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A mutation in the beta-globin gene results in the blood condition known as Sickle cell 

anemia. It is estimated that number of individuals affected by sickle cell anemia worldwide 

exceeded 20 million and 250 million individuals globally bear the gene accountable for 

sickle cell disease and other hemoglobinopathies. SCA is characterized by aberrant red 

blood cells with a crescent form that can obstruct blood arteries and result in a number of 

health issues. Manual detection of SCA is time-consuming and costly. The goal of this study 

is to increase the efficiency and precision of sickle cell anemia detection by employing deep 

learning techniques on microscopic blood cell images, which can result in early 

identification and better patient care by employing deep learning techniques on microscopic 

blood cell images. Data augmentation techniques are applied to expand the dataset and 

enhance the model's performance. Otsu thresholding followed by watershed segmentation 

and region-based segmentation is performed for image processing. We have employed 

Extreme Learning Machine (ELM), a pretrained CNN InceptionV3 architecture, and a 

hybridized model of CNN + LSTM for classifying images into circular, elongated, and other 

categories. This amalgamated architecture facilitates deep feature extraction through CNN 

and detection via the extracted features using LSTM. The proposed hybridized model 

exhibits superior performance and accuracy which surpasses the results achieved by 

alternative approaches, making it a reliable tool for early SCA detection and improved 

patient care. 
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1. INTRODUCTION

Sickle cell anemia is an inherited blood condition that 

impairs hemoglobin structure and function [1]. A mutation in 

the HBB gene is the root cause of SCA. This mutation results 

in the production of abnormal hemoglobin known as 

Hemoglobin S [2]. Hemoglobin S tends to form rigid, 

abnormal red blood cells rather than the typical disc-shaped 

cells [3, 4]. Sickle cells have a drastically shorter life 

expectancy of just 10 to 20 days compared to normal RBCs, 

which have a life expectancy of 120 days. The sub-Saharan 

region of Africa has the highest prevalence, although people 

of Middle Eastern, Indian, and Mediterranean origin are also 

susceptible to it [5]. Each year, there are around 300,000 

infants with sickle cell disease globally and 5% of the world's 

population has the traits of sickle cells [6, 7]. Sickle cells have 

the potential to clog blood vessels, which would limit blood 

flow, harm tissue, and cause discomfort [8]. Depending on the 

severity of the condition, sickle cell anemia can cause a variety 

of moderate to severe symptoms, such as anemia, lethargy [9], 

jaundice, pain crises, delayed growth and development, 

eyesight issues, and an increased susceptibility to infections 

[10]. Complications of sickle cell anemia can affect multiple 

organ systems and include stroke, acute chest syndrome [11, 

12], pulmonary hypertension [13] and kidney damage [14]. 

Manual detection of sickle cell anemia is not efficient as it is 

time consuming, requires skilled personnel, it is not cost 

effective and difficult to detect where resources are limited 

therefore in this paper image classification technique is used 

to overcome these barriers by classifying the microscopic 

blood images. Image preprocessing is done by applying 

filtration and segmentation techniques such as watershed 

segmentation [15], region based segmentation and then a 

comparative study of different deep learning models is done as 

deep learning is efficient for image classification it can detect 

complex pattern and relationship in data which may be 

difficult to identify with machine learning models. We have 

used ELM, CNN inception v3 and a combine CNN- LSTM 

model to classify the microscopic blood images into circular, 

elongated and others. 

2. LITERATURE REVIEW

An overview of various studies to diagnose sickle cell 

anemia using various techniques which includes image-based 
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classification is presented. In 1910, Dr. James B. Herrick's 

gave the first explanation on SCA in the published literature 

of sickle cell disease [16]. To distinguish between circular and 

elongated blood cells in a processed picture, Otsu thresholding 

with watershed segmentation are performed. RF, logistic 

regression, support vector machines, and naive bayes are then 

applied, with random forest producing the best results with an 

accuracy of 92% [17]. Fuzzy c means was applied, extracted 

geometrical and statistical features were used after to train and 

compare KNN, SVM and ELM where ELM was superior with 

87.7% of accuracy, 83.33% specificity and 87.5% sensitivity 

as proposed by Chy and Rahaman [18]. Otsu thresholding 

followed by gaussian and canny filter to enhance the image for 

classification using gradient boost and random forest classifier 

with SDS-score of 95.6% and 94.4%which performed better 

than previous models by selecting the best parameters using 

randomized and grid search [19]. Data augmentation was used 

to minimize overfitting where the model plus a multiclass 

SVM classifier attains highest accuracy [20]. When it comes 

to accuracy and processing time, Niblack's methodology 

outperforms other techniques of adaptive thresholding with 

95.4% accuracy and 1.73 seconds of processing time [21]. The 

amalgamation of fuzzy C-means and NICK's thresholding 

with KNN classifier was the most effective, according to 

Patgiri and Ganguly [22]. Distinct adaptive thresholding 

methods are tested together with fuzzy C-means, Naive Bayes 

and KNN classifier. Machine learning models were 

outperformed by MLP, a sort of feedforward neural network 

with many layers of neurons [23]. Faster R-CNN was 

implemented to detect RBCs, WBCs and Platelets which 

achieved greater accuracy in detecting objects more 

effectively [24]. For classification, Soni et al. [25] proposed 

equipped AlexNet model transfer learning, including model 

evaluation utilizing data division algorithms. Deep neural 

network in which augmented images are fed to a deep CNN 

model utilizing pre-trained models such as VGG16, VGG19, 

ResNet50, ResNet101, and InceptionV3, among which 

InceptionV3 yielded the highest accuracy of 91% [26]. Seven 

CNN-based hybrid image classification techniques—CNN 

with ELM, KNN, GA, MLP, SVM, RNN, and LSTM—were 

compared to determine which was the most accurate [27]. 

CNN-LSTM performed better. Integration of CNN-LSTM 

utilized for feature extraction and the latter for feature-based 

classification [28]. CNN model and a RCNN are two recent 

techniques that are compared and combined in video analysis 

to categorize cell motion [29]. Our research paper introduces 

a hybrid model, yielding superior results as CNNs and its 

architectures have been separately explored, their integration 

in this domain remains unexplored. 

 

 

3. METHODOLOGY 

 

3.1 Image acquisition 

 

The image dataset used in this research was acquired from 

a local hospital and is part of confidential patient records. The 

dataset consists of 260 microscopic colored blood cell images 

taken in JPG format. The images consist of normal RBC’s and 

abnormal RBC’s like sickle cell and others. 

 

3.2 Data augmentation 

 

By generating extra training samples from the original data, 

a technique known as data augmentation is used to artificially 

enhance the size of a dataset. It prevents overfitting, can help 

in improving the performance and generalization of a model 

[20]. The rotation angles of images are 0, 90, 180 and 270, part 

of dataset is flipped horizontally and vertically and a scaling 

factor between 0.8 and 1.2 is applied to introduce variations in 

image size. 

 

3.3 Image preprocessing 

 

Image preprocessing is used to enhance the quality 

microscopic blood images and prepare images for subsequent 

processing steps. To minimize complexity and dimensionality, 

as well as to remove high frequency noise, the picture is first 

converted to grayscale using a mean filter given as: 

 
( 1)/2 ( 1)/2

, ,2
( 1)/2 ( 1)/2

1 n n

i j i x j y

x n y n

W Z
n

− −

+ +

=− − =− −

=    (1) 

 

where, W is the input gray image, Z is the output image, and n 

is the size of the kernel. The resulting value represents the 

average intensity of the neighborhood surrounding the pixel at 

position (i, j).  

Followed by a median filter to smooth the image. The 

Gaussian filter is applied to remove noise while preserving 

edges given as: 
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where, W is the input image, Z is the output image, K is the 

normalization factor, n is the size of the Gaussian kernel, and 

G is the Gaussian kernel given below: 
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where, x and y are the distances from the center of the kernel, 

the Gaussian distribution's standard deviation is denoted by the 

sigma, π is the mathematical constant, and e is the base of the 

natural logarithm. 

Finally, to locate the cell borders, the Canny edge filter is 

used. 

 

3.4 Segmentation 

 

Segmentation is a technique used to separate items of use 

from the background of a picture. First, Otsu thresholding is 

applied given by Eq. (4): 

 

𝜎𝑤
2 (𝑡) = 𝑤0(𝑡) ⋅ 𝑤1(𝑡) ⋅ [𝜇0(𝑡) − 𝜇1(𝑡)]2 (4) 

 

The variance for a particular threshold value "t" is denoted 

by the symbol 𝜎𝑤
2 . The likelihood of a pixel falling into the 

background class for threshold "t" is calculated as the 

proportion of pixels with intensity levels below "t" to all of the 

pixels in the picture, and is denoted by the formula w0(t). 

The likelihood of a pixel falling into the foreground class 

for threshold "t" is expressed as w1(t)which is calculated as the 

ratio of pixels with intensity values greater than or equal to "t" 

to all pixels in the picture. The average intensity value of the 

background class pixels given threshold "t" is represented by 
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the formula μ0(t). The average intensity value of the 

foreground class pixels given threshold "t" is μ1(t). 

Following this, Watershed segmentation was then applied 

to refine the segmented regions and separate objects that were 

touching or overlapping. Finally, more attributes were 

extracted from the segmented sections using region-based 

segmentation, such as texture, shape, or size. This combination 

of techniques resulted in accurate and robust segmentation of 

blood cells in the images. 

 

3.5 Morphological operations 

 

Morphological operations are applied to enhance features 

and improve the segmentation process. To extract critical 

information from the images, we performed dilation and 

closing to fill gaps and holes of the object, erosion and opening 

is done to remove small objects and smooth out the boundaries. 

 

3.6 Feature extraction 

 

We did feature extraction to obtaining meaningful 

information from processed image dataset as given in Figure 

1. 

 

 
 

Figure 1. Block diagram of methodology 

 

Metric Value: It represents the total number of pixels found 

inside the area that is relevant (ROI). Mathematically, Metric 

Value can be represented as follows: 

 

𝑀𝑒𝑡𝑟𝑖𝑐𝑉𝑎𝑙 = 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑖𝑥𝑒𝑙𝑠𝑖𝑛𝑅𝑂𝐼 (5) 

 

Circularity: It measures the roundness of the object. A 

normal RBC has a circularity of 1, while an abnormal RBC 

like sickle cell and others has a circularity inclining towards 0. 

Mathematically, Circularity can be calculated as: 

 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
4 ⋅ 𝜋 ⋅ 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 (6) 

 

Standard Deviation: It measures the degree of variation of 

the pixel values within the region of interest. Mathematically, 

Standard Deviation can be calculated as: 
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Aspect Ratio: The aspect ratio is calculated by dividing the 

vertical axis length by the horizontal axis length. Following 

are the mathematical steps to determine the aspect ratio: 

 

𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑊𝑖𝑑𝑡ℎ

𝐻𝑒𝑖𝑔ℎ𝑡
 (8) 

 

Eccentricity: It is the measure of how much an object 

deviates from a perfect circle. Mathematically, Eccentricity 

can be calculated as: 

 

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = √1 − (
𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠

𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠
)

2

 (9) 

 

Variance: It measures the degree of spread of the pixel 

values within the region of interest. Mathematically, Variance 

can be calculated as: 
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Entropy: It measures the randomness or uncertainty of the 

pixel intensity distribution within the region of interest. 

Mathematically, Entropy can be calculated as: 
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Energy: It measures the sum of the squared pixel values 

within the region of interest. Mathematically, Energy can be 

calculated as: 
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Kurtosis: It measures the degree of peakedness of the pixel 

intensity distribution within the region of interest. 

Mathematically, Kurtosis can be calculated as: 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 
∑ (𝑥𝑖−𝑥)

4
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𝑛
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𝜎4  (13) 

 

Skewness: It measures the degree of asymmetry of the pixel 

intensity distribution within the region of interest. 
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Mathematically, Skewness can be calculated as: 
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These features are used to train and evaluate ELM classifier 

used for sickle cell detection. 

 

3.7 Classifiers 

 

3.7.1 ELM 

It is a simple, highly computational efficient single-hidden-

layer feedforward neural network [30]. Its output weights are 

solved using a closed-form method, and its input weights are 

initialized randomly. As opposed to advanced algorithms for 

machine learning like KNN and SVM, ELM has been 

demonstrated to perform better in the identification of SCA 

using microscopic blood images [18]. Its efficient due to 

simplicity in architecture and faster training time, although it 

does not leverage the intricate hierarchical features captured 

by deeper architectures. 

 

3.7.2 CNN InceptionV3 

A CNN architecture called Inception-V3 is used to classify 

images due to its efficient feature extraction, parallel 

processing, and better accuracy [31]. Convolutional, pooling, 

and activation layers are included in its 48 total layers. 

Additionally, it has Inception modules, which combine 1x1, 

3x3, and 5x5 convolutions with pooling and concatenation 

processes to capture intricate hierarchical patterns. The 

network can extract features using these modules at various 

sizes and resolutions. Here, batch normalization and 

regularization are used to enhance performance while 

preventing overfitting. 

 

3.7.3 CNN – LSTM hybridization 

In Figure 2, Convolutional neural network (CNN) is a type 

of deep neural network that includes convolutional layers, 

pooling layers, and fully connected layers [32] that work 

together to get important characteristics from the input data 

and categorize the data as circular elongated and other shapes. 

It also uses filters [33] or kernels for extraction of specific 

features: 

 

 
 

Figure 2. CNN architecture 
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where, in Eq. (15) yp,q is the output activation at location (p, q) 

in the feature map, f being the activation function (ReLU is 

used), xp+i, q+j being the input activation at position (p+i, q+j) 

in input feature map, wi,j is the weight (or kernel) applied to 

input feature map, b is the bias term. 

The feature maps created by the convolutional layers are 

down sampled by pooling layers to decrease their spatial 

dimensionality [34]. Convolutional and pooling layers' feature 

maps are then used by fully connected layers to categorize the 

input picture [35]. 

Long Short-Term Memory (LSTM) is a form of recurrent 

neural network (RNN) shown in Figure 3 and is intended to 

address the issue of vanishing gradients in conventional RNNs 

[36]. A memory cell is used by LSTMs to store data over time 

[37], and the input gate, output gate, and forget gate being the 

three gates that regulate how data enters and leaves the 

memory cell. Each time a time step is taken, the input gate Eq. 

(16) chooses which data should be stored in the memory cell. 

The values that come from this process are then transferred via 

a tan activation function, which creates the new candidate cell 

state. 
 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (16) 

 

 
 

Figure 3. LSTM architecture 
 

The memory cell state is obtained by subtracting the result 

from the memory cell state as determined by the forget gate 

Eq. (17) for each time step in order to produce the new cell 

state. 
 

 𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (17) 

 

A tanh activation function Eq. (19) is applied to the values 

once the output gate Eq. (18) has determined which data 

should be output from the memory cell at each time step. 

 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (18) 

 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗

𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1

+ 𝑏𝑐)  

(19) 
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which output gate multiplies to create the new hidden state Eq. 

(20). 

 

 ℎ𝑡 = 𝑜𝑡 ∗𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑐𝑡)  (20) 

 

where, xt is the input at time step t, ht is the hidden state output 

at time step t, ct is the cell state at time step t, * represents 

element-wise multiplication, and W and b are the weight 

matrices and bias vectors that will be learned during training. 

𝜎 is the sigmoid activation function. 

CNN-LSTM: CNN and LSTM networks are combined to 

create hybrid architecture it is advantageous for sickle cell 

anemia detection by effectively combining spatial and 

temporal information, recognizing sequential patterns, and 

creating robust feature representations critical for accurate 

image classification. The architecture blends the LSTM's 

temporal modelling skills with CNNs’ feature extraction 

capabilities. The LSTM classifier is used to model the 

temporal connections between frames and arrive at a final 

prediction. Each frame of the input sequence is processed by 

the CNN feature extraction algorithm to extract pertinent 

features. The CNN feature extractor uses a convolutional layer 

with 32 filters each, kernels of size 3x3 and is triggered by the 

ReLU activation function. It then uses 10 convolutional and 5 

pooling layers, followed by one fully connected layer. For the 

final classification into circular, elongated, and other shapes, 

the LSTM network consists of one LSTM layer with 64 units, 

followed by one fully linked layer, as illustrated in Figure 4. 

Further hyperparameter tuning is done where learning rate is 

0.001 and dropout rate 0.3 for regularization. Backpropagation 

through time (BPTT) jointly train the CNN-LSTM 

components in order to enhance the hybrid architecture's 

overall performance. Modern findings in image classification 

to identify sickle cell anemia have been attained using the 

CNN-LSTM hybrid architecture. 

 

 
 

Figure 4. CNN + LSTM 

4. RESULT 

 

The dataset employed in this study consists of 750 

microscopic blood pictures, of which 80-20 ratio is maintained 

train test split respectively. To enhance the dataset size and 

improve performance, image augmentation is used. In image 

Figure 5 preprocessing images are converted from RGB to 

grey scale after that mean, median and gaussian filter is 

applied to obtain processed image. Figure 6 processed images 

are then passed through segmentation step where otsu 

thresholding in Figures 7 and 8, watershed segmentation, 

region-based segmentation images several morphological 

operations are done. Table 1 gives the result of feature 

extraction. 

 

 
 

Figure 5. Original image 

 

 
 

Figure 6. Processed image 

 

 
 

Figure 7. Binary image 

 

 
 

Figure 8. Image after segmentation, noise removal and 

filling holes using morphological 
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Table 1. Feature extraction 

 

Features 
Normal Blood 

Cells (Circular) 

Sickle Cell 

(Elongated) 
Other 

Metric value 1.197 0.503 0.809 

Standard 

Deviation 
0.391 0.314 0.443 

Aspect Ratio 1.335 5.893 4.223 

Eccentricity 0.396 0.904 0.677 

Variance 0.128 0.109 0.192 

Entropy 0.598 0.937 0.707 

Kurtosis 1.551 4.835 3.162 

Skewness 1.991 0.642 1.399 

 

Refined pictures with relevant features are then input into 

ELM, InceptionV3, and CNN-LSTM where accuracy, 

precision, F1 score and recall of the above techniques are 

reported based on TP, TN, FP, and FN results. Tables 2-4 are 

examples.  
 

Table 2. ELM 

 
Class Accuracy Precision Recall F1 Score 

Circular 92.8% 0.88 0.90 0.89 

Elongated 91.6% 0.88 0.87 0.87 

Others 90.8% 0.86 0.86 0.86 

 

Table 3. Inception V3 
 

Class Accuracy Precision Recall F1 Score 

Circular 92.93% 0.90 0.89 0.89 

Elongated 93.47% 0.90 0.90 0.90 

Others 92.00% 0.88 0.88 0.88 

 

Table 4. CNN – LSTM 

 
Class Accuracy Precision Recall F1 Score 

Circular 95.73% 0.94 0.93 0.93 

Elongated 94.67% 0.92 0.92 0.92 

Others 94.93% 0.92 0.93 0.92 

 

In Figures 9-11, confusion matrix of ELM, InceptionV3 and 

CNN+LSTM are depicted where true positive refers to correct 

detection of sickle cell, TN refers correct detection of normal 

cell, FP refers to incorrect detection of normal cell and FN 

refers to incorrect detection sickle cell as CNN+LSTM model 

has consistent TP and TN values and less FP and FN values 

which indicates that CNN+LSTM outperforms InceptionV3 

and ELM. 
 

 
 

Figure 9. Confusion matrix of ELM 

 
 

Figure 10. Confusion matrix of Inception V3 

 

 
 

Figure 11. Confusion matrix of CNN - LSTM 

 

 
 

Figure 12. Accuracy of CNN-LSTM architecture 

 

 
 

Figure 13. Loss of CNN-LSTM architecture 
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In Figures 12 and 13 graphical representation of accuracy 

and cross-entropy (loss) with respect to number of epochs is 

depicted to monitor the performance of CNN+LSTM model 

where number of epochs is 125. CNN+LSTM has 95.56% of 

training accuracy and 91.85% validation accuracy whereas 

0.08 and 0.26 is training loss and validation loss, respectively. 

ELM has less accuracy compared to InceptionV3 

andInceptionV3 has less accuracy than CNN+LSTM 

architecture. CNN+LSTM provides better results in detection 

of sickle cell comparative to other mentioned models used in 

this paper given in Table 5. 

 

Table 5. Comparison of overall accuracy 

 
Model Overall Accuracy 

CNN + LSTM 92.667% 

CNN InceptionV3 90.133% 

ELM 87.601% 

 

 

5. CONCLUSIONS 

 

Hemoglobin molecules are produced abnormally as a result 

of the genetically transmitted blood disorder known as sickle 

cell anemia. In order to avert serious health issues our research 

focuses on faster and more accurate identification of sickle cell 

anemia using image classification using deep learning 

techniques. Expansion of data set is done using data 

augmentation to prevent overfitting. Different deep learning 

models like ELM, InceptionV3 and CNN+LSTM are used to 

classify images into circular, elongated and others. Early 

detection is crucial for timely intervention and management of 

the condition. Our research shows that the hybrid CNN and 

LSTM excelled the others, achieving the highest accuracy of 

92.66%, when compared to ELM and InceptionV3.This 

implies that the performance of deep neural networks for the 

classification of sickle cell anemia in images can be improved 

by integrating CNN and LSTM components. This helps in 

accurate and early detection of sickle cell anemia through 

image classification which contribute to improved patient 

outcomes and more efficient healthcare processes. 

 

 

6. FUTURE WORK 

 

In this section, we list a few prospective areas for further 

study and advancement, expansion of data to include more 

diverse set of patients and to evaluate the generalizability of 

our models to other populations. For better detection of 

echinocytes optimization of hyperparameter can be done and 

exploration of different deep learning architecture with 

ensembling techniques can be performed. Furthermore, the 

study can be expanded by recommending the optimal 

treatment on the basis of diagnosis of severity of sickle cell 

anemia obtained through diagnosis of SCA which may include 

blood transfusions, dosage of hydroxyurea to reduce pain and 

inflammation and bone marrow or stem cell transplants in 

severe cases. 
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