
Exploring FPGA Implementation and Emulation of Memristor Devices

Zeyad Aklah1* , Amean Al-Safi2 , Hussein T. Hassan2

1 Department of Information Technology, University of Thi-Qar, Nasiriyah 64001, Iraq
2 Department of Electrical and Electronics Engineering, University of Thi-Qar, Nasiriyah 64001, Iraq

Corresponding Author Email: zaklah@utq.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijcmem.120203 ABSTRACT

Received: 24 February 2024

Revised: 13 March 2024

Accepted: 22 March 2024

Available online: 30 June 2024

This paper explores the field of FPGA implementation and emulation of memristor

devices, providing insights into the advancements, challenges, and future directions. The

paper discusses various techniques used for FPGA-based memristor emulation,

emphasizing the importance of accurate memristor modeling and performance evaluation.

It identifies challenges in the field, including improving accuracy, scalability, real-time

adaptation, standardization, integration with design tools, and exploring novel applications.

Additionally, the results of the study show that FPGAs are one of the viable solutions for

emulating memristors. The study concludes that FPGA based memristor emulation holds

a promise for studying memristor-based circuits and systems, with potential applications

in neuromorphic computing, machine learning accelerators, and analog/mixed-signal

circuit design.

Keywords:

memristor, FPGA, emulation, modelling,

neuromorphic computing

1. INTRODUCTION

The rapid advancements in semiconductor technology have

driven the need for novel electronic devices with improved

performance, energy efficiency, and functionality. Memristors,

short for memory resistors, have emerged as a promising

technology that exhibits unique properties and capabilities. In

contrast to the classical electronic elements like resistors,

capacitors, and inductors, memristors possess the ability to

retain and store information in the form of resistance variations

[1]. This characteristic has attracted considerable attention as

it opens up exciting possibilities for the development of new

computing paradigms, memory systems, and signal processing

applications.

The integration and fabrication of physical memristor

devices into existing electronic systems presents several

challenges, including fabrication complexity, scalability, and

compatibility [2]. In response to these challenges, researchers

have explored alternative approaches such as FPGA-based

implementation and emulation of memristor devices [3-12].

FPGAs, Field-Programmable Gate Arrays, supply adaptable

and easily reconfigurable platforms that can mimic the

behavior of complex circuits and devices.

FPGA-based emulation of memristor devices involves

creating a digital model of the memristor’s behavior and

implementing it on an FPGA [11]. This approach allows

designers to study and analyze the characteristics of

memristors without relying on physical prototypes. For

instance, FPGA-based emulation techniques include LUT,

look-up table, based emulation [4], where the behavior of the

memristor is stored in a lookup table within the FPGA, and

HDL (hardware description language) modeling, where the

behavior is described using specialized programming

languages such as VHDL or Verilog. Alternatively, FPGA-

based implementation of memristor devices aims to physically

realize memristor behavior using the reconfigurable resources

available in FPGAs [3]. This approach involves mapping the

memristor’s electrical characteristics and functionality onto

the FPGA’s logic elements, routing resources, and

configurable interconnects. Specialized reconfigurable

architectures designed specifically for memristor circuits have

also been proposed [13], leveraging the unique properties of

memristors to enhance performance and energy efficiency.

The main need for FPGA based memristor emulation is to

allow designers to overcome the limitations associated with

physical memristor devices, including fabrication costs,

limited availability, and experimental constraints. FPGAs

provide a flexible and accessible platform for rapid

prototyping, testing, and evaluation of memristor-based

systems and circuits.

The objective of this study is to explore the advancements,

challenges, and future prospects of using FPGAs for the

implementation and emulation of memristor devices. It delves

into the various FPGA-based emulation techniques, such as

LUT-based emulation and HDL modeling, highlighting their

advantages, limitations, and trade-offs. Additionally, it will

investigate FPGA-based implementation methodologies,

including mapping memristor behavior to FPGA primitives

and leveraging specialized FPGA architectures. The paper will

also discuss the performance evaluation and benchmarking

approaches employed by designers to assess the effectiveness

of FPGA-based memristor implementations. Furthermore, it

will address the challenges associated with FPGA-based

approaches, such as resource limitations, design complexity,

International Journal of Computational Methods and
Experimental Measurements

Vol. 12, No. 2, June, 2024, pp. 135-146

Journal homepage: http://iieta.org/journals/ijcmem

135

https://orcid.org/0000-0002-5617-8946
https://orcid.org/0000-0002-9666-0585
https://orcid.org/0009-0006-0247-835X
https://crossmark.crossref.org/dialog/?doi=10.18280/ijcmem.120203&domain=pdf

and the need for accurate memristor models. We will explore

potential strategies and research directions for overcoming

these challenges and optimizing FPGA-based memristor

implementations. Lastly, the applications and impact of

FPGA-based emulation and implementation of memristor

devices in various domains will be discussed, such as

neuromorphic computing, machine learning, hardware

security, and reconfigurable computing.

Through this paper, we aim to provide insights and guidance

to researchers, engineers, and practitioners interested in

exploring the potential of FPGAs for memristor-based

technologies.

2. OVERVIEW OF MEMRISTOR TECHNOLOGY

Memristors are a class of electronic devices that have gained

considerable interest recently due to their distinct

characteristics and possible uses. Coined by Professor Leon

Chua in 1971, the term” memristor” refers to a passive two-

terminal device that displays a relationship between electric

charge and magnetic flux linking the device that is non-linear

[14]. Unlike traditional electronic components such as

resistors, capacitors, and inductors, memristors possess the

ability to retain and store information in the form of resistance

variations [15-17].

Memristors are characterized by their ability to change their

resistance value based on the electrical current, magnitude and

direction, passing through them. This phenomenon, known as

resistance switching, allows memristors to exhibit multiple

resistance states, that can be used to store and process

information [16]. The memristor’s resistance state can be

altered by applying a suitable voltage or current stimulus,

leading to changes in its conductance and resistance levels.

Importantly, these resistance states are non-volatile, meaning

they persist even when the power supply is disconnected [18].

The underlying mechanism behind memristor behavior

involves the migration and redistribution of defects or ions

within the memristive material [19]. This process, known as

the migration of dopant atoms, results in changes in the

conductive pathways within the material, leading to alterations

in resistance [20]. Memristors can exhibit different types of

resistance switching behaviors, including unipolar and bipolar

switching, depending on the specific materials and operating

conditions [21, 22].

The distinctive attributes of memristors that make them

appealing for various applications. In neuromorphic

computing field, memristors have shown promise in emulating

the synaptic behavior of biological neurons, enabling the

advancement of energy-efficient and brain-inspired

computing systems [23]. Memristors also hold potential in

non-volatile memory applications, where they can provide

high-density storage and faster access times compared to

conventional memory technologies [20]. Additionally,

memristors have been explored for applications in analog

signal processing, where their resistance states can be

exploited to perform complex mathematical operations [24].

Despite their potential, the integration and fabrication of

physical memristor devices into existing electronic systems

present several challenges [23]. Fabrication processes,

scalability, and compatibility with established circuit design

techniques are among the primary concerns [2]. As a result,

researchers [3-5, 7] have explored alternative approaches to

harness the benefits of memristor technology, including the

use of FPGAs for memristor implementation and emulation.

2.1 Resistance switching and hysteresis

Memristor hysteresis refers to the phenomenon where the

electrical resistance of a memristor depends not only on the

instantaneous current or voltage applied to it but also on its

past history [1]. That means, the memristor’s state resistance

depends on the path it takes to reach its current state. This

behavior is analogous to the hysteresis observed in magnetic

materials, where the magnetic field strength depends on the

previous magnetic history [25].

When a memristor is subjected to an increasing voltage or

current stimulus, it changes from a low resistance state (LRS)

to a high resistance state (HRS) [26]. This transition occurs at

a particular voltage or current level, known as the SET

threshold [27]. Conversely, when the voltage or current is

decreased, the memristor transitions from HRS to LRS at a

different voltage or current threshold, called the RESET

threshold. The existence of these distinct threshold voltages or

currents forms the basis of the hysteresis behavior in

memristors [26].

The hysteresis in memristors can be visualized on a current-

voltage (I-V) graph as depicted in Figure 1 (d). When the

applied voltage or current is swept from a negative value to a

positive one and back, the I-V curve displays a loop-like curve.

This loop represents the hysteresis loop, with the ascending

branch corresponding to the SET process and the descending

branch corresponding to the RESET process. The area

enclosed by the hysteresis loop is an indication of the energy

consumed during the resistance switching operation [1].

Figure 1. (a) memristor symbol, (b) HP memristor model

structure, (c) memristor equivalent circuit representation, (d)

memristor’s I-V characteristics (hysteresis loop)

The hysteresis phenomenon in memristors has significant

implications for their applications. One of the key advantages

of hysteresis is that it allows the memristor to retain its

resistance state even when the applied voltage or current is

removed [28]. This non-volatile property makes memristors

suitable for applications in non-volatile memory, where data

can be stored even in the absence of power [20]. Moreover, the

resistance switching characteristics, combined with the

136

hysteresis, allow memristors to emulate synaptic behavior,

which is crucial for neuromorphic computing applications [16]

2.2 Memristor hysteresis in emulation process

The emulation of memristor hysteresis is a crucial aspect

when simulating memristor behavior using digital models or

implementing memristor functionality on FPGAs. Capturing

hysteresis in the emulation process is essential to replicate the

history dependent behavior of physical memristor devices.

To emulate memristor hysteresis, various mathematical

formulations and models can be employed. These models aim

to reproduce the hysteresis loop and predict the memristor’s

resistance state based on its electrical history. The choice of

the model depends on the specific characteristics of the

memristor being emulated and the desired level of accuracy.

One common approach to capture hysteresis in memristor

emulation is through the use of window functions. Window

functions define different thresholds for the SET and RESET

processes, similar to the voltage or current thresholds observed

in physical memristors. These thresholds determine the

transition points between the HRS and LRS. By incorporating

window functions into the emulation process, the resistance

switching behavior and hysteresis can be effectively

reproduced.

Another approach involves using sigmoidal functions or

piecewise linear functions to model the resistance variation in

response to the applied current or voltage. These functions

map the input stimuli to the corresponding resistance states,

considering the previous memristor’s history. By carefully

selecting the parameters of these functions, such as slope and

threshold values, the hysteresis behavior can be represented in

the emulation.

In addition to the mathematical models, other techniques

can be employed to capture hysteresis in memristor emulation.

For instance, data-driven approaches based on machine

learning algorithms can be utilized to learn the hysteresis

behavior from experimental data or physical memristor

measurements. These algorithms can be used to predict the

resistance state based on the input history, allowing for

emulation of hysteresis.

It is crucial to emphasize that the accuracy of the memristor

hysteresis emulation depends not only on the chosen model

but also on the fidelity of the emulation platform. FPGAs have

been used for memristor emulation due to their reconfigurable

nature and ability to mimic complex circuits. The selection of

appropriate FPGA resources, such as look-up tables, digital

signal processing blocks, or programmable interconnects, is

crucial to achieve emulation of memristor hysteresis.

Furthermore, the time scales involved in the resistance

switching process should be considered in the emulation.

Physical memristors exhibit varying switching speeds, and

capturing this behavior accurately is essential for faithful

emulation. The choice of simulation or emulation techniques,

such as discrete-time models or real-time simulations, should

be based on the desired time resolution and the specific

dynamics of the memristor being emulated.

3. FPGA-BASED EMULATION OF MEMRISTOR

DEVICES

A few research groups have developed FPGA-based

emulation platforms for memristor devices. These platforms

utilize the reconfigurable nature of FPGAs to implement

digital models that capture the essential characteristics of

memristors, including resistance switching and hysteresis. By

programming the FPGA, designers can simulate the behavior

of memristors and investigate their potential applications in

various domains.

3.1 Advanced mathematical models

In the field of FPGA-based emulation of memristor devices,

advanced mathematical systems have been established to

capture the complex behavior exhibited by memristors. These

models provide an enhanced comprehension of the underlying

mechanisms. Several notable examples of advanced

mathematical models for memristor emulation have been

proposed, as discussed below.

3.1.1 Extended SPICE models

SPICE, which is an abbreviation for Simulation Program

with Integrated Circuit Emphasis, is a well-known simulation

tools. Several SPICE macromodels have been suggested for

linear [29, 30] and nonlinear ion drift models [31]. In the study

[32], the relationship between current and voltage is

established using a hyperbolic sine function, while the

derivative of the state variable is represented by an exponent.

The other model called TEAM [33] utilizes polynomials to

capture the behavior of the system. In general, SPICE

macromodels requires more computational resources

compared to Verilog-A model, which maintains a comparable

level of accuracy in the results it produces [32].

3.1.2 Piecewise-linear models

Piecewise-linear models provide an alternative approach to

describe the behavior of memristors [34]. These models divide

the voltage-current characteristic of the memristor into linear

segments, capturing the essential non-linear behavior with a

series of linear equations [35]. By fitting experimental data to

these piecewise-linear segments, designers can achieve

emulation of memristor behavior on FPGA platforms [36].

This modeling technique has been successfully employed in

FPGA-based memristor emulation to study the impact of non-

linear dynamics on system-level performance [37].

3.1.3 Non-linear differential equations

Non-linear differential equations provide a fundamental

approach to model the dynamics of memristor devices. These

equations describe the time-varying relationship between

voltage and current and capture the essential non-linear

behavior observed in memristors. Researchers have developed

advanced numerical methods and algorithms to solve these

non-linear differential equations efficiently on FPGA

platforms [38]. By implementing these equations on FPGAs,

researchers can precisely emulate the dynamic behaviors of

memristors and study their impact on circuit performance.

3.2 Hardware-software co-design

Hardware-software co-design plays an essential part in

ensuring efficiency and emulation effectivity of memristor

devices on FPGA platforms. This approach leverages the

strengths of both hardware and software components to

achieve optimal performance, flexibility, and accuracy in

memristor emulation. Below some examples of hardware-

software co-design methodologies for memristor emulation

137

have been proposed.

3.2.1 High-level synthesis (HLS)

High-level synthesis techniques enable the design of

memristor emulators at a higher level of abstraction, allowing

for faster development and optimization. Researchers have

utilized HLS tools such as Vivado HLS or Intel HLS Compiler

to convert high-level hardware description languages (HDL)

into optimized hardware designs suitable for FPGA

implementation [39]. By utilizing HLS, designers can achieve

faster development cycles and explore different architectural

optimizations.

3.2.2 Custom instruction set architectures (ISA)

To enhance the performance of memristor emulators on

FPGAs, custom instruction set architectures (ISA) have been

developed. These ISAs are tailored to accelerate specific

memristor operations, resulting in flexible emulation. For

example, researchers have proposed custom instructions for

memristor read/write operations, voltage-controlled switching,

or specific mathematical functions related to memristor

behavior [40-42]. By implementing these custom ISAs on

FPGA platforms, designers can achieve more flexibility in

memristor emulation.

3.2.3 Hybrid emulation platforms

Hybrid emulation platforms combine the power of FPGA-

based hardware acceleration with the flexibility and versatility

of software simulations. These platforms integrate FPGA-

based emulators with software-based memristor models or

simulators to achieve a balance between speed and accuracy.

For instance, researchers have developed frameworks that

enable co-simulation between FPGA platforms and software

memristor models, allowing for detailed memristor behavior

to be simulated in software while leveraging FPGA

acceleration for faster execution [43-45]. By utilizing hybrid

emulation platforms, designers can explore larger and more

complex memristor systems while maintaining accurate and

efficient emulation.

3.2.4 Runtime reconfigurability

Runtime reconfigurability is another key aspect of

hardware-software co-design in memristor emulation. It

allows for dynamic reconfiguration of the FPGA fabric during

runtime to adapt to varying emulation requirements or to

implement different memristor models or algorithms on the fly.

Researchers have explored runtime reconfigurable FPGA

architectures and algorithms to enable efficient emulation of

memristor devices with varying characteristics or to support

real-time adaptation in response to dynamic system behavior

[46, 47]. This capability enhances the flexibility and versatility

of memristor emulation on FPGA platforms, enabling

designers to explore a wide range of memristor-based systems

and applications.

3.3 Integration of real-time feedback

The integration of real-time feedback is a significant aspect

of FPGA-based emulation of memristor devices, as it allows

for dynamic adaptation and control of the emulated memristor

behavior. Real-time feedback enables the emulation platform

to respond to changing conditions or external stimuli,

enhancing the accuracy and versatility of the emulation

process. Several notable examples of integrating real-time

feedback in FPGA-based memristor emulation have been

explored, as discussed below.

3.3.1 Adaptive control strategies

Adaptive control strategies are employed to dynamically

adjust the emulated memristor’s behavior based on feedback

from the system or the environment. These strategies aim to

optimize the emulation accuracy by continuously updating the

memristor model parameters or adjusting the input signals to

match the desired behavior. For instance, researchers have

proposed adaptive control algorithms such as PID,

proportional-integral-derivative, controllers or fuzzy logic

controllers to regulate the memristor’s conductance or

switching dynamics based on real-time feedback signals [48,

49]. Additionally, researchers have developed closed-loop

systems that employ Kalman filters or neural networks to

adaptively adjust the memristor model parameters based on

real-time feedback from the emulated system [50]. By

integrating adaptive control strategies, FPGA-based

memristor emulators can emulate a wide range of memristor

behaviors accurately.

3.3.2 Sensing and measurement circuits

In FPGA-based memristor emulation, real-time feedback

often relies on the integration of sensing and measurement

circuits to monitor the behavior of the emulated memristor.

These circuits measure the memristor’s electrical properties,

such as voltage, current, or resistance, and provide feedback

signals to adapt the emulation accordingly. Researchers have

developed custom measurement circuits and techniques,

including voltage sensing circuits, current mirrors, or analog-

to-digital converters (ADCs), to accurately capture the

memristor behavior in real-time [51]. By integrating these

sensing and measurement circuits, FPGA-based emulators can

capture the memristor’s dynamic behavior and adjust the

emulation parameters accordingly.

3.3.3 Hardware-in-the-loop (HIL) testing

Hardware-in-the-loop (HIL) testing techniques are utilized

to validate the accuracy and performance of FPGA-based

memristor emulators in real-time. HIL testing involves

coupling the FPGA-based emulator with real hardware

components or systems, creating a closed-loop system where

the emulated memristor interacts with the physical world.

Researchers have implemented HIL testing setups where the

emulated memristor interacts with external circuits, sensors, or

actuators, allowing for realtime validation and optimization of

the emulation platform [52]. By integrating HIL testing,

FPGA-based memristor emulators can be validated under

realistic operating conditions, ensuring the reliability and

accuracy of the emulation results.

3.4 FPGA-based implementation of memristor devices

Several research groups have made notable contributions to

the implementation of memristor devices on FPGA platforms.

Example 1:

Zhang et al. [3] developed an FPGA-based memristor

emulator that emulates the behavior of a memristor model

described in the study [53]. The model is capable of generating

a symmetrical double-loop hysteresis, represented by Eq. (1).

138

𝐼(𝑡) = 𝑉(𝑡)(±𝑎 ± 𝑏 ∫ 𝑉(𝜏

𝑡

0

)𝑑𝜏) (1)

where, 𝑉(𝑡) is the normalized input voltage, 𝐼(𝑡) is the

normalized output current, and (𝑎, 𝑏) are constants. To

achieve memristive behavior, the condition |b|≤|a| must be

maintained [3]. In order to implement the memristor model

with threshold attribute, Zhang et al. suggested the

conductance formula given in Eq. (2).

𝐺𝑡 = {

𝐺𝑡−1 + 𝑐 × |𝑉|𝑛 if V ≥ VTH

𝐺𝑡−1 if −VTH < V < VTH

𝐺𝑡−1 − 𝑐 × |𝑉|𝑛 if V < −VTH

𝐺𝑖𝑛𝑖𝑡 if reset

 (2)

where, 𝐺𝑖𝑛𝑖𝑡 is the initial value of the memristor’s conductance,

𝐺𝑡 is the instantaneous conductance value, Gt−1 is the

conductance value at the previous moment, VTH is the voltage

threshold of the memristor, V is the input voltage, c is a

parameter for fine-tuning the pinched hysteresis

characteristics of the memristor, and n is the current

adjustment parameter. The memristor’s conductance changes

in response to positive or negative input voltage, either

increasing or decreasing, when the absolute value of the input

voltage exceeds the absolute value of the voltage threshold of

the memristor. This behavior is in accordance with the

physical properties inherent to a memristor [3].

To illustrate the implementation of the complete memristor

model, the computational steps within the model are illustrated

in Figure 2. First, the variables Ginit, VTH, Vin, T, n, and c, are

initialized. Subsequently, the input voltage is compared with

the threshold voltage level to determine the change in

conductance. Then, the output current is obtained by

multiplying the input voltage by the conductance value based

on Ohm’s law. Lastly, the simulation time is assessed, and if

the predefined duration is reached, the loop terminates;

otherwise, the aforementioned steps are reapeted. The

flowchart in Figure 3 shows the computational process within

the memristor model, illustrating the realization of the entire

model. Initially, the variables Ginit, VTH, Vin, T, n, and c are

initialized. The input voltage is then compared with the

voltage threshold to determine the alteration in conductivity.

Using Ohm’s law, the input voltage is multiplied by the

conductance value to obtain the output current. The process is

repeated until reaching the designated simulation time, at

which point the loop is exited [3].

Figure 2. FPGA based implementation of memristor model. (a) The model block diagram. (b) Circuit diagram of the

reconfigurable memristor model [3]

Figure 3. Flowchart of memristor implementation [3]

139

Their work involved designing custom circuits for

memristor, as shown in Figure 3 in a block diagram and data

path. Once the input voltage traverses the register, it undergoes

a comparison with a predefined voltage threshold. At the same

time, Eq. (2) is employed to determine the output conductance,

with the resulting calculation being allocated to the

conductance through result comparison. The emulator was

capable of reproducing the resistance switching behavior and

hysteresis of memristor devices. Additionally, they

implemented a memristor array of their model on FPGA to

conduct storage of binary image binarization using artificial

neural network

Example 2:

Tolba et al. [4] use FPGA to build a memristors emulater

circuit for Binary Convolutional Neural Networks, utilizing a

multi-bit XNOR gate as the primary component for binary

convolution. The circuit incorporated a memristor-based

pooling layer. The BCNN layer was achieved through a

bitwise XNOR-cell followed by a wide NOR gate. The

implemented design was implemented on Nexys4 FPGA,

demonstrating less than 1% utilization resources have been

used.

The two states of the memristor hysteresis loop were

determined using the formula y=(±a±b)x and y=(±a∓b)x, while

maintaining the condition |b|≤|a|. The implementation of

memristor’s emulator circuits could be either voltage-

controlled or current-controlled, depending on whether x(t)

represented the input voltage and y(t) represented the output

current, or vice versa. Additionally, a multi-state switching

model (consisting of five states) was implemented to extend

the two-state memristive model by incorporating additional

conditions. The design utilized a 32-bit fixed-point

representation, where the most significant bit (MSB) of ϕ

selected between b and its inverted value. The output y was

obtained by multiplying (a+b) with the input x. Figures 4 and

5 [4] illustrated the two-state and multi-state memristor

models, demonstrating the I-V pinched hysteresis loops for the

five memristor states and their corresponding representations.

Besides the above two examples, there are more approaches.

For instance, the study [54] involved embedding fractional-

order systems into FPGA hardware through the utilization of

the Xilinx System Generator toolbox within MATLAB

Simulink. It further examined a discrete model of a chaotic

system featuring a fourth-order memristor with fractional-

order dynamics, which was obtained through the conversion

of the system’s differential version using a finite truncation

method. The research also investigated the system’s dynamics

by exploring the Lyapunov exponents and conducting a

bifurcation analysis of the discrete fractional-order memristor

system.

Rajagopal et al. [55] introduced a new 4D no equilibrium

memristor chaotic system and investigated its dynamic

properties to demonstrate its chaotic behavior. They derived a

fractional order model of the system from its integer model

and analyzed its fractional order bifurcation property. The

authors achieved synchronization of identical fractional order

memristor chaotic systems utilizing genetically optimized PID

controllers and adaptive sliding mode controllers. They

conducted numerical simulations to confirm the theoretical

findings and showcased the practical feasibility of the

suggested system by implementing it on an FPGA.

Zhang et al. [56] presented a behavioral modelling of a

general multivalued memristor using FPGA, claiming that its

capability of exhibiting behavior similar to electrochemical

metallization memories, whether continuous or discrete in

nature. The suggested solution was implemented on a Xilinx

ZYNQ-7000 FPGA XQ7Z020, utilizing less than 1% of the

hardware resources. In order to assess the functionality of the

propsed model, the study constructed a quantized artificial

neural network using 8-valued memristors in FPGA.

Yu et al. [57] delved into the implementation of a PRNG,

pseudo-random number generator, for neural network chaos-

based systems on FPGAs. The research addressed the issue of

chaotic degradation that was caused by numerical accuracy

limitations and had the potential to significantly impact the

PRNG’s performance. The authors suggested a PRNG

featuring a feedback controller derived from a Hopfield neural

network chaotic oscillator, with a neuron subjected to

electromagnetic radiation. The magnetic flux through the cell

membrane of the neuron was chosen as a feedback condition

for the controller, creating disturbances among other neurons

and preventing periodicity.

Alombah et al. [58] proposed a locally active memristor

derived from a current-controlled generic memristor,

demonstrating a broad locally active zone. The memristor

based chaotic circuit consists of a memristor and an inductor

was developed and numerically simulated using MATLAB

then validated on FPGA.

Vourkas et al. [59] implemented a bipolar memristor device

model represented in Eq. (3), described in the study [60]. The

memristance R, in this model, varies at different rates based

on the applied voltage, whether it is higher or lower than the

threshold voltage vT. The threshold voltage is considered

symmetric for both switching cases (SET and RESET). The

memristance is limited by the upper and lower boundaries,

denoted as RON, (RMIN) and ROFF (RMAX), respectively. The

change in memristance is controlled by the step function (θ),

indicating that R can only change within its limiting values.

The change-rate constants α and β determine the rate of change

when |v(t)|<v T and |v(t)|>vT, respectively.

𝑅′ = 𝛽. 𝑣 +
1

2
(𝛼 − 𝛽). (|𝑣 + 𝑣𝑇|

− |𝑣 − 𝑣𝑇|. 𝜃(𝑅 − 𝑅𝑂𝑁). 𝜃(𝑅𝑂𝐹𝐹

− 𝑅)

(3)

Figure 6 illustrates the block diagram of the memristor’s

emulator model. The emulator takes inputs such as the top- and

bottom-electrode voltages (VTE and VBE), the initial desired

memristance (Rinit) obtained during the initialization phase.

The output signal is the current memristance R. The model-

specific parameters, including θ, β, and vT, were considered

internal constants.

They employed Euler’s method to calculate the

memristance (R) in the voltage controlled time-invariant

memristor model. Euler’s method is a numerical

approximation technique that allows for the iterative

calculation of a function based on its derivative. In this case, it

was used to estimate the change in memristance over time. The

model could handle high-frequency input voltage signals by

adjustable timestep (∆t). The time-step represents the interval

between successive calculations of the memristance value. By

appropriately adjusting ∆t, the model was able to capture and

respond to rapid changes in the input voltage signals.

140

Figure 4. Hardware architecture of the memristor emulator, (a) 2-state memristor model and (b) multistates memristor model [4]

Figure 5. (a) I-V pinched hysteresis loops for 5-memristor states (b) memristor states when the input is cos(wt) [4]

Figure 6. Memristor emulator block diagram [4]

141

Table 1. Memristor based designs

Memristor Based Application Algorithm Evaluation Tool Ref.

PUMA: Memristor-Based Accelerator General ML Algorithms Simulation [41]

Memristor-Based FPGA (mrFPGA) - HSPICE, mrVPR, Xilinx CAD Tools, FPGA [11]

Machine Learning BCNN FPGA [4]

Neuromorphic MLP, CNN Simulation [61]

Hyperchaotic System Adomian Decompostion FPGA [62]

Memory Model ANN Simulation (PSPICE) [63]

Neuromorphic ANN Hardware Realization [64]

Intellectual Property (IP) core Memrisitive-Chua chaotic FPGA [65]

Machine Learning ANN FPGA [3]

Memristor-Based Look-up Table (LUT) - Simulation (LTSPICE IV) [66]

Hybird CMOS-Memristor Based FPGA - TEAM Model [67]

Logic Circuit (Adder Circuit) - FPGA [68]

Gate Controlled Memristor Single-Layer Perceptron FPGA [6]

Memristor-Transistor Hybrid FPGA - Simulation (HSPICE) [69]

Multivalued Memristor ANN FPGA [56]

Chaotic System Speech Encryption FPGA [70]

Fractional-Order Memristor Grunwald-Letnikov FPGA [71]

Memristor Hardware (HW) Simulator ANN (Testing) Quartus II and ModelSim [72]

Memristor-Based Chaotic Circuit - FPGA [58]

Table 1 provides a compilation of research endeavors

focused on the implementation or simulation of memristor-

based applications tailored for specific algorithms. The table

outlines key details, including the nature of the application, the

algorithm it is designed to support, the evaluation tool

employed for assessment, and the pertinent references for each

work. This compilation serves as a resource, facilitating an

organized and insightful exploration of the diverse landscape

of memristor applications across various algorithmic domains.

4. CHALLENGES AND FUTURE DIRECTIONS

Despite the significant advancements in FPGA-based

memristor emulation, several challenges and opportunities for

future research remain. This section discusses some of these

challenges and outlines potential directions for future

investigations.

(1) Improving Accuracy: One of the primary challenges in

FPGA-based memristor emulation is achieving high

accuracy. While existing techniques have shown

promising results, further refinement is necessary.

Future research could focus on developing advanced

modeling approaches that capture the intricacies of

memristor behavior more accurately. This might

involve considering factors such as non-idealities,

variability, and temperature effects to enhance the

fidelity of emulation.

(2) Scaling to Large-Scale Systems: Another important

challenge is scaling FPGAbased memristor emulation

to large-scale systems. As the complexity and size of

digital circuits increase, there is a need for efficient

techniques that can handle larger designs. Future

investigations could explore methodologies to partition

and distribute the emulation workload across multiple

FPGAs or even across FPGA clusters, enabling the

emulation of complex systems while maintaining high

performance.

(3) Real-Time Adaptation: The dynamic adaptation

approach presented in some studies demonstrates the

potential for real-time adjustments to improve

emulation performance. However, further research is

needed to explore advanced adaptation algorithms and

strategies. This could involve leveraging machine

learning techniques or feedback control mechanisms to

dynamically adapt the emulation parameters based on

real-time observations. Such approaches would

enhance the adaptability and responsiveness of FPGA-

based memristor emulation to varying circuit

conditions.

(4) Standardization and Benchmarking: To facilitate

comparison and evaluation of different FPGA-based

memristor emulation techniques, standardization and

benchmarking frameworks are essential. Future

research could focus on developing standardized

benchmarks and performance metrics that consider

various aspects, including accuracy, speed, resource

utilization, and power consumption. These benchmarks

would enable fair comparisons among different

emulation approaches and promote the advancement of

the field.

(5) Integration with Design Tools: Smooth integration of

FPGA-based memristor emulation with existing design

tools is crucial for wider adoption. Future investigations

could explore methods to integrate emulation

frameworks into popular design flows, enabling

designers to validate and optimize memristor-based

circuits more effectively. This integration could involve

the development of plug-ins, APIs, or dedicated design

tool extensions that streamline the emulation process

and provide designers with comprehensive analysis and

debugging capabilities.

(6) Exploring Novel Applications: While FPGA-based

memristor emulation has primarily focused on digital

circuit design, there is a vast potential for exploring

novel applications. Future research could investigate

the use of FPGA-based memristor emulation in areas

such as neuromorphic computing, machine learning

accelerators, and analog/mixed-signal circuit design.

Exploring these applications could lead to

breakthroughs in diverse domains and further drive the

development of FPGA-based memristor emulation

techniques.

142

5. CONCLUSIONS

In conclusion, this study highlights the current state of

FPGA implementation and emulation of memristor devices,

identifies key challenges, and outlines potential future

directions. The study highlighted various techniques and

approaches employed in FPGA-based memristor emulation,

ranging from modeling and simulation to hardware

implementation and validation. These techniques leverage the

flexibility and reconfigurability of FPGAs to emulate the

behavior of memristor devices, enabling researchers and

designers to study and evaluate memristor-based circuits and

systems. Moreover, the study identified several challenges that

researchers need to address in future investigations. These

challenges, described in detail in Section 4, include scaling to

large-scale systems, real-time adaptation, standardization and

benchmarking, integration with design tools, and exploring

novel applications. Overcoming these challenges will

contribute to the advancement of FPGA-based memristor

emulation and its wider adoption in diverse domains.

REFERENCES

[1] Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.

(2008). The missing memristor found. Nature, 453(7191):

80-83. https://doi.org/10.1038/nature06932

[2] Yang, X., Taylor, B., Wu, A., Chen, Y., Chua, L.O.

(2022). Research progress on memristor: From synapses

to computing systems. IEEE Transactions on Circuits

and Systems I: Regular Papers, 69(5): 1845-1857.

https://doi.org/10.1109/TCSI.2022.3159153

[3] Zhang, Z., Li, C., Zhang, W., Zhou, J., Liu, G. (2023).

An FPGA-based memristor emulator for artificial neural

network. Microelectronics Journal, 131: 105639.

https://doi.org/10.1016/j.mejo.2022.105639

[4] Tolba, M.F., Halawani, Y., Saleh, H., Mohammad, B.,

Al-Qutayri, M. (2020). FPGA-based memristor emulator

circuit for binary convolutional neural networks. IEEE

Access, 8: 117736-117745.

https://doi.org/10.1109/ACCESS.2020.3004535

[5] Wang, X.Y., Wu, Z.R., Zhou, P.F., Iu, H.H.C., Kang,

S.M., Eshraghian, J.K. (2022). FPGA synthesis of

ternary memristor-CMOS decoders for active matrix

microdisplays. IEEE Transactions on Circuits and

Systems I: Regular Papers, 69(9): 3501-3511.

https://doi.org/10.1109/TCSI.2022.3141087

[6] Zhang, Z., Xu, A., Li, C., Wei, Y., Ge, Z., Cheng, X., Liu,

G. (2022). Gate-controlled memristor fpga model for

quantified neural network. IEEE Transactions on

Circuits and Systems II: Express Briefs, 69(11): 4583-

4587. https://doi.org/10.1109/TCSII.2022.3192616

[7] Rajagopal, K., Kingni, S.T., Khalaf, A.J.M., Shekofteh,

Y., Nazarimehr, F. (2019). Coexistence of attractors in a

simple chaotic oscillator with fractional-order-memristor

component: Analysis, FPGA implementation, chaos

control and synchronization. The European Physical

Journal Special Topics, 228: 2035-2051.
https://doi.org/10.1140/epjst/e2019-900001-8

[8] Bahloul, M.A., Naous, R., Masmoudi, M. (2017).

Hardware emulation of memristor based ternary content

addressable memory. In 2017 14th International Multi-

Conference on Systems, Signals & Devices (SSD),
Marrakech, Morocco, pp. 446-449.

https://doi.org/10.1109/SSD.2017.8167029

[9] Randrianantenaina, J.L., Baran, A.Y., Korkmaz, N.,

Kiliç, R. (2023). Functional emulator designs for a

memristor model with programmable analog and digital

platforms. Journal of Computational Electronics, 22(1):

519-530. https://doi.org/10.1007/s10825-022-01966-x

[10] Bontupalli, V., Yakopcic, C., Hasan, R., Taha, T.M.

(2018). Efficient memristor-based architecture for

intrusion detection and high-speed packet classification.

ACM Journal on Emerging Technologies in Computing

Systems (JETC), 14(4): 1-27.

https://doi.org/10.1145/3264819

[11] Cong, J., Xiao, B. (2011). mrFPGA: A novel FPGA

architecture with memristor-based reconfiguration. In

2011 IEEE/ACM International Symposium on

Nanoscale Architectures, Diego, CA, USA, pp. 1-8.

https://doi.org/10.1109/NANOARCH.2011.5941476

[12] Almurib, H.A., Kumar, T.N., Lombardi, F. (2014). A

memristor-based LUT for FPGAs. In the 9th IEEE

International Conference on Nano/Micro Engineered and

Molecular Systems (NEMS), Waikiki Beach, HI, USA,

pp. 448-453.

https://doi.org/10.1109/NEMS.2014.6908847

[13] Ranjan, R., Ponce, P.M., Kankuppe, A., John, B., Saleh,

L.A., Schroeder, D., Krautschneider, W.H. (2016).

Programmable memristor emulator asic for biologically

inspired memristive learning. In 2016 39th International

Conference on Telecommunications and Signal

Processing (TSP), Vienna, Austria, pp. 261-264.

https://doi.org/10.1109/TSP.2016.7760874

[14] Chua, L. (1971). Memristor-the missing circuit element.

IEEE Transactions on Circuit Theory, 18(5): 507-519.

https://doi.org/10.1109/TCT.1971.1083337

[15] Stavrinides, S.G., Picos, R., Corinto, F., Al Chawa, M.M.,

de Benito, C. (2021). Implementing memristor emulators

in hardware. In Mem-elements for Neuromorphic

Circuits with Artificial Intelligence Applications.

Academic Press, pp. 17-40.

https://doi.org/10.1016/B978-0-12-821184-7.00010-4

[16] Chua, L. (2019). Resistance switching memories are

memristors. Handbook of Memristor Networks, 197-230.
https://doi.org/10.1007/978-3-319-76375-0_6

[17] Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B.,

Mazumder, P., Lu, W. (2010). Nanoscale memristor

device as synapse in neuromorphic systems. Nano

Letters, 10(4): 1297-1301.

https://doi.org/10.1021/nl904092h

[18] Kapur, O., Guo, D., Reynolds, J., Han, Y., Beanland, R.,

Jiang, L., Groot, C. Huang, R. (2022). Back‐End‐of‐Line

SiC‐Based memristor for resistive memory and artificial

synapse. Advanced Electronic Materials, 8(9): 2200312.

https://doi.org/10.1002/aelm.202200312

[19] Liu, X.T., Chen, J.R., Wang, Y., Han, S.T., Zhou, Y.

(2021). Building functional memories and logic circuits

with 2D boron nitride. Advanced Functional Materials,

31(4): 2004733.

https://doi.org/10.1002/adfm.202004733

[20] Xia, X., Huang, W., Hang, P., Guo, T., Yan, Y., Yang, J.,

Yang, D., Yu, X., Li, X.A. (2023). 2D-Material-based

volatile and nonvolatile memristive devices for

neuromorphic computing. ACS Materials Letters, 5(4):

1109-1135.

https://doi.org/10.1021/acsmaterialslett.2c01026

[21] Strukov, D.B., Alibart, F., Stanley Williams, R. (2012).

143

Thermophoresis/diffusion as a plausible mechanism for

unipolar resistive switching in metal-oxide-metal

memristors. Applied Physics A, 107: 509-518.
https://doi.org/10.1007/s00339-012-6902-x

[22] Gul, F., Efeoglu, H. (2017). Bipolar resistive switching

and conduction mechanism of an Al/ZnO/Al-based

memristor. Superlattices and Microstructures, 101: 172-

179. https://doi.org/10.1016/j.spmi.2016.11.043

[23] Kumar, S., Wang, X., Strachan, J.P., Yang, Y., Lu, W.D.

(2022). Dynamical memristors for higher-complexity

neuromorphic computing. Nature Reviews Materials,

7(7): 575-591. https://doi.org/10.1038/s41578-022-

00434-z

[24] Li, C., Hu, M., Li, Y., Jiang, H., Ge, N., Montgomery, E.,
Zhang, J., Song, W., Dávila, N., Graves, C.E., Li, Z.,

Strachan, J.P., Lin, P., Wang, Z., Barnell, M., Wu, Q.,

Williams, R.S., Yang, J.J., Xia, Q. (2018). Analogue

signal and image processing with large memristor

crossbars. Nature Electronics, 1(1): 52-59.

https://doi.org/10.1038/s41928-017-0002-z

[25] Bharathi, M., Balraj, B., Sivakumar, C., Wang, Z., Shuai,

J., Ho, M.S., Guo, D. (2021). Effect of Ag doping on

bipolar switching operation in molybdenum trioxide

(MoO3) nanostructures for non-volatile memory. Journal

of Alloys and Compounds, 862: 158035.

https://doi.org/10.1016/j.jallcom.2020.158035

[26] Pedretti, G., Milo, V., Ambrogio, S., Carboni, R.,

Bianchi, S., Calderoni, A., Ramaswamy, N., Spinelli, A.,

Ielmini, D. (2017). Memristive neural network for on-

line learning and tracking with brain-inspired spike

timing dependent plasticity. Scientific Reports, 7(1):

5288. https://doi.org/10.1038/s41598-017-05480-0

[27] Sparvoli, M., Gazziro, M.A., Marma, J.S., Zucchi, G.

(2019). Memristor device fabricated from doped

graphene oxide. In 2019 IEEE 10th Latin American

Symposium on Circuits & Systems (LASCAS), Armenia,

Colombia, pp. 57-60.

https://doi.org/10.1109/LASCAS.2019.8667547

[28] Lanza, M., Wong, H.S.P., Pop, E., Ielmini, D., Strukov,

D., Regan, B.C., Larcher, L., Villena, M.A., Yang, J.J.,

Goux, L., et al. (2019). Recommended methods to study

resistive switching devices. Advanced Electronic

Materials, 5(1): 1800143.

https://doi.org/10.1002/aelm.201800143

[29] Biolek, Z., Biolek, D., Biolkova, V. (2009). SPICE

model of memristor with nonlinear dopant drift.

Radioengineering, 18(2).

[30] Rak, A., Cserey, G. (2010). Macromodeling of the

memristor in SPICE. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 29(4):

632-636. https://doi.org/10.1109/TCAD.2010.2042900

[31] Lehtonen, E., Laiho, M. (2010). CNN using memristors

for neighborhood connections. In 2010 12th International

Workshop on Cellular Nanoscale Networks and Their

Applications (CNNA 2010), Berkeley, CA, USA, pp. 1-

4. https://doi.org/10.1109/CNNA.2010.5430304

[32] Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.,

Rogers, S. (2011). A memristor device model. IEEE

Electron Device Letters, 32(10): 1436-1438. https:

//doi.org/10.1109/LED.2011.2163292

[33] Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.

(2012). TEAM: Threshold adaptive memristor model.

IEEE Transactions on Circuits and Systems I: Regular

Papers, 60(1): 211-221.

https://doi.org/10.1109/TCSI.2012.2215714

[34] Ding, S., Wang, N., Bao, H., Chen, B., Wu, H., Xu, Q.

(2023). Memristor synapse-coupled piecewise-linear

simplified Hopfield neural network: Dynamics analysis

and circuit implementation. Chaos, Solitons & Fractals,

166: 112899.

https://doi.org/10.1016/j.chaos.2022.112899

[35] Itoh, M., Chua, L.O. (2008). Memristor oscillators.

International Journal of Bifurcation and Chaos, 18(11):

3183-3206.

https://doi.org/10.1142/S0218127408022354

[36] Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.

(2011). Memristor bridge synapses. Proceedings of the

IEEE, 100(6): 2061-2070.

https://doi.org/10.1109/JPROC.2011.2166749

[37] Lin, X., Pi, X., Wang, X., Du, P., Lu, H. (2022). FPGA

implementation of piecewise linear spiking neuron and

simulation of cortical neurons. Microprocessors and

Microsystems, 91: 104516.

https://doi.org/10.1016/j.micpro.2022.104516

[38] Zhang, X.J., Iannaccone, G., Campabadal, F., Crupi, A.,

Ascoli, A., Cester, A. (2019). Nonlinear dynamic

modeling of resistive switching memories and emulation

on FPGA. IEEE Transactions on Circuits and Systems I:

Regular Papers, 66(5): 1959-1971.

[39] Mami, S., Lahbib, Y., Hachaichi, Y., Mami, A. (2019).

XSG-based HLS flow for optimized signal processing

designs for FPGAs. Microprocessors and Microsystems,

66: 31-42. https://doi.org/10.1016/j.micpro.2019.02.001

[40] Xia, L., Li, B., Tang, T., Gu, P., Chen, P.Y., Yu, S., Cao,

Y., Wang, Y., Xie, Y., Yang, H. (2017). MNSIM:

Simulation platform for memristor-based neuromorphic

computing system. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 37(5):

1009-1022.

https://doi.org/10.1109/TCAD.2017.2729466

[41] Ankit, A., Hajj, I.E., Chalamalasetti, S.R., Ndu, G.,

Foltin, M., Williams, R.S., Faraboschi, P., Hwu,

W.M.W., Strachan, J.P., Roy, K., Milojicic, D.S. (2019).

PUMA: A programmable ultra-efficient memristor-

based accelerator for machine learning inference. In

Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming

Languages and Operating Systems. Association for

Computing Machinery, New York, NY, USA, pp. 715-

731. https://doi.org/10.1145/3297858.3304049

[42] Ambrosi, J., Ankit, A., Antunes, R., Chalamalasetti, S.R.,

Chatterjee, S., Hajj, I.E., Fachini, G., Faraboschi, P.,

Foltin, M., Huang, S., Hwu, W.M., Knuppe, G.,

Lakshminarasimha, S.V., Milojicic, D., Parthasarathy,

M., Ribeiro, F., Rosa, L., Roy, K., Silveira, P., Strachan,

J.P. (2018). Hardware-software co-design for an analog-

digital accelerator for machine learning. In 2018 IEEE

International Conference on Rebooting Computing

(ICRC), McLean, VA, USA, pp. 1-13.

https://doi.org/10.1109/ ICRC.2018.8638612

[43] Lammie, C., Xiang, W., Linares-Barranco, B., Azghadi,

M.R. (2022). MemTorch: An open-source simulation

framework for memristive deep learning systems.

Neurocomputing, 485: 124-133.

https://doi.org/10.1016/j.neucom.2022.02.043

[44] Wang, W., State Univ of New York at Albany Coll of

Nanoscale Science and Engineering. (2011).

Complimentary metal oxide semiconductor (CMOS)-

144

Memristor Hybrid Nanoelectronics.

[45] Rothenbuhler, A., Tran, T., Smith, E.H.B., Saxena, V.,

Campbell, K.A. (2013). Reconfigurable threshold logic

gates using memristive devices. Journal of Low Power

Electronics and Applications, 3(2): 174-193.

https://doi.org/10.3390/jlpea3020174

[46] Mayacela, M., Rentería, L., Contreras, L., Medina, S.

(2022). Comparative analysis of reconfigurable

platforms for memristor emulation. Materials, 15(13):

4487. https://doi.org/10.3390/ma15134487

[47] Rajagopal, K., Tuna, M., Karthikeyan, A., Koyuncu, İ.,

Duraisamy, P., Akgul, A. (2019). Dynamical analysis,

sliding mode synchronization of a fractional-order

memristor Hopfield neural network with parameter

uncertainties and its non-fractional-order FPGA

implementation. The European Physical Journal Special

Topics, 228: 2065-2080.
https://doi.org/10.1140/epjst/e2019-900005-8

[48] Sahin, M.E., Cam Taskiran, Z.G., Guler, H., Hamamci,

S.E. (2020). Application and modeling of a novel 4D

memristive chaotic system for communication systems.

Circuits, Systems, and Signal Processing, 39: 3320-3349.
https://doi.org/10.1007/s00034-019-01332-6

[49] Han, Y., Wang, M., Zhao, H., Xie, Y. (2020). Adaptive

control of memristive systems: A review. IEEE

Transactions on Industrial Electronics, 68(2): 1726-1739.

[50] Wang, M., Han, Y., Xie, Y. (2017). Real-time feedback

control of memristor emulation in field-programmable

gate arrays. IEEE Transactions on Industrial Informatics,

13(6): 3314-3324.

[51] Shi, H., Yu, H., Gong, D., Song, L., Li, S. (2021).

Closed-loop FPGA emulation of memristor-based

systems: A neural network perspective. IEEE

Transactions on Industrial Informatics, 17(2): 962-971.

[52] Liu, X., Wang, H., Zhang, Y., Zhao, J., Li, Y. (2019).

Hardware-in-the-loop validation of fpga-based

memristor emulators. IEEE Access, 7: 162234-162243.

[53] Halawani, Y., Mohammad, B., Al-Qutayri, M., Al-

Sarawi, S.F. (2018). Memristor-based hardware

accelerator for image compression. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 26(12):

2749-2758.

https://doi.org/10.1109/TVLSI.2018.2835572

[54] Karthikeyan, A., Rajagopal, K. (2018). FPGA

implementation of fractional-order discrete memristor

chaotic system and its commensurate and

incommensurate synchronisations. Pramana, 90(1): 14.

https://doi.org/10.1007/s12043-017-1507-8

[55] Rajagopal, K., Guessas, L., Karthikeyan, A., Srinivasan,

A., Adam, G. (2017). Fractional order memristor no

equilibrium chaotic system with its adaptive sliding

mode synchronization and genetically optimized

fractional order PID synchronization. Complexity, 2017.

https://doi.org/10.1155/2017/1892618

[56] Zhang, Z., Xu, A., Ren, H.T., Liu, G., Cheng, X. (2022).

Reconfigurable multivalued memristor FPGA model for

digital recognition. International Journal of Circuit

Theory and Applications, 50(11): 3846-3860.

https://doi.org/10.1002/cta.3377

[57] Yu, F., Zhang, Z., Shen, H., Huang, Y., Cai, S., Jin, J.,

Du, S. (2021). Design and FPGA implementation of a

pseudo-random number generator based on a Hopfield

neural network under electromagnetic radiation.

Frontiers in Physics, 9: 690651.

https://doi.org/10.3389/fphy.2021.690651

[58] Alombah, N.H., Tchendjeu, A.E.T., Romanic, K., Talla,

F.C., Fotsin, H.B. (2021). FPGA implementation of a

novel two-internal-state memristor and its two

component chaotic circuit. Indian Journal of Science and

Technology, 14(27): 2257-2271.

https://doi.org/10.17485/IJST/v14i27.532

[59] Vourkas, I., Abusleme, A., Ntinas, V., Sirakoulis, G.C.,

Rubio, A. (2016). A digital memristor emulator for

FPGA-based artificial neural networks. In 2016 1st IEEE

International Verification and Security Workshop

(IVSW), Sant Feliu de Guixols, Spain, pp. 1-4.

https://doi.org/10.1109/IVSW.2016.7566607

[60] Pershin, Y.V., Di Ventra, M. (2010). Experimental

demonstration of associative memory with memristive

neural networks. Neural Networks, 23(7): 881-886.

https://doi.org/10.1016/j.neunet.2010.05.001

[61] Wang, Y., Wu, S., Tian, L., Shi, L. (2020). SSM: A high-

performance scheme for in situ training of imprecise

memristor neural networks. Neurocomputing, 407: 270-

280. https://doi.org/10.1016/j.neucom.2020.04.130

[62] Rajagopal, K., Karthikeyan, A., Srinivasan, A. (2018).

Dynamical analysis and FPGA implementation of a

chaotic oscillator with fractional-order memristor

components. Nonlinear Dynamics, 91(3): 1491-1512.
https://doi.org/10.1007/s11071-017-3960-9

[63] Ma, D., Wang, G., Han, C., Shen, Y., Liang, Y. (2018).

A memristive neural network model with associative

memory for modeling affections. IEEE Access, 6:

61614-61622.

https://doi.org/10.1109/ACCESS.2018.2875433

[64] Chu, M., Kim, B., Park, S., Hwang, H., Jeon, M., Lee,

B.H., Lee, B.G. (2014). Neuromorphic hardware system

for visual pattern recognition with memristor array and

CMOS neuron. IEEE Transactions on Industrial

Electronics, 62(4): 2410-2419.

https://doi.org/10.1109/TIE.2014.2356439

[65] Tolba, M.F., Fouda, M.E., Hezayyin, H.G., Madian, A.H.,

Radwan, A.G. (2018). Memristor FPGA IP core

implementation for analog and digital applications. IEEE

Transactions on Circuits and Systems II: Express Briefs,

66(8): 1381-1385.

https://doi.org/10.1109/TCSII.2018.2882496

[66] Kumar, T.N., Almurib, H.A., Lombardi, F. (2014). A

novel design of a memristor-based look-up table (LUT)

for FPGA. In 2014 IEEE Asia Pacific Conference on

Circuits and Systems (APCCAS), Ishigaki, Japan, pp.

703-706.

https://doi.org/10.1109/APCCAS.2014.7032878

[67] Sampath, M., Mane, P.S., Ramesha, C.K. (2015). Hybrid

CMOS-memristor based FPGA architecture. In 2015

International Conference on VLSI Systems, Architecture,

Technology and Applications (VLSI-SATA), Bengaluru,

India, pp. 1-6. https://doi.org/10.1109/VLSI-

SATA.2015.7050461

[68] Yang, L., Wang, Y., Wu, Z., Wang, X. (2021). FPGA

implementation of threshold-type binary memristor and

its application in logic circuit design. Micromachines,

12(11): 1344. https://doi.org/10.3390/mi12111344

[69] Aslam, M.H., Farooq, U., Awais, M.N., Bhatti, M.K.,

Shehzad, N. (2016). Exploring the effect of LUT size on

the area and power consumption of a novel memristor-

transistor hybrid FPGA architecture. Arabian Journal for

Science and Engineering, 41: 3035-3049.

145

https://doi.org/10.1007/s13369-016-2068-8

[70] Tolba, M.F., Sayed, W.S., Fouda, M.E., Saleh, H., Al-

Qutayri, M., Mohammad, B., Radwan, A.G. (2019).

Digital emulation of a versatile memristor with speech

encryption application. IEEE Access, 7: 174280-174297.

https://doi.org/10.1109/ACCESS.2019.2957300

[71] Zhang, X., Yang, G., Liu, S., Moshayedi, A.J. (2022).

Fractional-order circuit design with hybrid controlled

memristors and FPGA implementation. AEU-

International Journal of Electronics and Communications,

153: 154268.

https://doi.org/10.1016/j.aeue.2022.154268

[72] Ntinas, V., Vourkas, I., Abusleme, A., Sirakoulis, G.C.,

Rubio, A. (2018). Experimental study of artificial neural

networks using a digital memristor simulator. IEEE

Transactions on Neural Networks and Learning Systems,

29(10): 5098-5110.

https://doi.org/10.1109/TNNLS.2018.2791458

146

