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3D image reconstruction technology holds significant potential for applications in medical 

imaging, industrial inspection, and virtual reality, offering more intuitive and precise 

internal structure visualization. However, due to the complexity of human anatomy and the 

diversity of medical imaging data, traditional 3D reconstruction methods often struggle to 

achieve optimal results in terms of reconstruction accuracy, computational efficiency, and 

structural continuity simultaneously. The application of multi-objective optimization in 3D 

image reconstruction can comprehensively consider multiple objectives, providing more 

comprehensive and optimized reconstruction results. However, current research methods 

still have some deficiencies, primarily neglecting the trade-offs between different objectives 

and experiencing high computational load and low efficiency when handling complex 

medical imaging data. This study includes the development of image-target 3D 

reconstruction algorithms in trajectory space and the establishment and solution of a multi-

objective optimization-based 3D image reconstruction model. The research content of this 

paper aims to improve the quality of reconstruction results and provide more reliable 

technical support for practical applications, in the hopes of enriching the theoretical 

foundation of 3D image reconstruction as well as offering new technical approaches for 

practical applications, having significant theoretical and practical value. 
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1. INTRODUCTION

With the rapid development of computer vision and image 

processing technologies, 3D image reconstruction has become 

an important research field, widely applied in medical imaging, 

industrial inspection, virtual reality, and other fields [1-4]. In 

medical imaging, 3D image reconstruction technology can 

provide more intuitive and precise internal structure 

visualization, playing an important auxiliary role in the 

diagnosis and treatment of diseases [5-7]. However, due to the 

complexity of the target structures and the diversity of imaging 

data, how to improve the accuracy and efficiency of 3D 

reconstruction has always been a challenging and key research 

area. 

The application of multi-objective optimization in 3D 

image reconstruction is of great significance. Traditional 3D 

reconstruction methods often consider only a single objective, 

making it difficult to achieve optimal results in terms of 

reconstruction accuracy, computational efficiency, and 

structural continuity simultaneously [8, 9]. Multi-objective 

optimization methods, on the other hand, can comprehensively 

consider multiple objectives, providing more comprehensive 

and optimized reconstruction results [10, 11]. Therefore, 

introducing multi-objective optimization into 3D image 

reconstruction can effectively improve the quality of 

reconstruction results and provide more reliable technical 

support for practical applications. 

However, current research methods still have some 

deficiencies and shortcomings [12-14]. For example, 

traditional reconstruction methods based on single-objective 

optimization often ignore the trade-offs between different 

objectives, resulting in suboptimal performance in certain 

aspects of the reconstruction results [15-17]. Additionally, 

existing multi-objective optimization methods have high 

computational loads and low efficiency when processing 

complex imaging data, making it difficult to meet the 

requirements of real-time applications [18-22]. Therefore, 

how to improve reconstruction accuracy while also 

considering computational efficiency and structural continuity 

remains an urgent problem to be solved. 

This paper's main research content includes two parts: first, 

image-target 3D reconstruction algorithms in trajectory space, 

and second, the establishment and solution of a multi-objective 

optimization-based 3D image reconstruction model. By 

studying 3D reconstruction methods in trajectory space, it is 

possible to better capture and describe the motion trajectories 

of image targets, providing more accurate reconstruction 

results. The reconstruction model based on multi-objective 

optimization can comprehensively consider multiple 

objectives, such as reconstruction accuracy, computational 

efficiency, and structural continuity, providing more 

comprehensive and optimized reconstruction solutions. This 

research not only enriches the theoretical foundation of 3D 

image reconstruction but also provides new technical means 

for practical applications, having significant theoretical and 

practical value. 

Traitement du Signal 
Vol. 41, No. 3, June, 2024, pp. 1419-1427 

Journal homepage: http://iieta.org/journals/ts 

1419

https://orcid.org/0009-0005-4160-4251
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410330&domain=pdf


 

2. IMAGE TARGET 3D RECONSTRUCTION 

ALGORITHM IN TRAJECTORY SPACE 

 

The application of multi-objective optimization in 3D 

image reconstruction is extensive and significant. A typical 

application scenario is the reconstruction and analysis of 

medical images. In medical imaging, it is often required to 

reconstruct 3D anatomical structures from 2D CT or MRI scan 

images. In this process, it is necessary to optimize the image 

resolution, noise level, and computation time simultaneously, 

and these objectives are often conflicting. Multi-objective 

optimization technology can find the best balance among these 

objectives, generating high-quality 3D images to assist doctors 

in accurate diagnosis and treatment planning. Another 

important application scenario is industrial inspection and 

quality control. In manufacturing, 3D image reconstruction 

technology can be used for non-destructive testing of products 

to ensure that the dimensions and structures of the products 

meet design requirements. Multi-objective optimization in 

such applications can help optimize image clarity and 

processing speed while reducing errors caused by noise or 

other interference factors, thereby improving the accuracy and 

efficiency of the inspection. In addition, in the field of cultural 

heritage protection and virtual display, 3D image 

reconstruction can be used for the digital preservation and 

virtual reconstruction of cultural relics and historical sites. 

Multi-objective optimization technology can optimize data 

storage space and processing time while ensuring 

reconstruction accuracy, making the digitalization of large-

scale cultural relics possible. This not only helps in cultural 

relic protection but also provides the public with a more 

intuitive cultural experience through virtual reality technology. 

In the field of autonomous driving and robot navigation, 3D 

image reconstruction can also be used for environmental 

perception and path planning. Multi-objective optimization 

can generate accurate environmental models while optimizing 

processing speed and resource consumption, thereby 

improving the real-time response capability and safety of 

autonomous vehicles or robots. Therefore, multi-objective 

optimization has a wide range of applications in 3D image 

reconstruction, significantly enhancing image quality and 

processing efficiency, and providing strong support for 

practical applications in various fields. 

To achieve 3D image reconstruction based on multi-

objective optimization, this paper first performs 3D 

reconstruction of image targets in trajectory space, which can 

be refined into the following steps. First, obtain a sequence of 

D-frame medical images, where each frame contains O feature 

points. The coordinates of all feature points in all frames form 

a measurement matrix Q, with dimensions 2D×O. To extract 

3D structure and motion information from it, singular value 

decomposition (SVD) is used to decompose the measurement 

matrix Q. Through SVD, Q can be decomposed into the 

product of three matrices, namely Q = IΣNS, where I and N are 

orthogonal matrices, and Σ is a diagonal matrix. The 

expression of Q is: 
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Based on SVD, by truncating the first 3 columns of I and Σ 

and the first 3 rows of N, we can initially obtain the motion 

matrix E2D×3l and the structure matrix T3l×o. The purpose of this 

process is to convert the original 2D measurement data into a 

low-dimensional trajectory space, retaining the main motion 

and structural features of the data. The motion matrix E 

contains information on non-rigid body motion, while the 

structure matrix T represents the relative positions of feature 

points in 3D space, wherein: 
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Let Θ=EΦ, according to the equation T3l×o=Φ3l×3j⋀3j×o, we 

can get: 

 
Q ET E= =  =   (3) 

 

If the reconstructed image is a medical image, the 

aforementioned steps are crucial because they provide an 

initial 3D reconstruction result, helping us understand the 

basic 3D structure and dynamic changes of the measured 

object, such as human organs or lesions. In this way, the 

original image data can be converted into 3D information that 

is easy to process and analyze, laying the foundation for 

subsequent optimization and accurate reconstruction. The 

initial solution obtained from the decomposition of Q is as 

follows: 

 

Q =   (4) 

 

Because any invertible matrix W3j×3j can satisfy Q=(Θ-Q)(W-

1Λ-)=ΘΛ, the result of matrix decomposition is not unique, 

which means that the decomposed Θ- and Λ- are not the Θ and 

Λ that are truly needed. Therefore, if this transformation matrix 

W can be obtained, the reconstruction can be completed. The 

matrix Θ can be written as: 
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To solve the transformation matrix W, only any three 

columns of it are needed. Therefore, the first column, the 1-th 

column, the j+1-th column, and the 2j+1-th column of the 

transformation matrix W can be chosen to form a new matrix 

W. Next, the orthogonality constraint of the rotation matrix Eu 

can be used to solve W. Here, Θ-
2u-1:2u represents the 2u-1-th 

row and the 2u-th row of matrix Θ. According to the above 

equation, we can get: 
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Further, we can get the following equation: 
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Taking the reconstruction of medical images as an example, 

the above process can be better understood. In medical image 

reconstruction, it is usually necessary to reconstruct 3D 

structures from multi-angle 2D images, such as CT images or 

MRI images taken from different angles. In the above steps, 

by solving the transformation matrix W, the trajectory basis 

information of these 2D images can be converted into 3D 

structural information. Specifically, by selecting specific 

columns of the transformation matrix W and using the 

orthogonality constraint of the rotation matrix, the 3D 

structure of the target can be accurately restored. 

Further attention is paid to the constraint conditions in each 

frame of the image. For each frame of the image, assuming 

there are three independent constraints, there are 3D 

constraints for the entire image sequence, where D represents 

the number of frames. At the same time, assuming there are 9j 

unknowns in matrix W, where j represents the dimension or 

number of certain parameters, at least 3j images are needed to 

solve matrix W. Once W is obtained, the rotation matrix E can 

be calculated using Eq. (5). Next, the matrix Φ2D×3D can be 

obtained using the relationship Θ2D×3D=E2D×3DΦ2D×3D. The 

coefficient matrix Λ can be calculated based on the following 

equation: 

 

2 3 3 2D j j o D oQ    =  (8) 

 

In the dynamic MRI image reconstruction of the heart, a 

series of 2D image sequences of the heart is first obtained. 

Each frame of the image provides three independent 

constraints, which may come from key point matching, edge 

detection, or feature point tracking in the image. For the entire 

sequence, a system containing 3D constraints can be 

established to describe the movement and deformation of the 

entire heart in the time sequence. Due to the complexity of the 

unknown W, at least 3k frames are needed to obtain sufficient 

information to solve W. 

In the process of medical imaging, multiple frames of 

images are often needed from different angles to perform 3D 

reconstruction of non-rigid body tissues inside the body. The 

measurement matrix can be extracted from these images, and 

the transformation matrix W can be solved by optimizing the 

orthogonality of the rotation matrix. Specifically, the rotation 

matrix E needs to satisfy the unit orthogonal requirement, i.e., 

the rank constraint of the matrix. 

 
2 2

2 1:2 2 1:2 2 2 , 1...S

u u k u u ujW U u D− −   = =  (9) 

 

Since ϕuk is unknown and Wj is symmetric, two equivalent 

non-diagonal constraints are needed to linearly constrain W. 

For all D frames of medical images in the entire image 

sequence during the medical imaging process, 2D linear 

constraints can be obtained, expressed as follows: 
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Next, the least squares method is used to solve these linear 

equations to obtain the transformation matrix W. Once W is 

solved, the motion matrix and the structure matrix can be 

further calculated. The solution process of these matrices is an 

important step in the 3D reconstruction algorithm, as they 

determine the spatial relationship between each frame in the 

image sequence and the 3D shape of the target structure. 

 

 

3. ESTABLISHMENT AND SOLUTION OF A 3D 

IMAGE RECONSTRUCTION MODEL BASED ON 

MULTI-OBJECTIVE OPTIMIZATION 

 

In the 3D reconstruction of image targets in trajectory space, 

the construction of the multi-objective optimization function 

is a crucial step to achieving high-precision reconstruction. 

Figure 1 shows the flowchart for establishing a 3D image 

reconstruction model based on multi-objective optimization. 

Taking the reconstruction of medical images as an example, 

the optimization process can be described as follows: 

 

 
 

Figure 1. Flowchart for establishing a 3D image 

reconstruction model based on multi-objective optimization 

 

The first objective of the reconstruction is to minimize the 

back-projection error. The setting of this objective means that 

when the reconstructed 3D structure is projected back to the 

2D image, the resulting projection should be as close as 

possible to the original image. The core of this objective is to 

ensure the accuracy of the 3D reconstruction, making it truly 

reflect the target objects in the image. This objective can be 

achieved by minimizing the sum of squared distances between 

all projection points and the actual image points. Assuming the 

real 2D measurement matrix of the reconstruction target is 

represented by Ql and the measurement matrix obtained by 

back-projection is represented by Q~
l, we have the expression: 
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The second objective is the smoothness of the motion 

trajectory. In medical imaging, especially in the reconstruction 

of dynamic organs such as the heart, it is required that the 

motion trajectory be smooth to reflect the natural motion of the 

organs. This can be achieved by introducing a smoothness 

constraint on the motion trajectory, ensuring that the changes 
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in the motion trajectory between each frame in the time series 

are continuous and smooth. Specifically, this objective can be 

achieved by minimizing the differences in motion parameters 

between adjacent frames. 
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The third objective is the continuity of the structure. In 3D 

image reconstruction, especially for complex structures such 

as human organs, it is required that the reconstructed 3D 

structure has spatial continuity and consistency. This means 

that during the reconstruction process, the geometric 

relationships between adjacent points should remain 

unchanged, avoiding unreasonable distortions or breaks. This 

objective can be achieved by adding constraints on structural 

continuity during the optimization process, such as 

minimizing the changes in distances between 3D points. 

Assuming the original 3D structure is represented by T, and 

the reconstructed 3D structure data is represented by SH, with 

the number of frames in the image sequence and the number 

of feature points represented by D and O respectively, and the 

coordinate matrices of the A, B, and C axes in the 3D structure 

Shat represented by SHA, SHB, and SHC respectively, we have: 
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Combining the above three objectives, a multi-objective 

cost function can be constructed. This cost function 

comprehensively considers the back-projection error, the 

smoothness of the motion trajectory, and the continuity of the 

structure, integrating these objectives into a unified 

optimization framework through weighted summation. 

Specifically, assuming the scalars controlling the importance 

of each objective constraint are represented by ψ1, ψ2, and ψ3, 

the cost function is expressed as: 
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In the multi-objective optimization function, the 

computational load of function γt is large, which is not 

conducive to real-time computation. Let 

W(u,k)=d(u,k)/∑L
u=1∑V

k=1d(u,k), and discarding higher-order 

terms, we can obtain an approximate calculation formula for 

γt: 
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The original objective function is uniformly minimized to 

convert it into a more manageable form. In this process, each 

objective function in the multi-objective optimization problem 

is normalized to ensure they are compared and optimized on 

the same scale. Specifically, by adjusting the weights of each 

objective function, their influence in the optimization process 

is reasonably balanced. The purpose of this step is to simplify 

the complex multi-objective optimization problem into a 

single-objective optimization problem, making it easier to 

solve subsequently. 
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In the equation, the feasible region A- is defined as: 
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Through the method of linear weighted sum, multiple 

objective functions are transformed into an optimization 

problem of a scalar-valued function. This process specifically 

involves multiplying each objective function by an appropriate 

weight and then summing them to form a comprehensive 

optimization objective function. The selection of these weights 

needs to be adjusted according to the specific application 

scenario and the importance of the objective functions. In 

medical image reconstruction, these weights can be reasonably 

set based on factors such as reconstruction accuracy and 

computational efficiency, thereby improving computational 

efficiency while ensuring accuracy. Specifically, assuming the 

weighting coefficients are represented by μm, we have: 
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At the same time: 
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Once the weighting coefficients μm are determined, our 

multi-objective optimization reconstruction problem can be 

equivalent to a single-objective optimization problem. 

Specifically, by assigning different weights to multiple 

objective functions based on their importance, and then 

linearly combining these weighted objective functions, a 

comprehensive optimization objective function is formed. The 

key to this step is to reasonably select the weights, so that the 

optimization problem can consider the needs of each objective 

while simplifying to an easily solvable optimization problem. 
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After determining the weighting coefficients, the 

optimization problem is transformed into a typical nonlinear 

programming problem with equality constraints. To solve this 
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problem, we use the method of Lagrange multipliers. By 

introducing Lagrange multipliers, the constrained 

optimization problem is transformed into an unconstrained 

problem. Specifically, we construct the Lagrangian function, 

which combines the objective function and the constraint 

conditions. By optimizing this unconstrained Lagrangian 

function, we can simultaneously satisfy the minimization of 

the objective function and the constraint conditions. Assuming 

the K-dimensional Lagrange multiplier vector is represented 

by η and the L-dimensional multiplier vector is represented by 

I, we have: 
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By taking the partial derivative of the Lagrangian function 

M(a,I,η) with respect to the vector a and setting its derivative 

to zero, we can obtain the necessary conditions for the 

optimization problem. These conditions can be transformed 

into the multi-objective iterative reconstruction formulas. In 

practical applications, we iteratively solve these formulas to 

gradually approach the solution to the optimization problem. 

Specifically, in medical image reconstruction, by continuously 

adjusting and optimizing the 3D structural parameters of the 

image, we can gradually obtain a high-precision 

reconstruction result that meets the requirements of multi-

objective optimization. The multi-objective iterative 

reconstruction formulas obtained after transformation are as 

follows: 
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According to mathematical programming theory, the 

parameters ij are adjusted as follows: 
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Let ∆wu=|dm(aj)-dm(aj+1)|(m=1,2,...,M), and the selection of 

the weight coefficients follows the rules below: 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

In Table 1, the noise-free normalized mean squared distance 

(NMSE) between the reconstructed images and the original 

images at angles of 120°, 140°, and 160° is compared for three 

different methods. The results show that this method exhibits 

the lowest NMSE values at all angles, which are 0.2236, 

0.1568, and 0.0365, respectively. This is significantly better 

than adaptive voxel reconstruction (0.3654, 0.2875, and 

0.1278) and GPU-accelerated volume rendering (0.2985, 

0.2016, and 0.0389). Particularly at 160°, the NMSE of this 

method is 0.0365, which is lower than 0.1278 of adaptive 

voxel reconstruction and 0.0389 of GPU-accelerated volume 

rendering, indicating that this method is especially outstanding 

in reconstruction accuracy at larger angles. The experimental 

results demonstrate the effectiveness of the 3D reconstruction 

algorithm in trajectory space and the 3D reconstruction model 

based on multi-objective optimization proposed in this paper. 

By capturing the motion trajectories of image targets, this 

method can reconstruct image structures more accurately, 

while the multi-objective optimization model helps achieve a 

comprehensive balance of reconstruction accuracy, 

computational efficiency, and structural continuity. 

 

Table 1. Comparison of the noise-free normalized mean 

squared distance between reconstructed images and original 

images 

 
 120° 140° 160° 

Adaptive Voxel Reconstruction 0.3654 0.2875 0.1278 

GPU-Accelerated Volume 

Rendering 
0.2985 0.2016 0.0389 

The Proposed Method 0.2236 0.1568 0.0365 

 

 
 

Figure 2. 3D structural error of reconstructed image 

sequences using multi-objective optimization method with 

different weights 

 

In Figure 2, the 3D structural error data of reconstructed 

image sequences using the multi-objective optimization 

method under different weights (0.3, 0.4, 0.3) and (0.4, 0.3, 

0.3) show the changes in error. For the weights (0.3, 0.4, 0.3), 

the error ranges from 0.04 to 0.095 from frame 0 to frame 1000, 

with overall error fluctuating as the number of frames 

increases but remaining at a relatively low level for most 

frames. For the weights (0.4, 0.3, 0.3), the error range is 

similar to the previous set, also between 0.04 and 0.095, with 

error values very close at the same frame numbers. For 

example, at frame 0 and frame 200, the error values for both 

sets of weights are 0.04 and 0.045, showing that the error 

variation trends under both sets of weights are basically 

consistent. This indicates that different weight settings have 

limited impact on the error, but the weights (0.4, 0.3, 0.3) have 

slightly lower error at certain frames (such as frame 400 and 

frame 600). The above error data indicates that the proposed 

3D image reconstruction model based on multi-objective 
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optimization has significant stability and adaptability. The 

error data of both sets of weights remain at a low level under 

different frames, especially at key frames such as frame 400 

and frame 600, where the error is relatively small, showing 

high reconstruction accuracy. Furthermore, although the error 

variation trends of the two sets of weights are similar, the 

reconstruction quality of certain specific frames can be further 

optimized by adjusting the weights. 

In Figure 3, the back-projection error data of reconstructed 

image sequences using the multi-objective optimization 

method under two sets of weights (0.3, 0.4, 0.3) and (0.4, 0.3, 

0.3) are shown. For the weights (0.3, 0.4, 0.3), the error ranges 

from 0.006 to 0.088 from frame 0 to frame 1000. Specifically, 

at frame 200 the error is 0.036 and 0.035, at frame 400 the 

error is 0.016 and 0.02, at frame 600 the error is 0.025 and 

0.022, at frame 800 the error is 0.021 and 0.014, and at frame 

1000 the error is 0.088. For the weights (0.4, 0.3, 0.3), the error 

ranges from 0.005 to 0.082. At the same frame numbers, the 

error is 0.038 and 0.035 at frame 200, 0.016 and 0.02 at frame 

400, 0.022 and 0.021 at frame 600, 0.02 and 0.012 at frame 

800, and 0.082 at frame 1000. Overall, the error trends for the 

two sets of weights are similar across different frames, with 

close error values and low error at almost all frames. 

Particularly at key frames such as frame 400 and frame 600, 

the error difference between the two is minimal. The above 

error data shows that the proposed 3D image reconstruction 

model based on multi-objective optimization performs well 

under different weight settings, with error values remaining 

low for most frames, indicating high stability and reliability in 

reconstruction accuracy. Although the error differences 

between different weights are small, the reconstruction results 

of specific frames can still be further optimized by reasonably 

adjusting the weights. This shows that the multi-objective 

optimization method can effectively balance and integrate 

multiple objectives such as reconstruction accuracy, 

computational efficiency, and structural continuity, providing 

a more comprehensive and optimized reconstruction solution. 

In Figure 4, the relative trajectory smoothness error data of 

reconstructed image sequences using the multi-objective 

optimization method under two sets of weights (0.3, 0.4, 0.3) 

and (0.4, 0.3, 0.3) are shown. For the weights (0.3, 0.4, 0.3), 

the error fluctuates greatly from frame 0 to frame 1000, 

ranging from 1.4 to 6.5. At frame 200, the error ranges from 

2.8 to 2.4; at frame 400, from 0.6 to 2.4; at frame 600, from 

0.6 to 1.5; at frame 800, from 0 to 3.2; and at frame 1000, from 

0.4 to 6.5. For the weights (0.4, 0.3, 0.3), the error variation 

range is relatively narrower, from 1.4 to 5. At frame 200, the 

error ranges from 3 to 2.4; at frame 400, from 0.4 to 2.4; at 

frame 600, from 0.4 to 1.6; at frame 800, from 0 to 3.2; and at 

frame 1000, from 0.2 to 5. Overall, although the errors for the 

two sets of weights differ under different frame numbers, the 

error values are relatively low for most frames, especially at 

frames 600 and 800, where the error differences between the 

two sets of weights are small. The above error data show that 

the proposed 3D image reconstruction model based on multi-

objective optimization exhibits good trajectory smoothness 

effects under different weight settings. Although the 

adjustment of weights may affect the error of certain frames, 

the overall error value remains at a relatively low level in most 

cases, indicating that the model performs with high stability 

and reliability in terms of trajectory smoothness. Especially at 

key points such as frame 400 and frame 600, the error 

differences between the two sets of weights are small, further 

proving the robustness and adaptability of the model. 

Additionally, the highest error value appears at frame 1000, 

indicating that further optimization and adjustment of weights 

may be needed in the reconstruction of long-time sequences to 

reduce cumulative errors. 
 

 
 

Figure 3. Back-projection error of reconstructed image 

sequences using multi-objective optimization method with 

different weights 
 

 
 

Figure 4. Relative trajectory smoothness error of 

reconstructed image sequences using multi-objective 

optimization method with different weights 
 

 
 

Figure 5. Relative structural continuity error of reconstructed 

image sequences using multi-objective optimization method 

with different weights 
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In Figure 5, the relative structural continuity error data of 

reconstructed image sequences using the multi-objective 

optimization method under two sets of weights (0.3, 0.4, 0.3) 

and (0.4, 0.3, 0.3) are shown. For the weights (0.3, 0.4, 0.3), 

the error values fluctuate within the range of 0 to 1000 frames 

but generally remain at a low level. For example, the error 

value is 0.93 to 1.50 at frame 0, 0.13 to 1.40 at frame 200, 0.40 

to 1.60 at frame 400, 0.40 to 0.80 at frame 600, 0 to 2.13 at 

frame 800, and 0.80 to 4.33 at frame 1000. For the weights 

(0.4, 0.3, 0.3), the error variation range is slightly different but 

generally stable. At frame 0, the error value is 0.93 to 1.60; at 

frame 200, 0.13 to 1.20; at frame 400, 0.27 to 1.60; at frame 

600, 0.27 to 0.80; at frame 800, 0 to 2.13; and at frame 1000, 

0.93 to 3.33. Although the errors for the two sets of weights 

differ under different frame numbers, the error values are 

relatively low in most cases, showing that the model has high 

trajectory smoothness and structural continuity. The above 

error data indicate that the proposed 3D image reconstruction 

model based on multi-objective optimization exhibits good 

structural continuity effects under different weight settings. 

Although different weight settings have a certain impact on 

error values, the overall error value remains at a low level in 

most cases, indicating that the model performs with high 

stability and reliability in terms of structural continuity. 

Especially at frames 600 and 800, the error differences 

between the two sets of weights are small, further proving the 

robustness and adaptability of the model. Additionally, 

although the error value is relatively high at frame 1000, this 

also suggests that further optimization of weight settings may 

be needed in the reconstruction of long-time sequences to 

reduce cumulative errors. 

Table 2 shows the mean 3D structural error and its variance 

for different types of image sequences under different weight 

settings (0.3, 0.4, 0.3) and (0.4, 0.3, 0.3). For T1-weighted 

images, the mean structural error is 0.1621 and the variance is 

0.0897 with weights (0.3, 0.4, 0.3); with weights (0.4, 0.3, 0.3), 

the mean structural error slightly decreases to 0.1562 and the 

variance decreases to 0.0879. For T2-weighted images, the 

mean structural error and variance are very close for both 

weight settings, being 0.2345 and 0.1065, and 0.2341 and 

0.1032, respectively. For FLAIR images, the mean error and 

variance are 0.1078 and 0.1056 with weights (0.3, 0.4, 0.3), 

while with weights (0.4, 0.3, 0.3), the mean error is 0.0945 and 

the variance is 0.1045. Lastly, for diffusion-weighted imaging, 

the mean structural error is 0.0245 for both weight settings, 

with variances of 0.0107 and 0.0104, respectively. Overall, the 

adjustment of weights has some impact on the structural error 

of different types of image sequences, but the error values and 

variances remain at a low level. The above experimental 

results clearly demonstrate the influence of different weight 

parameters on the 3D structural error, and indicate that the 

proposed multi-objective optimization reconstruction model 

performs stably and excellently across various image 

sequences. The structural errors for T1 and T2-weighted 

images show little difference under different weights, 

demonstrating the robustness and reliability of the model in 

handling these types of images. For FLAIR images, the mean 

error and variance are lower with weights (0.4, 0.3, 0.3), 

indicating that this weight setting is more effective in 

maintaining structural continuity and accuracy. Diffusion-

weighted imaging shows almost consistent performance under 

both weight settings, further proving the stability and 

efficiency of the model. 
 

Table 2. Mean 3D structural error for different types of 

image sequences 
 

Type of 

Image 

Sequence 

(0.3 0.4 0.3) (0.4 0.3 0.3) 

 

Mean 

Structural 

Error 

Variance 

of 

Structural 

Error 

Mean 

Structural 

Error 

Variance 

of 

Structural 

Error 

T1-

weighted 

images 

0.1621 0.0897 0.1562 0.0879 

T2-

weighted 

images 

0.2345 0.1065 0.2341 0.1032 

FLAIR 

images 
0.1078 0.1056 0.0945 0.1045 

Diffusion-

weighted 

images 

0.0245 0.0107 0.0245 0.0104 

 

Table 3. Relative trajectory smoothness error and structural 

continuity error for different types of image sequences 
 

Type of Image 

Sequence 

Trajectory 

Smoothness 

Structural 

Continuity 

 
(0.3 0.4 

0.3) 

(0.4 0.3 

0.3) 

(0.3 0.4 

0.3) 

(0.4 0.3 

0.3) 

T1-weighted 

images 
0.0021 0.0011 0.0013 0.0008 

T2-weighted 

images 
0.0038 0.0027 0.00097 0.00048 

FLAIR images 0.0028 0.0021 0.00092 0.00057 

Diffusion-

weighted 

images 

0.00072 0.00071 0.00041 0.00042 

 

Table 3 shows the relative trajectory smoothness error and 

structural continuity error for different types of image 

sequences under different weight settings (0.3, 0.4, 0.3) and 

(0.4, 0.3, 0.3). For T1-weighted images, the trajectory 

smoothness error is 0.0021 and the structural continuity error 

is 0.0013 with weights (0.3, 0.4, 0.3); with weights (0.4, 0.3, 

0.3), the trajectory smoothness error decreases to 0.0011 and 

the structural continuity error also decreases to 0.0008. For T2-

weighted images, the trajectory smoothness error and 

structural continuity error are 0.0038 and 0.00097 with 

weights (0.3, 0.4, 0.3); with weights (0.4, 0.3, 0.3), they 

decrease to 0.0027 and 0.00048, respectively. For FLAIR 

images, the trajectory smoothness error is 0.0028 and the 

structural continuity error is 0.00092 with weights (0.3, 0.4, 

0.3); with weights (0.4, 0.3, 0.3), they decrease to 0.0021 and 

0.00057, respectively. For diffusion-weighted imaging, the 

trajectory smoothness error and structural continuity error 

change slightly with weights (0.3, 0.4, 0.3) and (0.4, 0.3, 0.3), 

being 0.00072 and 0.00071, and 0.00041 and 0.00042, 

respectively. From the results in Table 3, it can be seen that 

different weight settings have a significant impact on 

trajectory smoothness and structural continuity. Overall, with 

weights (0.4, 0.3, 0.3), the trajectory smoothness error and 

structural continuity error of various types of image sequences 

decrease, especially for T1 and T2-weighted images, where 

the errors significantly reduce, indicating that the model can 

better balance the smoothness of the motion trajectory and the 

continuity of the structure under this weight setting. The errors 

for FLAIR and diffusion-weighted imaging also show a 
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similar trend, although the changes are smaller, they still 

exhibit a certain degree of optimization, further proving the 

effectiveness of this weight combination. 

5. CONCLUSION

This study focuses on two main aspects: firstly, proposing 

an image target 3D reconstruction algorithm in trajectory 

space aimed at more accurately capturing and describing the 

motion trajectories of image targets; secondly, establishing 

and solving a 3D image reconstruction model based on multi-

objective optimization theory to balance multiple objectives 

such as reconstruction accuracy, computational efficiency, and 

structural continuity. The experimental results cover the 

following aspects: comparison of noise-free normalized mean 

squared distance between reconstructed images and original 

images, 3D structural error and back-projection error of 

reconstructed image sequences using the multi-objective 

optimization method under different weights, as well as the 

relative values of trajectory smoothness error and structural 

continuity error, and the mean 3D structural error and relative 

values of trajectory smoothness error and structural continuity 

error for different types of image sequences. The experimental 

results show that the multi-objective optimization method with 

different weight settings can effectively reduce the trajectory 

smoothness error and structural continuity error, especially 

with the weight setting (0.4, 0.3, 0.3), significantly reducing 

the reconstruction error of various image sequences. This not 

only validates the effectiveness and broad applicability of the 

multi-objective optimization method in 3D image 

reconstruction but also provides valuable data and 

methodological support for subsequent research. 

However, this study also has certain limitations. Firstly, the 

experiments mainly focus on specific types of medical image 

sequences, and future research needs to verify the applicability 

of this method to other types of images. Secondly, although 

the multi-objective optimization method shows good 

performance, its computational complexity is relatively high, 

and further exploration is needed on how to improve the 

computational efficiency of the algorithm. Additionally, this 

study is mainly based on simulated data, and in practical 

applications, the robustness and adaptability of the algorithm 

need to be further verified under the influence of noise and 

other uncertainties. Future research directions can include the 

following points: firstly, extending the application range of the 

multi-objective optimization method to verify its effectiveness 

in more types of image sequences; secondly, studying more 

efficient optimization algorithms to reduce computational 

complexity and improve processing speed; thirdly, further 

enhancing the robustness of the algorithm in practical 

applications, especially under the influence of noise and other 

uncertainties. These studies will help to further improve the 

practicality and broad applicability of 3D image reconstruction 

technology. 
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