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Alzheimer's disease (AD) poses a significant challenge for neurologists due to its 

progressive nature and debilitating impact on cognitive function. Recent advancements in 

neuroimage analysis have paved the way for innovative machine learning techniques, 

offering potential for substantial improvements in AD detection, diagnosis, and progression 

prediction. In this study, we embarked on developing a novel deep learning framework to 

address this critical need. Traditional manual classification methods for AD are often time-

consuming, labor-intensive, and prone to inconsistencies. Given that the brain is the primary 

organ affected by AD, leveraging a classification system based on brain scans presents a 

promising avenue for achieving more accurate and reliable results. To effectively capture 

the spatial information embedded within 3D MRI scans, we extended convolutional 

techniques to three dimensions. Classification was accomplished by strategically combining 

features extracted from various layers of the 3D convolutional network, with differential 

weights assigned to the contributions of each layer. Recognizing the potential of transfer 

learning to accelerate training time and enhance AD detection efficacy, we incorporated this 

approach into our methodology. Our proposed framework integrated transfer learning with 

fine-tuning, harnessing brain MRI images from three distinct classes: Alzheimer's disease 

(AD), mild cognitive impairment (MCI), and normal control (NC). We explored a range of 

pre-trained deep learning models, including ResNet50V2 and InceptionResNetV2, for AD 

classification. ResNet50V2 emerged as the frontrunner, demonstrating superior 

classification accuracy compared to its counterparts. It achieved a remarkable training 

accuracy of 92.15%, followed by a sustained high testing accuracy of 91.25%. These results 

convincingly underscore the remarkable capabilities of deep learning methods, particularly 

transfer learning with ResNet50V2, in accurately detecting Alzheimer's disease using 3D 

MRI brain scans. 
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1. INTRODUCTION

Alzheimer's disease (AD) is a form of dementia that causes 

gradual mental deterioration and memory loss over time. 

Individuals with this suffer permanent brain damage, which 

ultimately results in death from brain failure [1-3]. It casts a 

long shadow, not just on individual lives but on society. As a 

leading cause of death among the aging population, estimated 

at nearly 50 million individuals globally, its impact is 

widespread and profound. Magnetic resonance imaging (MRI) 

and other cutting-edge neuroimaging techniques are currently 

being used to diagnose AD. Millions of voxels make up the 

3D images that an MRI may generate. Most Alzheimer's 

disease lesions can be seen on magnetic resonance imaging 

(MRI) scans, and their severity is typically assessed with the 

help of the radiologist's training and experience. The brain, 

soft tissues, and lesions are and measured with the help of 

digital processing technology. Computers have al-lowed 

clinicians to perform both qualitative and quantitative analyses 

of lesions and other areas of interest. Helping clinicians make 

more informed decisions about lesions is one of the many 

applications for AI in medicine [4]. Mostly, deep learning is 

used in the scientific tool. Convolutional neural networks, 

made possible by recent developments in deep learning, offer 

significant promise in medical image diagnosis and perform 

well in the classification of natural images. There have been 

numerous proposals for the classification and segmentation of 

Alzheimer's disease using convolutional neural networks 
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(CNNs) [5]. To properly categorize AD, one must first 

examine its defining characteristics. Figure 1 Depicts the 3D 

MRI images samples. 

The primary contributions of this research can be 

summarized as follows: 

We conducted a comprehensive review of 20 widely used 

Deep Neural Network (DNN) models. The purpose of this 

review was to aid in the selection of the most effective DNN-

based classifiers for the classification of Alzheimer's Disease 

(AD) using 3D MRI images. 

 

 
 

Figure 1. Sample MRI images (a) NC (Normal Control) (b) 

MCI (Mild Cognitive Impairment) (c) AD (Alzheimer's 

Disease) 

 

We meticulously analyzed the experimental results of these 

models to categories AD across its various stages, including 

Normal Control (NC), Mild Cognitive Impairment (MCI), and 

AD itself. This analysis provided insights into the performance 

of these models in a variety of scenarios. We implemented 

these models with patient age in mind to improve the accuracy 

of our performance comparisons. Recognizing the potential 

impact of age on AD diagnosis, our approach accounted for 

age-related variations. ResNet50V2 demonstrated the best 

classification performance in our experiments. We improved 

classification accuracy by replacing all convolution layers in 

ResNet50V2 with depth-wise convolution layers as a practical 

solution. The goal of this optimization was to keep accuracy 

high while reducing computational demands. 

 

 

2. LITERATURE SURVEY 

 

Academic interest in AD detection has been growing in 

recent years, with ML and DL being cited as potential methods 

for automatic detection. The 3D DL- model can distinguish 

accurate and detailed spatial and temporal data for accurate 

classification of AD than the conventional DL model and 

radiologists, and its clinical application able to further improve 

the diagnosis of AD. 

Klöppel et al. [6] mapped the entire brain's gray matter to a 

high-dimensional space, where voxels served as coordinates 

and their values were interpreted as intensity levels. Linear 

support vector machine was then used to categorize the 

subjects (SVM). 

Lerch et al. [7] using a wide variety of machine learning 

techniques, many computer-aided systems have been built to 

interpret disease states from MR images. Features collected 

from voxel intensity, tissue density, or form descriptor were 

used in training these algorithms to create the required result. 

Zhang et al. [8] in order to classify the deformation vectors 

on the gray matter of the entire brain as image dissimilarity, 

employed support vector machines. Due to the high 

dimensionality of the features, whole brain approaches may be 

computationally expensive, hence approaches that focus on 

regional features typically pick a subset of the brain as having 

relevance to AD or select regions of interest (ROIs) that are 

tailored to the cohorts. The hippocampus, Para hippocampal 

gyrus, and entorhinal cortex shared properties in 3D volume 

and shape with ROI-based techniques. 

Brain images were segmented into 116 anatomical ROIs 

using Mask RCNN technique by Silveira and Marques [9] and 

boosting classification was used for labeling. 

Using a multi-kernel support vector machine, as suggested 

by Suk et al. [10], multi-modal features, such as tissue volumes 

estimated from 93 ROIs, might be ensembled to improved 

accuracy. 

The first SVM classification investigation based on 

hippocampus surface shape invariants was provided by Long 

and Wyatt [11]. Aspects of spherical harmonics that are 

rotationally invariant served as the basis for the shape 

invariants (SPH). Despite the shown efficacy of ROI-based 

approaches, region segmentation mistakes or feature volatility 

may impact classification accuracy. 

Liu et al. [12] developed a deep learning system based on a 

3D convolutional neural network (CNN). By integrating the 

MRI gray matter density map and PET intensity values with 

the 3D CNN features, we were able to perform multi-modal 

AD discrimination. Recent years have seen the widespread 

implementation of deep neural networks into the 

categorization procedure. 

The 3D convolutional neural network (CNN) model used 

for feature extraction and subsequent classification was trained 

by Gutman et al. [13] using sparse automatic encoding. 

Liu and Shen [14] cropped MRI images based on the 

predicted locations of AD lesions using the regression forest 

technique and then fed them into an SVM to make a diagnosis. 

Positron emission computed tomography (PET) and 

magnetic resonance imaging (MRI) scans were used in a 

multi-modal diagnostic done by Li et al. [15]. In addition, they 

used deep neural network for patch-based input to a cascade 

network to analyze each MRI and PET image. 

Using a data-driven approach, Payan and Montana [16] 

(GAN) generated numerous patches around discriminative 

anatomical features in each MRI image. For multi-instance 

diagnosis learning, these patches are fed into several different 

classification networks. 

Karas et al. [17] used generative adversarial networks 

(GAN) and picture segmentation to generate the missing PET 

data, which was subsequently used to train a multi-instance 

neural network. 

Multi-modal data was split into multiple patches by Xu et 

al. [18] before being fed into the CNN pretrained models for 

fusion diagnosis. 
 

 

3. MATERIALS AND METHODS 
 

3.1 Dataset description 
 

Alzheimer's Disease Neuroimaging Initiative (ADNI) is a 

longitudinal multicenter study aiming to identify diagnostic 

biomarkers (clinical, imaging, genetic, and biochemical) for 

early detection of Alzheimer's disease. screening for 

Alzheimer's disease and subsequent treatment [19]. Since 

ADNI contains more MRI data than any other publicly 

available source, we have used it to test the efficacy of our 

method. We used 375 samples with Alzheimer’s disease, 378 

samples with mild cognitive impairment, 447 cognitively 

normal samples and total number of samples are 1200 images 

from the dataset. Grad Warp (which fixes distorted picture 
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geometry caused by the gradient model), B1 Correction 

(which employs B1 calibration scans to even out image 

brightness), and N3 (which employs a histogram peak 

sharpening method to even out brightness) were all used as 

preliminary processing on all samples. The original data 

dimensions were changed to 113×137×113×3 so that all 

samples would be uniform in size and shape. As hippocampus 

volume is a strong indicator of Alzheimer's disease 

classification, the data reduction was performed by scaling 

rather than cropping to preserve hippocampi information. 

Table 1 represents the dataset description. 

 

Table 1. Analysis of dataset for implementing models 

 
Diagnostic 

Type 

Number of 

Subjects 

Number of 

Samples 
Age 

Gender 

(M/F) 

AD 50 375 
76.13 

± 6.14 
132/148 

MCI 50 378 
75.13 

± 5.23 
86/76 

NC 50 447 
76.16 

± 6.29 
144/131 

 

3.2 Proposed methodology 

 

MRI scans are collected from a variety of sources and given 

for preprocessing. The image's dimensions are then changed 

by the pre-processing layer. This model classifies AD into 

three categories and recognizes it. Leveraging the power of 3D 

convolutions and connection-wise attention mechanisms, our 

densely linked CNN architecture tackles the challenge of 

extracting meaningful features from complex 3D brain MRI 

scans. This robust and efficient network provides a novel 

approach to analyzing these rich datasets, paving the way for 

advancements in neuroscience and medical diagnosis. The 

suggested deep learning-based system model used MRI data 

to detect and classify disorders at an early stage [20-23]. MRI 

scans were among the raw training data that was collected. The 

image was converted from its original 96×120×96×3 

dimensions via a pre-processing layer. The study explores 

applying transfer learning to detect Alzheimer's disease. It 

utilizes pre-trained deep learning models, modifying their final 

layers to adapt to this specific task. The proposed paradigm is 

illustrated in full in Figure 2. 

We suggested ResNet (Residual Network) as a solution to 

the problem of vanishing gradients that occurs during deep 

convolutional network training. ResNet introduces skip 

connections, which use an identity function to bypass 

nonlinear transformations. This one-of-a-kind architectural 

feature allows for the training of much deeper networks with 

less computational effort. The benefit of ResNet is that it 

avoids the vanishing gradient problem that plagues traditional 

networks by propagating gradients from one layer to the next. 

Furthermore, densely linked convolutional networks, a novel 

connectivity pattern, were introduced [24]. This pattern 

enhances interlayer communication even further, contributing 

to improved network performance. ResNet capitalizes on the 

network's potential by reusing features, rather than relying 

solely on extremely deep or wide architectures to enhance 

representational power. This approach results in streamlined 

models that are easier to train and more efficient in terms of 

parameter usage. Additionally, it has been demonstrated that 

these feature maps effectively integrate information from 

previous layers, thereby increasing input variation and 

enhancing overall network efficiency. Consider a 

convolutional network being applied to a single image, X0. The 

network consists of L layers, where l indexes the layer and Hl(.) 

denotes a non-linear transformation implemented by each 

layer. As a result, the feature maps from all previous layers, 

including X0, X1, … and Xl, are input to the lth layer. 

 

Xl=Hl [(Xl−1, Xl−2, Xl−3, ⋯, X0)] (1) 

 

This network was built using a time-saving strategy that 

took visual attention into account. This work employed a 

convolutional neural network architecture with a connection-

wise attention mechanism, allowing for flexible feature map 

integration through weighted summation. Weights for this 

summation were learned automatically during training, 

enabling the model to optimize feature representation for the 

task at hand. By focusing on the most useful information, this 

has made the network simpler and more effective [25-28]. The 

ith layer of the convolution neural network received a 

weighting coefficient W in accordance with Eq. (2), where Wi 

represented an attention vector composed of i-1 elements. 

Formula 3, in which the feature maps from the jth layer and Hl 

were represented by xj (1<j<l-1). was a non-linear 

transformation that connection-wise focused on the layout of 

the lth layer. 

 

Wi=[wi−1, i, wi−2, i, ⋯, w2, i, w1, i] (2) 

 

xl=Hl(wl−1, xl−1)+wl-2, xl− 2 ⋯ + w1, x1 (3) 

 
 

Figure 2. Basic architecture of proposed methodology 
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Figure 3. Sample architecture for implementing models with transfer learning 

 

There were four distinct layers in the network. First, there 

was the layer that the network received the picture patches 

through called the input layer. The second kind of layer was a 

convolutional one, which used both the input images and the 

learnt filters to generate feature maps for each filter. 

 

3.3 Transfer learning for classification 

 

Leveraging transfer learning, the proposed approach 

achieved 3-way AD classification as depicted in Figure 3. 

When we have a large dataset from which model learn all 

parameters, we can switch to transfer learning. A trained 

network, such as Resnet50v2, is used as a starting point for 

learning a new task. After training on ImageNet, the 

Resnet50v2 model was used ADNI dataset. The frozen fully 

connected layers produced 890 features and outputs for 3 

classes, necessitating a transfer learning approach. To 

accommodate four-class categorization, the model's 

architecture underwent modification. The final layers were 

replaced with a new fully connected layer, a SoftMax layer, 

and an output layer specifically designed for multi-class 

handling. The network was then trained using a dataset of 

magnetic resonance images and optimized training parameters 

[29]. After training, the model's accuracy was evaluated to 

assess its effectiveness in making correct classifications. To 

measure model performance and guide training, loss was 

calculated using the Cross-Entropy function. This function 

ensures that the model's output dimensions match the number 

of classes being classified. X denotes the feature space, and 

P(X) denotes the associated marginal probability [30-34]. In 

P(X), X={x1, x2, ..., xn}, where n denotes the number of input 

images. The domain is represented mathematically. 

 

Domain = {X, P(x)} 

 

Within two distinct domains, the ways in which features 

were distributed and represented differed significantly. To 

formalize a specific task within a domain, a set of potential 

labels (W) and a prediction function (f(.)) were employed. 

 

Task = {W, f(. )} 

 

The model's prediction function (f(.)) was trained on 

features extracted from the data, enabling it to make 

predictions on unseen test data. The proposed framework 

involved two domains: a target domain (Domain_p) and a 

source domain (Domainq). Data points in the source domain 

with label wsi were designated as xsi, while those in the target 

domain with label wti were designated as xti. The target domain 

and the source domain is formulated as follows: 

 

𝐷𝑜𝑚𝑎𝑖𝑛𝑝 = {(𝑥𝑡1, 𝑤𝑡1), (𝑥𝑡2,𝑤𝑡2), . . . . (𝑥𝑡𝑖,𝑤𝑡𝑖)} (4) 

 

𝐷𝑜𝑚𝑎𝑖𝑛𝑞 = {(𝑥𝑠1, w), (𝑥𝑠2,𝑤𝑠2), . . . . (𝑥𝑠𝑖,𝑤𝑠𝑖)} (5) 

 

Transfer learning shines as a powerful technique for 

building predictive models (f(.)). It leverages insights gleaned 

from past tasks and domains (source activities and domain) to 

efficiently train the model and accurately predict labels for 

new data points (x). f(x) was represented mathematically as 

𝑓(𝑥) = 𝑃(𝑊
𝑋⁄ ). 

 

Algorithm: 

➢ Input 

P(Y), Y={y1, y2, ..., yn}: Probability distribution of 

samples in the dataset, where Y represents the collection of 

samples. 

➢ Pre-Training 

For each sample in the dataset: 

• Utilizing a pre-trained source domain (Ds) 

network with embedded knowledge.  

• Preparing target domain (Dt) training and 

validation sets for model adaptation.  

• Initiating knowledge transfer via training and 

validation on these sets. 

End for 

➢ Fine-Tuning 

For each feature f(y): 

• Perform model customization for the target 

domain via fine-tuning of designated layers, 

targeting {Y, P(y)}.  

• Optimize target task performance through 

further fine-tuning utilizing the training dataset 

(Dt). 

• Conduct model evaluation on unseen images 

using the test dataset (Dt) to gauge categorization 

efficacy. 

End For 

➢ Output 

The fine-tuned model achieved a high level of accuracy in 

the classification of test dataset images. 
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3.4 Transfer learning for pretrained models 

 

3.4.1 InceptionResNetV2 

Inception-ResNet-V2 framework is built around the 

Residual Inception Block. each block is followed by a 

meticulous dimensionality check. After each block, an 11-

convolution filter expansion layer ensures accurate input depth 

representation before summation. To maintain harmony, batch 

normalization is selectively applied to conventional layers 

only. This intricate network elegantly accepts 113×137×113 

pixel inputs and orchestrates a symphony of 164 layers. At the 

heart of this innovation lies the Residual Inception Block 

(RIB), a masterful ensemble of diverse convolutional filters 

and residual connections [35]. This architecture takes 

advantage of residual connections to combat severe network 

deterioration and quicken the training process. Since there 

were no tuning parameters in this core design, Max Pooling 

was performed to reduce overfitting in the convolutional 

structure by increasing the correlation between feature 

importance and label category [36, 37]. This means that max 

Pooling outperforms the Flatten method in terms of parameter 

efficiency. To safeguard against overfitting and promote 

model generalization, a Dropout layer is strategically injected, 

wielding a constant value of 0.8. 

 

𝜎(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑦𝑖𝑘
𝑗=1

 (6) 

 

The SoftMax activation function, applied to the dense layer, 

transformed its outputs into probability distributions across K 

classes, as specified in Eq. (6), which in this case is e=2.718, 

the dense layer was activated using the SoftMax activation 

function. 

 

𝑤′ = 𝑤 − 𝛼 × 𝛻(𝑤; 𝑥(𝑖); 𝑦(𝑖)) (7) 

 

Throughout backpropagation, we optimized with Stochastic 

Gradient Descent (SGD), an iterative method. In the give Eq. 

(7), where w stands for weight, 𝛼 for learning rate, and ∇(w; 

x(i); y(i)) for the gradient to weight, input, and output/label, 

respectively. 
 

3.4.2 Proposed ResNet50V2 with TL 

ResNet50v2, a star performer in the computer vision world, 

sits alongside champions like VGG16, DenseNet121, 

Xception, and MobileNetV2. Built upon vast datasets of 

diverse images, these pre-trained models offer their expertise 

through transfer learning algorithms, even with limited data 

and resources. In this study, we leverage a large medical image 

dataset and perform transfer learning with ten distinct pre-

trained weights derived from ResNet50v2. ResNet50v2, a 

Convolutional Neural Network (CNN) boasting 50 layers, 

forms the backbone of our exploration. Figure 4 unveils its 

architecture, alongside our fine-tuning setup for transfer 

learning. 

ResNet50v2 architecture features a series of convolutional 

layers, starting with an initial layer using 64 kernels, a stride 

of 2, and a 7×7 filter, followed by 3×3 pooling. It then stacks 

multiple sets of convolutional layers, each set containing three 

layers: 1×1 convolutions, 3×3 convolutions, and a final 1×1 

convolution that increases channel depth. This pattern repeats 

with progressively larger kernel numbers and more repetitions 

through the network. Max pooling and hidden layers 

combining convolutions, batch normalization, and ReLU 

activations further refine the features. Notably, the original 

fully connected layer with 1000 out-features is replaced with 

a group of fully connected layers to enhance the model's 

performance. To adapt ResNet50v2 for three-class dementia 

classification (non-demented, mild, moderate, very mild), the 

original final layer is replaced with a custom dropout scheme. 

This involves selecting the first 2048-feature layer with a 50% 

chance of inclusion, followed by a ReLU layer and another 

dropout layer with the same probability. Finally, a final fully-

connected layer with 4 outputs maps features to the specific 

dementia classifications. Notably, this study explored transfer 

learning, utilizing 10 pre-trained ResNet50v2 models from 

diverse medical image datasets to optimize performance for 

this specific task. 

 

 
 

Figure 4. Enhanced architecture of the proposed model: Modified ResNet50V2 with 2PTL 
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4. RESULTS 

 

Developing a model for classifying MRI scans and 

detecting Alzheimer's disease often involves transfer learning, 

leveraging pre-trained weights from a larger model. This 

project utilized TensorFlow, a popular framework for building 

and training machine learning models. The process involved 

feeding 3256 MRI images into the network. In this study, we 

employed the Stochastic Gradient Descent with Momentum 

(SGDM) optimizer to play this role for our Alzheimer's 

detection model. This technique delicately fine-tuned the 

model's weights and biases, guiding it towards minimizing the 

loss function and maximizing accuracy. The learning process 

unfolded over 50 epochs, each meticulously reviewing the 

entire dataset 107 times. To ensure the model didn't overfit and 

memorize specific patterns, we relied on a small batch size of 

512 images. This, coupled with an early stopping parameter of 

4 on the validation set, acted as a safeguard against clinging to 

irrelevant details, promoting robust generalization to unseen 

data. Through this careful choreography of optimization, data 

exposure, and safeguard measures, we empowered the model 

to achieve impressive accuracy in Alzheimer's detection, 

paving the way for more confident diagnoses and improved 

patient care. This allows the model to stop training if it's not 

improving on the validation data, preventing it from 

memorizing the training set without generalizing well to 

unseen data. Choosing the optimal learning rate plays a crucial 

role in balancing convergence speed and accuracy. 

Experiments revealed that while the model achieved its best 

performance at a learning rate of 1e-4, this was still 

significantly faster than the average. A learning rate of 1e-4 

was therefore used across all models for consistency. 

Evaluating the performance of a classification model goes 

beyond simple accuracy. To gain deeper insights, a confusion 

matrix was used to assess precision, recall, and other metrics 

for each class. This comprehensive analysis provides a more 

nuanced understanding of the model's strengths and 

weaknesses. Overall, this project explored six different models, 

each trained on a balanced dataset of 1200 MRI scans (400 per 

category) for 50 epochs. 70% of the data was used for training, 

with the remaining 30% reserved for testing. By utilizing 

transfer learning, optimizing training parameters, and 

employing advanced evaluation techniques, this approach 

provides a valuable framework for building and refining 

Alzheimer's disease detection models. 

 

sensitivity =

(
𝐷𝑝

𝑁𝑝
)

(
𝐷𝑝

𝑁𝑝
) + (

𝐷𝑛

𝑁𝑛
)

∗ 100 (8) 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
(

𝐷𝑚
𝑁𝑛

)

(
𝐷𝑚
𝑁𝑚

)+(
𝐷𝑒
𝑁𝑒

)
∗ 100  (9) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(

𝐷𝑝

𝑁𝑝
)

(
𝐷𝑝

𝑁𝑝
)+(

𝐷𝑒
𝑁𝑒

)
∗ 100  (10) 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(

𝐷𝑃
𝑁𝑝

)+(
𝐷𝑚
𝑁𝑚

)

𝑝+𝑚
∗ 100  (11) 

 

𝑚𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 = 1 −
(

𝐷𝑃
𝑁𝑝

)+(
𝐷𝑚
𝑁𝑚

)

𝑝+𝑚
∗ 100  (12) 

 

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 = 1 −
(

𝐷𝑚
𝑁𝑛

)

(
𝐷𝑚
𝑁𝑚

)+(
𝐷𝑒
𝑁𝑒

)
∗ 100  (13) 

 

𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 = 1 −
(

𝐷𝑝

𝑁𝑝
)

(
𝐷𝑝

𝑁𝑝
)+(

𝐷𝑛
𝑁𝑛

)
∗ 100  (14) 

Table 2. Performance evaluation table for InceptionResnetv2 

 
Model Classification Precision Recall F1-Score Accuracy 

Inception Resnetv2 

NC vs MCI 91.23 90.35 89.51 91.85 

MCI vs AD 92.25 89.51 91.86 90.33 

AD vs NC 91.13 89.58 88.45 90.78 

 

Table 3. Performance evaluation table for Resnet50v2 

 
Model Classification Precision Recall F1-Score Accuracy 

Resnet50v2 

NC vs MCI 91.24 91.63 92.95 92.45 

MCI vs AD 90.54 90.35 89.45 90.65 

AD vs NC 92.45 91.41 91.95 91.25 

 

Table 4. Accuracy comparison of different models on 

Alzheimer’s disease MRI images 

 

Models 
Training 

Accuracy (%) 

Testing Accuracy 

(%) 

DenseNet121 [3] 87.5 86.5 

MobileNetV2 [30] 88.4 87.3 

VGG16 [33] 83.5 84.5 

Xception [35] 86.5 83.8 

InceptionResNetV2 90.9 90.7 

Proposed Model 92.15 91.25 

 

Both InceptionResnetV2 and ResNet50V2 achieved strong 

performance on all evaluation metrics, as detailed in Tables 2 

and 3. Notably, ResNet50V2 excelled in classification, 

achieving an impressive 91.25% testing accuracy. This 

surpassed even state-of-the-art models like VGG16 and 

Xception, as shown in the same tables. In Table 4 with its 

outstanding 92.15% training accuracy and top 91.25% testing 

accuracy, ResNet50V2 emerged as the clear winner for 

classifying Alzheimer's disease. 

Figure 5 depicts comparative results graphically: 

ResNet50v2 reigns supreme in classifying 3D MRI images! 

Among all the models tested, it boasts the highest training and 

testing accuracy, a true testament to its prowess. While 

InceptionResNetV2 follows closely behind, securing the 

second-highest accuracy, ResNet50v2 clearly sets the 
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benchmark. Compared to other contenders like VGG16, 

DenseNet121, Xception, and MobileNetV2, ResNet50v2 

emerges as the undisputed champion. This visual illustration 

reinforces the data, leaving no doubt about ResNet50v2's 

exceptional capabilities in tackling the challenge of accurate 

Alzheimer's disease detection through MRI analysis. 

 

 
 

Figure 5. Graphical representation for comparative results of 

Alzheimer’s disease classification 

 

 

5. CONCLUSIONS 

 

Deep learning shines in identifying Alzheimer's disease 

from MRI scans, as this study demonstrates. Unlike humans, 

complex deep neural networks excel at navigating vast, 

intricate datasets, offering a powerful, data-driven approach to 

problem-solving in medical research. Their potential lies in 

automating tasks for neurologists while minimizing human 

error. Here, we applied transfer learning to classify MRI 

images into two categories using InceptionResNetV2 and 

Resnet50v2, both trained on existing datasets. Both models 

successfully categorized the data, with the proposed model 

showcasing exceptional performance: 92.15% training 

accuracy and 91.25% testing accuracy, surpassing other 

models. These results solidify Resnet50v2 with transfer 

learning as a champion for classifying 3D MRI images. 

Looking ahead, exploring advanced deep learning models and 

hyperparameter tuning on diverse datasets holds immense 

promise for even more accurate Alzheimer's disease detection. 
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