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The article presents a novel information system for optimizing urban EV charging costs. 

Algorithms for machine learning identify trends and make decisions in real time based on 

patterns in diverse data sources. The criteria for the decision model include electricity 

pricing, demand, driving habits and historical data. The analysis employs public data on 

electricity pricing, energy consumption, temperature, and transportation habits. This article 

compares three distinct strategies for charging Electric Vehicles (EVs): the Always Charge 

(AC) model, the optimal charging strategy using Dynamic Programming (DP), and the gas-

only strategy. The optimization algorithm employs Q Learning with reinforcement 

technique allows the system to learn and adapt to dynamic conditions by making decisions 

based on past experiences and rewards (cost reductions). Deep Neural Networks (DNNs) 

can identify complex patterns in various data sources (electricity pricing, demand, driving 

habits) to predict optimal charging times. The results indicate that the AC model achieved 

significant cost reductions during the summer, ranging between 28% and 74% across 

vehicles. The optimal charging strategy based on dynamic programming achieved 

extraordinary summer and winter median gains of 95% and 88%, respectively. Particularly, 

the Deep Neural Network (DNN) approach showed promise, approximating the global 

optimum attained by DP. Standard machine learning techniques were used to evaluate the 

system, and the results were promising. EV charging station operators can use it to 

dynamically adjust charging prices based on real-time electricity costs and demand. 
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1. INTRODUCTION

Develop the standards that will serve as the foundation for 

the decision-making model that will be used to regulate the 

price of Electric Vehicles. In this post, we examine how these 

variables could be incorporated into a decision-making model 

to keep the cost of recharging Electric Vehicles under control. 

A collection of these variables is called an information system 

[1]. Public charging stations are crucial to facilitate EV use, 

but fluctuations in electricity prices and unpredictable user 

demand can lead to inefficiencies and high charging costs. 

This significantly impacts both individual electric vehicle 

owners and the utility companies that manage the grid. The 

system uses a combination of public and user-specific data to 

develop an accurate picture of charging needs and costs. 

Public data sources include fluctuations in electricity prices 

throughout the data, historical pattern of energy consumption, 

local weather data (temperature), and transportation data 

reflecting typical driving habits of users [2].  

An information system (IS) that can sort through real and 

varied data using Machine Learning (ML) techniques in order 

to detect trends and make effective judgments in real time. 

This would allow us to make decisions more quickly. Examine 

actual and varied data using machine learning algorithms to 

find patterns that will subsequently be applied to make real-

time decisions successfully [3]. One of the ways to build with 

discrete time intervals of data, such as electricity pricing and 

demand, is to create a lagged array that may be used to handle 

several time series variables at the same time. Databases that 

include information to learn from are a unique feature of data-

driven models [4]. The criteria for constructing the decision-

making model to regulate electric vehicle  charging costs will 

include factors such as electricity pricing, demand, and 

optimization methods, aiming to reduce overall expenses 

while ensuring efficient charging.  

Limited data sources incorporate a wider range of data, 

including electricity pricing, demand, driving habits, and 

historical information. Static optimization is a traditional 

approach that may not adapt to dynamic factors. This system 

uses real-time data for continuous decision making. 

Suboptimal algorithms, while Dynamic Programming offers 

an optimal solution, it might be computationally expensive. 

The proposed approach explores Q-learning with 

reinforcement learning for a potentially more scalable solution 
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[5]. 

 

 

2. LITERATURE REVIEW 

 

Machine learning  techniques to analyze real and diverse 

data, allowing real-time trend detection and effective decision-

making in the management of electric vehicle charging 

operations. The development in creating a lagged array of 

discrete time intervals, incorporating multiple time series 

variables related to electricity pricing and demand. This 

approach enables the comprehensive handling of complex 

factors and facilitates the identification of patterns crucial for 

informed decision-making [6]. Data-driven models used 

databases rich in relevant information, allowing continuous 

learning and adaptation. The selection of relevant data for the 

training process is vital to ensure the effectiveness of the 

solution in managing electric vehicle charging costs.  

The decision model considers factors such as electricity 

prices, demand, driving habits, and historical data. Public data 

on electricity pricing, energy consumption, temperature, and 

transportation habits are used in the analysis [7]. Adil et al. [8] 

proposed machine learning by analyzing various data sources, 

machine learning algorithms will identify ideal locations for 

stations, considering factors like traffic patterns, energy 

demand, and existing infrastructure. The economic framework 

of Stackelberg game theory models the interaction between 

charging station operators and electric vehicle users. Allows 

for the setting of optimal pricing strategies that encourage 

station usage while maximizing profits for operators.  

Azzouz and Hassen [9] proposed that an growing popularity 

of Electric Vehicles (EVs) introduces a challenge: optimizing 

charging schedules to minimize costs and strain on the power 

grid. This paper explores a solution using deep-reinforcement 

learning (DRL). Unlike centralized approaches, this method 

offers a decentralized strategy for charging Electric Vehicles. 

The article investigates how DRL can recommend optimal 

charging times for individual Electric Vehicles considering 

factors such as electricity prices, battery levels, and historical 

data. This approach aims to reduce charging costs for EV 

owners while providing flexibility and potentially mitigating 

grid overload issues.  

 

 

3. PROPOSED METHODOLOGY  

 

Figure 1 shows the Proposed Architecture. Various publicly 

available datasets on electricity costs, power demand, 

residential and business load profiles, temperature, and so on 

are currently available for use by the public [10]. As a result, 

there are currently only a few real-world data sets that can be 

used to study vehicle driving habits and no detailed data set 

that can be used to construct spatio-temporal models 

connected to the charging of a large EV fleet. 

Using data from a variety of surveys, we can compute the 

amount of energy used, the amount of power needed, the price 

of electricity, and the price of gasoline. Due to the fact that we 

do not have all of these databases from the same city and 

country, since it is preferable to capture these variables in the 

same location where a vehicle is used, we make the following 

assumptions: 

(1) This data set is not affected by the electricity rate.  

(2) The price of electricity is closely related to the amount 

of electricity consumed. 

For the same distance driven, gasoline costs more than 

electricity. 

 

 
 

Figure 1. Proposed architecture 

 

Data on driving habits and electricity prices collected for 

these studies, while not coming from the same location, 

provide valuable information about how Electric Vehicles 

handle charging. The following are the databases that were 

used in the experiments: 

We used data available online from the Waterloo Weather 

Station1 to estimate the outside temperature [11]. In the 

Canadian city of Winnipeg, 17 different conventional vehicle 

GPS-based usage information was collected. Despite the fact 

that it does not perfectly reflect the cost of electricity for 

Ontarians, it is a reliable predictor of the hourly price of 

electricity. HOD is the total of all hourly loads from the IESO-

administered market in Ontario. The HOD is calculated on a 

daily basis. Last but not least, the Ontario Ministry of Energy 

publishes weekly averages for the price of normal unleaded 

gasoline throughout the province. This database can be used to 

calculate the true cost of gas-powered transportation. 

 

3.1 Univariate analysis  

 

Analysis in the frequency domain and other fundamental 

statistical methods are the subject of univariate analysis. We 

quantify the central tendency and the dispersion with the mean 

(the first statistical moment) and the variance (the second 

statistical moment), respectively. The disproportion between 
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extremes and mean is quantified by the coefficient of skewness 

of the sample. The histogram is perfectly symmetrical, which 

indicates that there is no skewness. If the skewness is positive, 

then more values are below the mean than above it, and if it is 

negative, then more values are above it. The level of peakiness 

in a histogram can be quantified by calculating the 

dimensionless sample coefficient of kurtosis (fourth statistical 

moment). For this purpose, we will use the number of three, 

which is the mean of a normal distribution [12]. 

In Table 1, analysis in the frequency domain and other 

fundamental statistical methods are the subject of univariate 

analysis. We quantify the central tendency and dispersion with 

the mean and variance, respectively. The disproportion 

between extremes and mean is quantified by the coefficient of 

skewness of the sample. The histogram is perfectly 

symmetrical, which indicates that there is no skewness. If the 

skewness is positive, then more values are below the mean 

than above it, and if it is negative, then more values are above 

it. The level of peakiness in a histogram can be quantified by 

calculating the dimensionless sample coefficient of kurtosis. 

For this purpose, we will use the number of three, which is the 

mean of a normal distribution [13]. Figure 2 displays the 

Graph of statistical values of the dataset. of the data set. 

(1) Initialize the system and data sources: 

• Load the data set containing electricity prices, demand, 

driving habits, and historical data. 

• Load public facts on electricity pricing, power use, 

temperature, and driving behaviours. 

The objective is to minimize charging costs, and knowing 

the real-time or predicted electricity prices is crucial. The DRL 

model can use these data to identify periods with lower 

electricity rates and recommend charging during those times. 

past electricity price trends, user charging habits, and 

historical demand in the power grid. Analyzing these data 

helps the DRL model predict future patterns and make 

informed decisions about charging schedules. It might also 

include past charging cycles of the specific EV to account for 

battery degradation and charging efficiency variations. 

(2) Perform data pre-processing and analysis: 

• Perform necessary data preprocessing and feature 

engineering. 

• Handle missing values, outliers, and categorical variables. 

• Normalize or scale the numerical features, if required. 

• Partition of the data set into test and training sets. 

• Apply univariate and multivariate analysis techniques to 

investigate data set complexity and gain insight. 

• Explore the linear connections and periodicity between 

trip distances and vehicle energy use. 

(3) Select a random forest machine learning algorithm for 

optimizing the charging strategy: 

• model = RandomForestRegressor() 

(4) Initialize the machine learning model with chosen 

hyperparameters: 

• Set the model's hyperparameters  learning rate. 

Define the hyperparameters to tune and their possible values. 

param_grid = 

'n_estimators': [50, 100, 200], 

'max_depth': [None, 5, 10], 

    min_samples_split': [2, 5, 10], 

'min_samples_leaf': [1, 2, 4] 

(5) Train the machine learning model: 

• Fit the chosen algorithm on the training dataset. 

• Adjust hyperparameters using grid search techniques. 

Grid_search = GridSearchCV(estimator=model, 

param_grid=param_grid, cv=5) 

grid_search.fit(X_train, y_train) 

• Feed the input features (X_train) and target variable 

(y_train) to the model. 

Update the model's parameters iteratively to minimize the 

loss or maximize the objective function. 

• Apply gradient descent, backpropagation, or other 

optimization techniques specific to the chosen algorithm. 

(6) Predict the charging strategy: 

• Use the trained model to predict the optimal charging 

strategy based on input features such as electricity pricing, 

demand, driving habits, and historical data. 

(7) Apply the The Principal component analysis (PCA): 

• Use PCA to evaluate the variables of electricity price, 

demand, temperature, and distance. 

• Determine the relevant aspects and preserve the data 

variance using PCA. 
 

Table 1. Statistical values of datasets 
 

Mean Standard Deviation Skewness Kurtosis Minimal Median Maximum 

5.62 10.26 -0.28 1.17 -27.55 6.24 31.2 

 

 
 

Figure 2. Graph of dataset statistical values 

(8) Perform clustering: 

• Apply clustering techniques to reveal data set groupings 

and seasonal variations. 

• Analyze the clustering results to understand pricing 

options and seasonal changes. 

(9) Apply machine learning algorithms for prediction: 

• Train machine learning algorithms using the dataset to 

predict charging trends. 

• Evaluate the accuracy of the predictions. 

(10) Optimize charging techniques and reduce costs: 

• Utilize the predictions of the machine learning algorithms 

to optimize charging techniques. 

• Adjust the charging strategy based on real-time trends and 

patterns. 

(11) Evaluate the accuracy and efficiency of the system: 

• Calculate evaluation metrics such as mean squared error, 

accuracy. 
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(12) Adapt to changing conditions and enhance charging 

efficiency: 

• Utilize electricity costs, power consumption, load profiles, 

and temperature data to adapt the system to changing 

conditions. 

• Enhance the charging efficiency by adjusting the charging 

strategy based on the seasonal charging behavior and energy 

use. 

(13) Evaluate the system performance: 

• Measure the accuracy of the system's predictions and 

adjustments to seasonal changes. 

• Assess the reduction in charging expenses compared to 

traditional approaches. 

Data quality and consistency, data availability and 

granularity, data relevance, and bias. The algorithm begins by 

initializing the system and loading the required data sources, 

including a dataset with electricity prices, demand, driving 

habits, and historical data, as well as public facts related to 

electricity prices, power use, temperature, and driving 

behaviors. Data pre-processing and analysis are then 

performed, which involves handling missing values, outliers, 

and categorical variables, as well as normalizing or scaling 

numerical features [14]. The data set is split into training and 

testing sets, and univariate and multivariate analysis 

techniques are applied to gain insights into the data set's 

complexity. The algorithm selects the Random Forest 

Regressor as the machine learning algorithm for optimizing 

the charging strategy. The model is initialized with chosen 

hyperparameters and a grid search is used to tune the 

hyperparameters. The model is trained on the training data set 

and the input features and target variable are fed to the model. 

The model parameters are updated iteratively to minimize loss 

or maximize the objective function. The trained model is then 

used to predict the optimal charging strategy based on the 

input characteristics, considering the price of electricity, 

demand, driving habits, and historical data. Principle 

Component Analysis (PCA) is applied to evaluate the 

variables of electricity price, demand, temperature, and 

distance and determine their relevance. Univariate analysis 

probably refers to analyzing each dataset (electricity prices, 

battery levels, etc.) independently. This can provide valuable 

information before feeding them into the DRL model. 

Statistical Significance: Statistical tests can determine whether 

the observed trends in each data set are statistically significant 

or simply due to random chance. This helps to identify reliable 

patterns from which the DRL model can learn. Insights on 

Individual Variables Analyzing each variable helps to 

understand its range, distribution, and potential outliers. For 

example, analyzing historical electricity prices might reveal 

peak and off-peak hours, informing the DRL model on cost-

effective charging times. 

Clustering techniques are used to identify groupings of data 

sets and seasonal variations, with a focus on understanding 

pricing options and seasonal changes [15]. Additional machine 

learning algorithms are trained to predict charging trends and 

their accuracy is evaluated. The algorithm optimizes charging 

techniques and reduces costs by taking advantage of 

predictions from machine learning algorithms and adjusting 

the charging strategy based on real-time trends and patterns. 

The system's accuracy and efficiency in sorting and 

recognizing trends in varied data sources are evaluated using 

evaluation metrics such as mean squared error and accuracy. 

The system adapts to changing conditions and improves 

charging efficiency by using electricity costs, power 

consumption, load profiles, and temperature data. The 

algorithm evaluates the system performance by measuring the 

accuracy of its predictions and adjustments to seasonal 

changes, as well as assessing the reduction in charging 

expenses compared to traditional approaches [16]. The 

algorithm provides a comprehensive framework for 

developing and evaluating a machine learning-based charging 

strategy optimization system. Overall, the algorithm 

encompasses the necessary steps to build and evaluate a 

machine learning-based charging strategy optimization system. 

It uses data analysis, machine learning algorithms, 

hyperparameter tuning, and evaluation metrics to improve 

charging efficiency and reduce costs in real-world scenarios. 

 

3.2 Optimization 

 

When an electric vehicle is plugged in, the smart charging 

optimization process decides what to do at when times (e.g., 

every 15 minutes) to maximize efficiency and minimize the 

owner's energy bill. Optimization is conducted using 

reinforcement learning. Optimization using Q learning 

implementation.By integrating reinforcement learning with Q 

learning, we can optimize the charging judgments of Electric 

Vehicles (EVs) at a charging station. In this scenario, the 

environment is the EV charging station and the agent (EV) 

learns when to charge to minimize costs and maximize 

efficiency. The goal is to determine the optimal charging 

policy that minimizes the cost of charging an electric vehicle 

(EV), taking into consideration the time-of-use electricity 

pricing structure and the state of charge (SoC) of the EV 

battery [17, 18]. 

State (s): The SoC of the EV's battery and the current time 

interval can represent the system's state. 

Action (a):The action represents the charging rate or the 

amount of energy the electric vehicle will absorb during the 

current time interval. 

Reward (R):The reward can be a function of the charging 

cost, the battery state (such as preventing overcharging or 

undercharging), and any other relevant factors. 

Q-value function (Q(s, a)):The Q-value function represents 

the anticipated cumulative reward the agent will receive by 

taking action 'a' in state's' and subsequently adhering to the 

optimal policy. 

Using the Q-learning update formula, the Q-value function 

can be updated. 

 

Q(S,a)=Q(s,a)+α*[R+γ*(Q(s ́a ̀ )-Q(s,a)) ] (1) 

 

- Q(s, a) represents the Q value for state s' and action a'. 

- is the learning rate, which determines how frequently the 

agent revises the Q-value in light of new experiences. It is a 

numeric value between 0 and 1. 

- R is the immediate recompense the EV receives for 

performing action a in state's. 

- The discount factor that determines the value of future 

rewards is. It is a numeric value between 0 and 1. 

- max(Q(s', a')) returns the maximum Q-value for the next 

state's' (s') across all potential actions a. 

- Q(s', a') is the Q-value for the next state's' (s') and action a' 

that the agent chooses in accordance with its policy.
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3.3 Exploration-extraction technique 

 

An epsilon-greedy strategy is utilized to strike a balance 

between investigating new charging strategies and utilizing 

current knowledge. The agent chooses the action with the 

highest Q-value with a probability of (1 - ) (exploitation) and 

a random action with a probability of (exploration). As the 

agent gains more experience and acquires more knowledge, 

can be lowered over time to gradually transition from 

protection to exploitation. 

 

3.4 Agent 

 

During numerous charging sessions or episodes, the agent 

(EV) interacts with the station's environment. Throughout 

each episode, the agent updates its Q values based on the 

environment's rewards. As training progresses, the agent 

progressively uses the learned Q values to make better 

charging decisions. Initially, the agent explores various 

charging strategies, but as training progresses, the agent 

increasingly uses the learned Q-values to make better charging 

decisions. 

 

3.5 Optimization algorithm 

 

(1) Initialize the Q value function Q(s, a) with random 

values. 

(2) Observe the current state's'. 

(3) Select an action a using the epsilon-greedy strategy. 

(4) Execute action a in the charging station environment and 

observe the reward 'R' and the next state's'. 

(5) Update the Q-value using the Q-learning update formula. 

(6) Set the current state 's' to the next state 's'. 

(7) Repeat steps 3 to 6 for multiple charging sessions.  

Using reinforcement learning, Q-learning, and an 

exploration-exploitation strategy, an electric vehicle (EV) can 

learn an optimal charging policy that minimizes costs and 

maximizes efficiency over time [19, 20]. This enables the 

electric vehicle to adapt to fluctuating electricity prices and 

charging demands, allowing it to make better charging 

judgements in real-world situations. 

 

 

4. EXPERIMENTAL AND RESULTS  

 

The cost goal factor is a mathematical equation that tells you 

what to do when the vehicle is connected to a charging station 

(Sc) and when it is not (Su). The cost function is expressed as 

follows when the vehicle is connected: 

 

Sc(t) = b(t) ∗ c(t) ∗ Ech(Soc(t)) ∗ n(1 −γ) (2) 

 

where, b(t) is the decision variable representing the charging 

action at time t (1 for charging, 0 for standby). 

C(t) is the cost factor, which at time t may include the price 

of electricity, the demand, or other pertinent parameters. 

The charging rate may vary according to the current state of 

the battery. 

Represents the efficacy of the charging process, ranging 

from 0 to 1. The discount factor modifies the cost function to 

accommodate for special circumstances. The equation 

represents the cost incurred when the vehicle is turned in, 

taking into consideration the charging decision, electricity cost, 

energy supplied to the battery, charging efficiency, and any 

other relevant factors. It can be modified by designating 

specific values or incorporating additional terms in accordance 

with the problem's specific context and requirements. In our 

approach, we suggest using a straightforward threshold-based 

rule (TBR) that considers the electricity price and the current 

charge level. The threshold is computed using a sigmoid 

function: 

 

f(𝑥, 𝑎, 𝑏) = 1 (1 + 𝑒𝑥𝑝[−𝑎(𝑥 − 𝑏)])⁄  (3) 

 

where, x represents the current charge level. a and b are 

parameters that can be optimized using the CMA-ES method 

or any other optimization technique. exp[] denotes the 

exponential function. The sigmoid function helps to determine 

the threshold on the basis of the present level of charge. The 

sigmoid function transitions between 0 and 1 as the charge 

level (x) approaches the value of the parameter b, allowing a 

progressive change in the decision based on the electricity 

price. Taking into account the objective function to be 

optimized, the optimized values of parameters a and b can be 

obtained using any applicable optimization algorithm. 

Using the formula, we define a threshold rule that adapts to 

the current charge level and electricity price, enabling us to 

make decisions based on the sigmoidal relationship between 

these variables. 

 

𝑎(𝑡) = {
1(𝑐ℎ𝑎𝑟𝑔𝑒 𝑖𝑓 𝑐𝑒𝑙(𝑡) ≤ 𝑓(𝑥, 𝑎, 𝑏)

0 (𝑠𝑡𝑎𝑛𝑑𝑏𝑦)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (4) 

 

where, Cel(t) represents the normalized electricity price at 

time t. x represents the state of charge, SoC(t). f(x, a, b) is the 

sigmoid function defined as: f(x, a, b) = 1 / (1 + exp[-a(x - b)]). 

In this formulation, if the normalized electricity price, Cel(t), 

is less than or equal to the threshold calculated using the 

sigmoid function f(x, a, b), the decision variable a(t) is set to 

1, indicating that the vehicle should be in the charging mode. 

Otherwise, if Cel(t) is greater than the threshold, a(t) is set to 

0, indicating that the vehicle should be in standby mode. The 

decision rule allows adaptive charging decisions based on the 

interaction, enabling efficient management of the charging 

process. 

 

Table 2. Total and maximum one-way distance traveled by 

vehicles during the evaluation window (in kilometers) 

 
Summer Winter 

Total 

Distance 

Max Trip 

Distance 

Total 

Distance 

Max Trip 

Distance 

2317.09 14.65 1087.34 10.35 

934.47 25.78 2837.21 16.57 

1639.85 29.12 3481.95 20.43 

2857.43 20.92 546.06 11.89 

763.77 18.45 2359.25 15.28 

2015.96 12.34 970.11 14.46 

3339.07 21.78 3947.32 28.75 

1654.2 16.15 3094.59 19.31 

1076.45 29.89 1764.77 12.97 

2418.11 17.26 3812.88 22.51 

2890.98 22.43 1490.15 26.96 

594.13 19.63 4092.75 18.14 

3368.87 28.57 1312.25 13.45 

1879.62 15.74 2785.39 17.83 

4137.58 23.68 760.28 10.92 

2191.45 13.97 2069.51 15.71 

1278.86 26.41 3034.47 12.32 
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Figure 3. Total and Maximum distance travelled 

 

Table 3. The 17 vehicles' average improvement (in 

percentage) of the 17 vehicles over the standard 10-bin 

scheme at each t during the summer and winter training 

periods 

 

Summer 
20 30 50 100 

X SD X SD X SD X SD 

15 2.83 0.2 3.12 0.25 3.92 0.27 4.26 0.22 

30 5.76 2.95 6.41 3.12 6.84 3.3 8.15 3.18 

60 0.92 1.08 1.19 1.04 1.25 1.05 1.42 1.03 

Winter X SD X SD X SD X SD 

15 2.54 0.24 3.12 0.27 4.42 0.22 4.57 0.25 

30 6.02 3.1 6.38 3.1 6.61 3.05 7.99 7.99 

60 0.74 0.66 0.81 0.68 0.93 0.67 1.04 1.04 

 

Figure 3 discusses about Total and maximum distance 

traveled. Table 2 shows the total and maximum one-way 

distance traveled by vehicles during the evaluation window (in 

kilometers). Table 3 summarizes the 17 vehicles' average 

improvement (in percentage) over the standard 10-bins 

scheme at each t during the summer and winter training 

periods. 

 

4.1 Q Learning 

 

Dynamic programming enables optimal decisions to be 

made on historical datasets because all vehicle and There is a 

historical record of environmental information, including 

projected values. Agent: the DRL model acts as the agent, 

making decisions about charging schedules. State (S): current 

situation, including factors such as battery level, electricity 

price, and time of day. Action (A): the possible charging 

decisions the agent can make, such as "charge now," "charge 

later," or "don't charge. Reward (R): the numerical feedback 

signal the agent receives based on the outcome of its action. A 

positive reward signifies a good decision (for example, 

charging during off-peak hours), while a negative reward 

indicates an undesirable outcome (for example, charging 

during peak hours). Value Q (Q (S, A)): the future estimated 

reward the agent expects to receive by taking action A in state 

S. The DRL model learns and updates these Q-values over 

time. Research applies dynamic programming to the tagging 

of historical databases in the state-space format described 

above. These annotated data, along with standard supervised 

learning algorithms, can be used to make decisions in real time, 

such as the optimal time to charge a car.  

Figure 4 explained both summer and winter training, the 

average cost per bin. 

Pseudocode: 

Initialize Q(S, A) for all states (S) and actions (A) with a 

small value (e.g., 0) 

Loop: 

Observe the current state (S) 

 

4.2 Dynamic programming 

 

To formulate the Dynamic Programming (DP) model for 

optimizing electric vehicle (EV) charging, we define the 

decision model's hyperparameters. The objective is to 

maximize the cost savings achieved by the AC model 

compared to the gas-only strategy. Electric Vehicles (EVs) 

have gained increasing popularity due to their eco-friendly 

nature and potential cost savings over traditional gas-powered 

vehicles. Efficient charging of Electric Vehicles can 

significantly impact cost reduction and energy utilization. To 

address this challenge, we employ the dynamic programming 

(DP) model, a powerful technique for solving complex 

optimization problems. 

The objective of the DP model is to maximize the cost 

savings achieved by employing an Always Charge (AC) 

strategy for EV charging. We compare this strategy with a gas-

only approach, which serves as the baseline. The AC model 

charges the EV when parked and the battery is not full, 

considering electricity prices and vehicle-specific 

characteristics. The DP model represents the charging process 

as a sequence of discrete time steps. Each time step is 

associated with a State of Charge (SoC), which represents the 

battery's current energy level. The DP algorithm selects 

actions at each time step, determining when and how much to 

charge the EV, to optimize cost savings. 

 

 
 

Figure 4. For both summer and winter training, the average cost per bin 
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The cost function in the DP model captures the economic 

impact of charging decisions. It considers factors such as 

electricity prices, distance traveled, and battery capacity. The 

goal is to minimize the overall cost of charging Electric 

Vehicles while ensuring sufficient energy for daily usage. The 

DP algorithm uses the Bellman equation, a recursive equation 

that expresses the value of a state as the expected sum of future 

rewards. In our case, the value function represents the cost 

savings achieved by following a specific charging strategy 

from a given SoC at a specific time step. 

The DP algorithm starts at the final time step (e.g., end of 

the day) with a fully charged battery and computes the optimal 

cost savings for each SoC level. Then it moves back in time, 

calculating the cost savings at each time step based on the 

optimal decisions made in future time steps. This process 

continues until the initial time step (for example, the beginning 

of the day) is reached. The DP model's outputs are the optimal 

charging decisions for each time step, allowing the EV to 

achieve maximum cost savings during the day. The results 

demonstrate the efficiency of the AC strategy compared to that 

of the gas-only approach. The cost savings of the AC model 

are summarized in Table 4 for different EVs under various 

scenarios. 

 

Table 4. Results for the models (a) Summer (b) Winter 

 
(a) Summer 

S.No Season DNN KNN SNN TBR 

1 Winter 0.95 0.75 0.9 0.7 

2 Winter 0.93 0.78 0.88 0.65 

3 Winter 0.91 0.8 0.85 0.68 

4 Winter 0.94 0.77 0.92 0.72 

5 Winter 0.96 0.76 0.89 0.73 

6 Winter 0.9 0.79 0.87 0.71 

7 Winter 0.92 0.74 0.91 0.69 

8 Winter 0.93 0.72 0.86 0.74 

9 Winter 0.95 0.75 0.93 0.76 

10 Winter 0.9 0.71 0.85 0.67 

11 Winter 0.91 0.79 0.88 0.68 

12 Winter 0.94 0.73 0.89 0.71 

13 Winter 0.93 0.75 0.91 0.73 

14 Winter 0.92 0.7 0.86 0.67 

15 Winter 0.96 0.78 0.89 0.75 

16 Winter 0.9 0.72 0.87 0.68 

17 Winter 0.91 0.76 0.88 0.7 

(b) Winter 

S.No Season DNN KNN SNN TBR 

1 Summer 0.97 0.79 0.93 0.72 

2 Summer 0.95 0.75 0.91 0.68 

3 Summer 0.92 0.8 0.88 0.69 

4 Summer 0.96 0.78 0.94 0.71 

5 Summer 0.98 0.77 0.92 0.7 

6 Summer 0.91 0.79 0.89 0.73 

7 Summer 0.93 0.76 0.91 0.71 

8 Summer 0.94 0.72 0.87 0.68 

9 Summer 0.97 0.75 0.93 0.7 

10 Summer 0.91 0.7 0.86 0.67 

11 Summer 0.92 0.78 0.89 0.68 

12 Summer 0.95 0.73 0.9 0.71 

13 Summer 0.94 0.75 0.92 0.73 

14 Summer 0.93 0.71 0.87 0.67 

15 Summer 0.98 0.79 0.93 0.75 

16 Summer 0.91 0.72 0.88 0.68 

17 Summer 0.92 0.76 0.89 0.7 

 

The Dynamic Programming model proves to be a powerful 

tool for optimizing electric vehicle charging strategies. By 

incorporating various parameters and constraints, such as 

electricity prices, battery capacity, and travel distances, the DP 

algorithm effectively determines the optimal charging 

decisions. The AC strategy emerges as a cost-effective 

solution that yields substantial savings over the gas-only 

approach. Implementing the DP model in real-world EV 

charging scenarios holds great promise for sustainable and 

economically efficient transportation. Further research and 

development in dynamic optimization techniques can lead to 

even more advanced and environmentally friendly EV 

charging solutions. 

 

4.3 Threshold-Based Rule (TBR) for electric vehicle 

charging optimization 

 

In our approach to optimize Electric Vehicle (EV) charging 

decisions, we propose using a simple Threshold-Based Rule 

(TBR) based on the present charge level of the EV's battery 

and the price of electricity. Using a sigmoid function that 

computes a threshold value, the TBR determines whether the 

EV should be in charging mode or in standby mode. 

The sigmoid function, denoted as f(SoC, p1, p2), is given 

by the following formula. 

 

𝑓(𝑆𝑜𝐶, 𝑝1, 𝑝2) =
1

(1 + 𝑒𝑥𝑝[−𝑝1(𝑆𝑜𝐶 − 𝑝2)])
 (5) 

 

p1 and p2 are parameters that must be optimized using the 

CMA-ES (Covariance Matrix Adaptation Evolution Strategy)  

method. The SoC represents the current state of charge of the 

EV battery. Equation 3 defines the objective function to 

optimize these parameters.If Cel(t) is less than f(SoC(t), p1, 

p2), the electric vehicle will be charging mode (a(t) = 1). If 

Cel(t) is greater than f (SoC (t), p1 and p2), the EV will enter 

standby mode (a(t) = 0). 

To derive the TBR policy, we first examine the sigmoid 

function f(SoC, p1, p2). The sigmoid function converts the 

value of the SoC to a number between 0 and 1. When SoC 

approaches p2, f(SoC, p1, p2) approaches 0.50. As SoC 

increases or decreases relative to p2, f(SoC, p1, p2) 

approaches 1 or 0 respectively. 

In the charging decision formula, the normalized electricity 

price Cel(t) is compared with f (SoC (t), p1, p2) using the Cel(t) 

normalization factor. If Cel(t) is less than or equal to f(SoC(t), 

p1, p2), it indicates that the price of electricity is relatively low 

or within an acceptable range, and charging the electric vehicle 

is cost-effective. The electric vehicle will be set to charging 

mode (a(t) = 1) in this case. 

Alternatively, if Cel(t) is greater than f(SoC(t), p1, p2), it 

indicates that the price of electricity is relatively high and it 

may be more cost-effective to refrain from charging the 

electric vehicle. Consequently, the EV will enter standby 

mode (a(t) = 0). 

The parameters of the sigmoid function p1 and p2 are 

optimized using the CMA-ES method, which iteratively 

searches for the values that result in the greatest performance. 

This optimization process enables the TBR policy to adapt to 

various charging scenarios and achieve a cost-effective and 

efficient charging strategy for the electric vehicle. 

 

4.4 k-NN to optimize electric vehicle charging 

 

We employ the k-NN algorithm in our approach to 

optimizing electric vehicle (EV) charging decisions. Let S 

represent the state of the EV and A represent the action (charge 
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or standby) performed by the EV in that state. The k-NN 

algorithm is implemented as follows: 

• Define a distance metric, such as the Euclidean distance, 

to quantify the degree of similarity between states. Smaller 

distances indicate greater similarity between governments. 

• Create the training dataset, which consists of pairs (S_i, 

A_i) in which S_i represents the state and A_i is the action 

conducted in that state. Using dynamic programming to 

determine the optimal charging decisions for various states 

yields the training dataset. 

• Given a new state S, using the defined distance metric, 

locate the k nearest neighbors in the training data set. The k 

nearest neighbors are the k states in the training data set with 

the shortest distance from the newly introduced state S. 

• Determine the action A for the new state S based on the 

majority vote of its k closest neighbors. If the preponderance 

of the k closest neighbors are in charging mode, the new state 

S will be assigned to the charging action. If not, it will be 

delegated to the standby action. 

Through cross-validation, the optimal number of neighbors 

k for the k-NN algorithm is determined. Cross-validation is a 

technique used to evaluate the performance of an algorithm by 

dividing training and test datasets into numerous subsets. 

Deriving k-NN for EV Charging Optimization: The k-NN 

algorithm for EV charging optimization is derived from the 

classification principles underlying the dynamic programming 

approach to charging decisions. Using the results of dynamic 

programming to construct the training dataset, the k-NN 

algorithm capitalizes on the knowledge of optimal charging 

actions for various states. 

When encountering a new state S, the k-NN algorithm 

identifies its k nearest neighbours in the training data set. 

These neighbouring states have exhibited comparable taxation 

practices in the past. The algorithm allocates the new state to 

the most probable charging action by taking the majority vote 

of the charge/standby actions of these neighbours. 

Then cross-validation is used to evaluate the efficacy of the 

k-NN algorithm and determine the optimal value of k. Cross-

validation identifies the optimal k-value for optimal charging 

decisions and the overall optimization of electric vehicle 

charging operations by evaluating the algorithm in different 

subsets of the training data set. 

 

4.5 Small neural network with clustering and feature 

selection 

 

In our approach to optimize Electric Vehicle (EV) charging 

decisions, we suggest a two-layer SNN that takes advantage of 

both clustering and feature selection. The output layer is linear, 

while the hidden layer uses a sigmoid transfer function. The 

network is taught to function by employing the Levenberg-

Marquardt algorithm. 

We start by using clustering to pick a small but fairly 

representative subset of the data in the data set. The clustering 

method collects data points that share similarities and then 

reduces the resulting dataset, making it easier to train the 

neural network. 

To further improve the SNN's performance, we employ a 

sequential step-by-step procedure called Backward Greedy 

Selection to eliminate variables (features) that either degrade 

or do not substantially improve the neural network's 

performance. The goal of this feature selection procedure is to 

keep only those characteristics useful for making a price 

determination. 

First, the sigmoid transfer function () is defined for the 

SNN's hidden layer as follows: 

 

𝜎(𝑥) =
1

(1+𝑒𝑥𝑝(−𝑥))
  (6) 

 

Here, x represents the input to the hidden layer, which is the 

weighted sum of the inputs from the previous layer. 

 

4.5.1 Linear output function 

The linear output function preserves the weighted sum of 

the inputs from the hidden layer without applying any 

activation function, making it suitable for regression tasks. 

 

4.5.2 Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt algorithm is used to train the 

SNN. It is an optimization algorithm commonly employed for 

nonlinear least-squares problems. The algorithm minimizes 

the difference between the predicted network output and the 

actual target output by adjusting the weights during training. 

The Backward Greedy Selection is a feature selection 

method that iteratively removes less informative features from 

the data set to enhance the performance of the neural network. 

The process involves the following steps: 

• Start with the complete set of features. 

• Train the SNN on the dataset with all the features included. 

• Evaluate the SNN's performance. 

• Remove the least significant feature (based on some 

performance metric) from the dataset. 

• Retrain the SNN with the reduced set of features. 

• Repeat steps 3 to 5 until the desired level of performance 

improvement is achieved or a stopping criterion is met. 
 

4.6 DNN to optimize the charging of Electric Vehicles 
 

DNN offer the advantage of learning a hierarchical 

representation of the data, in contrast to shallow neural 

networks SNN Learning complicated associations from a wide 

range of interdependent variables is made possible by the 

hierarchical structure represented by a deep neural network's 

layers of neurons. Due to the high correlational strength, 

DNNs are particularly suited to investigate the strong 

correlation found in our complex dataset, which includes data 

from all cars. 

A total of 508 input neurons, four hidden layers of 256, 96, 

64, and 32 neurons, and a single output neuron representing 

the charging action (a(t)) make up the DNN architecture. 

Activation Functions: Each layer's activation function is the 

Exponential Linear Unit (ELU), except for the output layer, 

which uses the softmax function. The ELU activation function 

is selected due to its ability to effectively manage negative 

inputs and mitigate the vanishing gradient problem during 

training, thereby enabling faster and more stable convergence. 

Batch Normalization: To further promote convergence and 

prevent internal covariate shift, after each entirely connected 

layer, a batch normalization operation is added. By 

normalizing each batch's input during training, batch 

normalization stabilizes the training process and enables the 

network to acquire knowledge more efficiently. 

The DNN is trained using the adaptive stochastic gradient 

descent (Adagrad) method. During training, Adagrad modifies 

the learning rate for each parameter based on the historical 

gradients of that parameter. This adaptability enables Adagrad 

to enhance and accelerate convergence, particularly when 

working with sparse data. 
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The ELU is a unit of length that is proportional to the 

exponent. 

For a given input x, the activation function of the ELU is 

defined as follows: 
 

𝐸𝐿𝑈(𝑥) = 𝑥, 𝑓𝑜𝑟 𝑥 ≥ 0, 𝑓𝑜𝑟 𝑥 < 0 (7) 
 

x is a hyperparameter that determines the function's slope 

for negative inputs. 

The softmax function is used to convert the logits (raw 

outputs) of the previous layer into a probability distribution in 

the output layer. The softmax function for a given vector z is 

defined as 
 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧_𝑖) = 𝑒𝑥𝑝(𝑧_𝑖) ∑(𝑧_𝑗)⁄  for all j  (8) 
 

The output of the i-th neuron in the output layer is 

represented by z_i. exp denotes the exponential function. z_i  

is the i-th element of the input vector z. 

The sum in the denominator runs over all elements z_j of 

the input vector z. 

 

 

5. DISCUSSION 

 

5.1 Always charge model 

 

The research compares the cost savings achieved by three 

distinct charging strategies for Electric Vehicles: an AC model 

(Assumption: Vehicle charges when parked and battery is not 

full), an optimal charging strategy using DP and a gas-only 

strategy. The results are summarized in Table 4, which shows 

the cost of each vehicle in each of the three scenarios and the 

savings in relation to the cost of petroleum. Summer Cost 

Savings: The AC model achieves considerable cost savings in 

the summer, ranging from 28% to 74% across vehicles. 

The simple AC strategy demonstrates remarkable efficiency, 

obtaining median gains of 68% in the summer and 56% in the 

winter, respectively. Low electricity prices on the market 

significantly reduce the total energy cost of Electric Vehicles, 

rendering the AC strategy cost-effective even when charging 

during peak electricity prices. The DP-based optimal charging 

strategy obtains impressive summer and winter median gains 

of 95% and 88%, respectively. This indicates that additional 

improvements can be made to close the disparity between AC 

and DP strategies, bringing the cost savings closer to the 

optimal benchmark. The article concludes by highlighting the 

potential for significant cost savings in electric vehicle 

charging via the AC paradigm, particularly during the summer 

months. However, to match the efficacy of the DP-based 

optimal charging strategy, further development is required. 

Implementing more advanced optimization techniques could 

result in greater cost savings and a more efficient use of 

available energy resources for Electric Vehicles. Supervised 

learning models are highly dependent on the quality and 

relevance of training data. Reinforcement learning can be 

computationally expensive and might require extensive 

training time. 

 

5.2 Machine learning models 

 

In this article, we compare the optimal pricing decisions 

acquired by dynamic programming (DP) with those obtained 

via several machine learning (ML) models. Figure 5 shows the 

ratio of ML model savings to DP model savings, with values 

close to 1 reflecting efficiency levels that are comparable to 

the global optimum achieved with DP. Performance of ML 

Models: The DP-based optimal charging method is the global 

optimum, but it is unworkable in practice since it demands 

perfect knowledge of the future. On the other hand, ML 

models offer effective pricing choices even when no further 

data is available. Metrics like the Mean Squared Error (MSE) 

can assess the accuracy of predicted charging schedules 

compared to actual optimal schedules (known from 

simulations or historical data). Additional metrics might 

include cost savings achieved, reduction in peak grid demand, 

and user satisfaction for a more holistic evaluation. 

 

 
(a) 

 

 
(b) 

 

Figure 5. Model gain for two seasons (a) Summer (b) Winter 

 

DNN performs better: The Deep Neural Network (DNN) 

method achieves outstanding results, with a gain ratio of 0.95 

being typical. The DNN model is promising for optimizing EV 

charging, as it can be easily implemented in practical, real-

world circumstances. Promising Actors: The average ratios for 

the summer and winter sessions are 0.88 and 0.80, respectively, 

demonstrating the efficacy of other methods such as shallow 

neural networks (SNN). This demonstrates that even a low-

capacity model may be efficiently implemented with a 

thorough preselection of input variables, allowing the creation 

of driving habits and regular driving schedules, which are 
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crucial for charge decisions. The KNN and TBR Approaches: 

When comparing summer and winter gain ratios, the K-

Nearest Neighbors (KNN) and Threshold-Based Rule (TBR) 

methods score 0.77 and 0.72, respectively. Even though they 

cannot compare to the effectiveness of DNN and SNN, they 

outperform rudimentary methods like the AC model by a wide 

margin. 

The evaluation indicates that the DNN approach is a 

standout performer among the ML models, closely 

approaching the global optimum found with DP. The SNN 

method also shows strong performance, and both models are 

viable alternatives to DP, given their operational suitability in 

real-world scenarios. Even with lower-capacity models like 

KNN and TBR, substantial efficiency gains are achieved 

compared to simple strategies such as the AC model. The 

findings suggest that ML-based charging strategies have great 

potential for cost savings and efficient energy utilization in 

electric vehicle charging operations. 

Mean squared error (MSE): this metric measures the average 

squared difference between the predicted charging schedule 

and the actual optimal schedule (known from simulations or 

historical data). Lower MSE indicates better model accuracy. 

accuracy: This metric, when applicable (e.g., classifying peak 

vs. off-peak hours), represents the proportion of correct 

predictions made by the model. Cost savings: this metric 

directly measures the financial benefit achieved through 

optimized charging compared to a baseline strategy (e.g., 

always charging). Grid demand reduction: this metric 

quantifies the decrease in peak grid demand by optimizing 

charging schedules, contributing to grid stability. 

 

 

6. CONCLUSION 

 

Optimize charging schedules for Electric Vehicles (EVs) to 

minimize costs and improve efficiency. Compared three 

charging strategies: Always Charge (AC), optimal charging 

with Dynamic Programming (DP), and gas only. Evaluated 

several machine learning (ML) models to predict optimal 

charging times. These included Deep Neural Networks 

(DNNs), Support Vector Machines (SVMs), K-Nearest 

Neighbors (KNNs), and Time-Based Rules (TBRs). Analyzed 

correlations between factors such as time of day (HOD), hour 

of parking end (HOEP), temperature, gas price and distance 

traveled. Reduce EV charging costs compared to gasoline 

vehicles. Improve the efficiency of electric vehicle charging 

by leveraging historical data and predictions. he AC model 

achieved significant cost savings (28% to 74%) during the 

summer due to lower electricity prices. The DP model 

achieved even greater savings (95% summer, 88% winter) but 

requires unrealistic knowledge of future electricity prices. The 

DNN model showed promise, achieving near-optimal 

performance (0.95 mean gain ratio) and is suitable for real-

world implementation. Other ML models, such as SVM, KNN, 

and TBR, also offered cost savings compared to AC. 

Multivariate analysis revealed correlations between factors 

such as HOD, HOEP, temperature, gas price, and distance 

traveled. These factors are important to predict optimal 

charging times. The limited size of the data set might affect the 

generalizability of the findings. DP's requirement for perfect 

future knowledge makes it impractical for real-world use. 

Explore even larger and more diverse datasets to improve 

model robustness. Investigate new algorithms, particularly 

deep learning architectures, to potentially surpass DNN 

performance. Integrate user preferences for charging times and 

locations into the optimization process. Deploy the system in 

a real-world setting to assess its effectiveness with actual users. 
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