s 

emulator model. The emulator takes inputs such as the top- and 

bottom-electrode voltages (VTE and VBE), the initial desired 

memristance (Rinit) obtained during the initialization phase. 

The output signal is the current memristance R. The model-

specific parameters, including θ, β, and vT, were considered 

internal constants. 

They employed Euler’s method to calculate the 

memristance (R) in the voltage controlled time-invariant 

memristor model. Euler’s method is a numerical 

approximation technique that allows for the iterative 

calculation of a function based on its derivative. In this case, it 

was used to estimate the change in memristance over time. The 

model could handle high-frequency input voltage signals by 

adjustable timestep (∆t). The time-step represents the interval 

between successive calculations of the memristance value. By 

appropriately adjusting ∆t, the model was able to capture and 

respond to rapid changes in the input voltage signals. 
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Figure 4. Hardware architecture of the memristor emulator, (a) 2-state memristor model and (b) multistates memristor model [4] 

 

 
 

Figure 5. (a) I-V pinched hysteresis loops for 5-memristor states (b) memristor states when the input is cos(wt) [4] 

 

 
 

Figure 6. Memristor emulator block diagram [4] 
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Table 1. Memristor based designs 

 
Memristor Based Application Algorithm Evaluation Tool Ref. 

PUMA: Memristor-Based Accelerator General ML Algorithms Simulation [41] 

Memristor-Based FPGA (mrFPGA) - HSPICE, mrVPR, Xilinx CAD Tools, FPGA [11] 

Machine Learning BCNN FPGA [4] 

Neuromorphic MLP, CNN Simulation [61] 

Hyperchaotic System Adomian Decompostion FPGA [62] 

Memory Model ANN Simulation (PSPICE) [63] 

Neuromorphic ANN Hardware Realization [64] 

Intellectual Property (IP) core Memrisitive-Chua chaotic FPGA [65] 

Machine Learning ANN FPGA [3] 

Memristor-Based Look-up Table (LUT) - Simulation (LTSPICE IV) [66] 

Hybird CMOS-Memristor Based FPGA - TEAM Model [67] 

Logic Circuit (Adder Circuit) - FPGA [68] 

Gate Controlled Memristor Single-Layer Perceptron FPGA [6] 

Memristor-Transistor Hybrid FPGA - Simulation (HSPICE) [69] 

Multivalued Memristor ANN FPGA [56] 

Chaotic System Speech Encryption FPGA [70] 

Fractional-Order Memristor Grunwald-Letnikov FPGA [71] 

Memristor Hardware (HW) Simulator ANN (Testing) Quartus II and ModelSim [72] 

Memristor-Based Chaotic Circuit - FPGA [58] 

 
Table 1 provides a compilation of research endeavors 

focused on the implementation or simulation of memristor-

based applications tailored for specific algorithms. The table 

outlines key details, including the nature of the application, the 

algorithm it is designed to support, the evaluation tool 

employed for assessment, and the pertinent references for each 

work. This compilation serves as a resource, facilitating an 

organized and insightful exploration of the diverse landscape 

of memristor applications across various algorithmic domains. 

 

 

4. CHALLENGES AND FUTURE DIRECTIONS 

 

Despite the significant advancements in FPGA-based 

memristor emulation, several challenges and opportunities for 

future research remain. This section discusses some of these 

challenges and outlines potential directions for future 

investigations. 

 

(1) Improving Accuracy: One of the primary challenges in 

FPGA-based memristor emulation is achieving high 

accuracy. While existing techniques have shown 

promising results, further refinement is necessary. 

Future research could focus on developing advanced 

modeling approaches that capture the intricacies of 

memristor behavior more accurately. This might 

involve considering factors such as non-idealities, 

variability, and temperature effects to enhance the 

fidelity of emulation. 

(2) Scaling to Large-Scale Systems: Another important 

challenge is scaling FPGAbased memristor emulation 

to large-scale systems. As the complexity and size of 

digital circuits increase, there is a need for efficient 

techniques that can handle larger designs. Future 

investigations could explore methodologies to partition 

and distribute the emulation workload across multiple 

FPGAs or even across FPGA clusters, enabling the 

emulation of complex systems while maintaining high 

performance. 

(3) Real-Time Adaptation: The dynamic adaptation 

approach presented in some studies demonstrates the 

potential for real-time adjustments to improve 

emulation performance. However, further research is 

needed to explore advanced adaptation algorithms and 

strategies. This could involve leveraging machine 

learning techniques or feedback control mechanisms to 

dynamically adapt the emulation parameters based on 

real-time observations. Such approaches would 

enhance the adaptability and responsiveness of FPGA-

based memristor emulation to varying circuit 

conditions. 

(4) Standardization and Benchmarking: To facilitate 

comparison and evaluation of different FPGA-based 

memristor emulation techniques, standardization and 

benchmarking frameworks are essential. Future 

research could focus on developing standardized 

benchmarks and performance metrics that consider 

various aspects, including accuracy, speed, resource 

utilization, and power consumption. These benchmarks 

would enable fair comparisons among different 

emulation approaches and promote the advancement of 

the field. 

(5) Integration with Design Tools: Smooth integration of 

FPGA-based memristor emulation with existing design 

tools is crucial for wider adoption. Future investigations 

could explore methods to integrate emulation 

frameworks into popular design flows, enabling 

designers to validate and optimize memristor-based 

circuits more effectively. This integration could involve 

the development of plug-ins, APIs, or dedicated design 

tool extensions that streamline the emulation process 

and provide designers with comprehensive analysis and 

debugging capabilities. 

(6) Exploring Novel Applications: While FPGA-based 

memristor emulation has primarily focused on digital 

circuit design, there is a vast potential for exploring 

novel applications. Future research could investigate 

the use of FPGA-based memristor emulation in areas 

such as neuromorphic computing, machine learning 

accelerators, and analog/mixed-signal circuit design. 

Exploring these applications could lead to 

breakthroughs in diverse domains and further drive the 

development of FPGA-based memristor emulation 

techniques. 
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5. CONCLUSIONS 

 

In conclusion, this study highlights the current state of 

FPGA implementation and emulation of memristor devices, 

identifies key challenges, and outlines potential future 

directions. The study highlighted various techniques and 

approaches employed in FPGA-based memristor emulation, 

ranging from modeling and simulation to hardware 

implementation and validation. These techniques leverage the 

flexibility and reconfigurability of FPGAs to emulate the 

behavior of memristor devices, enabling researchers and 

designers to study and evaluate memristor-based circuits and 

systems. Moreover, the study identified several challenges that 

researchers need to address in future investigations. These 

challenges, described in detail in Section 4, include scaling to 

large-scale systems, real-time adaptation, standardization and 

benchmarking, integration with design tools, and exploring 

novel applications. Overcoming these challenges will 

contribute to the advancement of FPGA-based memristor 

emulation and its wider adoption in diverse domains. 
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