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This study presents an advanced methodology for assessing building surfaces by integrating 

infrared thermography (IRT) with ANSYS Fluent numerical simulation. IRT was employed 

to gather thermal characterization data of building surfaces under varying environmental 

conditions, comparing structures in both campus and urban settings. Subsequently, a three-

dimensional heat transfer model was developed using ANSYS Fluent to simulate the thermal 

properties of building surfaces under different operational scenarios and validate the 

experimental findings. The analysis investigated the effects of building surface size, depth, 

and positioning on thermal insulation efficiency. Experimental results indicated that 

insulation distribution on campus building surfaces appeared more dispersed under IRT, 

suggesting a higher likelihood of thermal anomalies. Numerical simulations with ANSYS 

Fluent demonstrated that increasing the surface area of buildings enhances resistance to heat 

transfer, thereby diminishing the insulation effectiveness. This study provides a 

comprehensive performance assessment approach by seamlessly combining experimental 

testing with numerical simulation, offering novel insights and methodologies for building 

surface inspection and evaluation. 
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1. INTRODUCTION

As urbanization accelerates and building technology

advances, detecting and monitoring building facades becomes 

increasingly crucial [1]. The temperature distribution 

information on a building façade not only represents the 

structure's operating status, but it also provides important data 

for energy management and environmental monitoring [2]. 

Because of its great efficiency, non-contact nature, and all-

weather capabilities, IRT is commonly used to monitor 

building façade temperatures [3]. However, typical IRT can 

only offer temperature distribution information and does not 

combine building façade texture information with visual 

pictures, limiting its use in building structure study and 

management [4]. 

Building thermography can accurately depict the thermal 

distribution and energy performance of structures by 

monitoring infrared radiation on building surfaces [5]. 

However, due to the variety of building materials and the 

surrounding environment, thermal imaging data frequently 

contains noise and artifacts, reducing the precision and 

reliability of temperature distribution [6]. Traditional signal 

processing approaches, while capable of reducing noise, are 

nonetheless challenged by complex backgrounds and 

uncertainty [7]. 

Machine learning approaches, particularly deep learning-

based algorithms, can better reduce noise in thermal imaging 

data and extract more relevant information by learning 

features and patterns from huge amounts of data [8, 9].  

Although machine learning algorithms show promise in 

thermal imaging data processing, they still confront significant 

obstacles in practical applications [10]. First, the complexity 

and diversity of building thermal imaging data necessitate 

machine learning models with strong generalization 

capabilities to handle data from many types of buildings and 

climatic situations [11]. Second, how to properly pick and 

process a large amount of training data, as well as construct an 

appropriate model structure, are critical elements influencing 

the noise reduction effect and improved analysis capabilities 

[12]. 

Furthermore, to fully comprehend the building's 

performance and operational status, a fine-grained analysis of 

thermal imaging data must include information from many 

areas, such as the building's physical structure and energy 

consumption pattern [13]. As a result, how to effectively 

integrate and use multi-source data to improve the use of 

machine learning models in the refined analysis of building 

technologies is an essential area for future research. 

To address this restriction, this work presents an alignment 

and texture mapping method based on IRT and RGB pictures 

to achieve temperature texture remapping of building facades 

[14]. In contrast to previous approaches, we apply the Shifting 

Structure Tool (SfM) and Fast Global Alignment (FGR) 

algorithms to align thermal and RGB pictures before 

combining them with the Invariant Emission Feature 

Transform. Accurate and robust feature matching can be 

achieved using methods such as feature transform (RIFT), 
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normalized center-of-mass coordinate system (NBCS), and 

randomly sampled sequences (RANSAC) [15]. In addition, we 

present a global posture refinement method to enhance the 

geometric correctness of texture mapping. 

The research significance of this study is mostly represented 

in the following areas:  

First, the integration of infrared thermal imaging and RGB 

photos achieves an organic combination of temperature 

distribution and visual texture information of building facades, 

resulting in more comprehensive and accurate analytical data 

for the operational state of buildings. 

Second, the suggested method efficiently maps the 

temperature properties of thermal pictures onto the RGB point 

cloud model, opening up new avenues for temperature 

monitoring and analysis of building facades. 

Third, the alignment and texture mapping methods 

suggested in this research are very accurate and resilient, 

capable of handling difficult scenarios in a variety of contexts, 

and provide dependable technical assistance for real-world 

engineering applications.  

2. PROPOSED METHOD 

 

2.1 Alignment work 

 

The implemented alignment workflow is summarized in 

Figure 1: Initially, the infrared image is processed using a 

typical SfM program to create a second 3D point cloud, which 

is then aligned with the RGB image's point cloud. In order to 

get the approximate transformation information between these 

two point clouds, a quick global alignment procedure is then 

used. The optimal RGB image for every thermal image is 

determined by figuring out the exterior orientation parameters' 

minimum Euclidean distance. The Radiation Invariant Feature 

Transform (RIFT), Normalized Barry Central Coordinate 

System (NBCS), and RANSAC are then utilized to perform an 

accurate and trustworthy feature match on each chosen 

combination of RGB heatmap images. Finally, the relevant 

feature in the RGB image is used to determine the proper 

position. These spots are then deleted from the thermal image 

space in order to optimize their external orientation 

characteristics.  

 

 
 

Figure 1. Registration workflow 

 

2.1.1 Generation of point clouds  

The thermal image and the RGB image were transformed 

into a hot spot cloud and an RGB point cloud, respectively, 

using a Structure in Motion (SfM) application (such as Agisoft 

PhotoScan®). The RGB were employed as a 3D reference 

since their resolution and contrast were far higher than the 

thermal images', but the thermal images supplied the 

appropriate temperature characteristics. The contrast of the 

thermal image needs to be improved before using the SfM tool 

to create the hotspot cloud. To do this, we apply a Wallis filter. 

Iterative Nearest Point (ICP) and its variations are 

frequently used point cloud registration techniques. When the 

initialization criteria are met, these algorithms typically yield 

precise alignment information. However, this work does not 

provide such startup conditions. Furthermore, registering 

heterogeneous point clouds becomes more challenging due to 

the fact that thermal 3D point clouds are sparser and noisier 

than RGB point clouds [16]. As a result, the alignment 

technique employed must be capable of handling noisy data as 

well as initialization-independent information. The basic 

procedure is as follows: First, alter the RGB point cloud with 

a proportionality parameter that determines the minimum ratio 

of the border frame length on the XYZ axis, or (𝛥𝑋Thermal/
𝛥𝑋𝑅𝐺𝐵 , 𝛥𝑌Thermal/𝛥𝑌𝑅𝐺𝐵 , 𝛥𝑍Thermal/𝛥𝑍𝑅𝐺𝐵) , because the 

scaling of thermal and RGB point clouds differs (Figure 2). 

This allows for the extraction of matching features on the same 

scale. Next, the first correspondence set was created using the 

features from the FPFH. The pairs that are closest to one 

another, and the tuple test, which confirms the 

correspondences' compatibility, are then used to exclude 

outliers from the correspondence set. Lastly, the coarse 

alignment results are estimated using RANSAC and FGR. 
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Figure 2. Point cloud coarse registration displays the point 

cloud's initial poses for elevations 1, 2, and 3. The matching 

FGR and RANSAC results are displayed in (d-f) and (g-i), 

respectively 

 

FGR outperforms RANSAC when working with noisy 

feature correspondence sets from varied point clouds of 

varying densities and accuracies, as seen in Figure 2. This is 

because RANSAC occasionally converges to a local minimum. 

Since the scaled Geman-McClure estimator can reliably 

remove false correspondences during optimization, FGR 

employs it as a punishment function. Consequently, FGR 

outperforms RANSAC when handling noisy correspondence 

sets. It should be noted that although we attempted to use ICP 

to further optimize the FGR results, ICP was unable to increase 

the alignment's accuracy due to the disparate precision and 

density of heterogeneous point clouds. Elevation 1 measures 

approximately 100 meters in length and 26 meters in height; 

Elevation 2 measures approximately 51 meters in length and 

22 meters in height; and Elevation 3 measures approximately 

58 meters in length and 24 meters in height. 

 

2.1.2 Image matching in thermal RGB 

To create thermal texture maps, the thermal point cloud 

must be more finely registered with the RGB point cloud after 

the FGR coarse registration is finished. As a result, it is 

important to use a thermal-RGB image pair matching 

technique. According to the study [17], standard algorithms 

based on picture intensity and gradient (e.g., SIFT, SURF) 

frequently fail to find point correspondences in thermal-RGB 

image pairings. These techniques are limited to smaller linear 

intensity differences since they detect and characterize the 

feature points using the gradient information in the spatial 

domain, which makes them ineffective for handling the 

matching of thermal-RGB image pairings. However, thermal-

RGB image pairs typically have significant nonlinear radiance 

discrepancies. On the other hand, the RIFT technique is more 

resilient when handling significant nonlinear radiation 

changes and uses phase coherence recognition. As a result, this 

paper uses the RIFT technique for feature characterisation and 

detection. Eq. (1) illustrates the metric to be used: The 

Euclidean distance between the exterior orientation 

parameters of the thermal and RGB images. 

 

( ) ( ) ( )
2 2 2

2 2 2

RGB T RGB T RGB T

RGB T RGB T RGB T

x x x

d X X Y Y Z Z

p p p  

     

= − + − + −

     − − −
+ + +          
     

 (1) 

 

where, (𝑋𝑅𝐺𝐵 𝑌𝑅𝐺𝐵 𝑍𝑅𝐺𝐵) = FGR is the FGR-transformed 

RGB image's center of projection.  
(𝑋𝑇 𝑌𝑇 𝑍𝑇) = the thermal image's projection center. 

 

2.1.3 Calculating the image posture 

To achieve exact matching of the heatmap and RGB point 

cloud, we take a simple two-step strategy. To extract 3D 

feature points from image coordinates corresponding to 

objects in RGB photos and the RGB point cloud, we first 

match each pair of heatmaps and RGB photographs separately. 

The exterior orientation parameters of each heatmap picture 

are then computed by inversely intersecting the spaces using 

the coordinates of the images corresponding to the features as 

well as the coordinates of the objects in the 3D point clouds. 

 

 
 

Figure 3. Image resection using non-elevation point removal 

(a) Correspondence matching between pairs of thermal and 

RGB images (b) The outcome of a single plotting, where the 

matching object points are represented by white spheres 

 

Specifically, spatial subdivision is initially carried out to 

assign a small section of the elevation to each image 

depending on the center of projection during the single-

labeling phase. The target object point is then found for each 
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picture feature (ray) by choosing the point among all assigned 

points that has the least vertical distance. Keep in mind that by 

defining a vertical distance threshold, things like trees that are 

not part of the 3D elevation model can be eliminated. 

 

 

 
 

Figure 4. Texture mapping outcomes using a single sample 

image FGR in (a) and FGR plus image resection in (b) 

 

Stated differently, elevation points are only incorporated 

into the spatial backward rendezvous process if their vertical 

distance is smaller than a predetermined threshold (e.g., 0.1 m), 

as illustrated in Figure 3. When conducting a backward 

intersection of the thermal image space, the initial exterior 

orientation parameters acquired by SfM (see Section 2.1.1 for 

details) are used as initial values. To enable smooth 

convergence of the thermal image space's backward 

intersection procedure, the related RGB points are transformed 

using the FGR coarse alignment findings. The maximum and 

mean reprojection errors are two examples of accuracy 

measures.  

In this configuration, an image is deemed unsuccessful and 

is not used in the next texture mapping process if the average 

reprojection error of a thermal image surpasses 2 pixels or the 

maximum reprojection error exceeds 5 pixels. It is important 

to note that passing the maximum reprojection error is still 

required as an extra precaution, even though the reprojection 

error has been evenly distributed over all feature points 

following the image space rendezvous. 

Figure 4 shows the texture mapping results of a single image 

utilizing both fine alignment (FGR with spatial segmentation, 

4b) and coarse alignment (by FGR, 4a), with the latter being 

obviously better. Actually, depending solely on coarse 

alignment (FGR) results in imprecise texture mapping and 

inadequate baseline values. This is due to the fact that, in order 

for the suggested approach to converge to the global optimum, 

it needs a sound initial setup; otherwise, it may produce 

inaccurate results or local optimal solutions. 

 

2.2 Principles of infrared thermal imaging detection  

 

According to earlier research, the IRT method may 

qualitatively identify a variety of problems, including surface 

cracking, voids between the wall surface and the finish layer, 

and thermal flaws in the exterior thermal insulation layer. 

Nonetheless, there are still a lot of technical issues that need to 

be resolved before these events can be quantitatively detected 

and analyzed [18]. This paper employs infrared thermal 

imaging technology to construct an experimental platform for 

detection. It also establishes a three-dimensional model of 

infrared thermal imaging detection using ANSYS software to 

quantitatively investigate the impact of the external thermal 

insulation layer's dimensions and ambient temperature on the 

detection effect. 

The external thermal insulation layer of the building outside 

can be roughly represented as an infinite single-layer flat wall 

because of its huge area-to-thickness ratio, and this 

approximation satisfies the necessary requirements [19]. 

 

00,

T T
c

x x t

t T T

 
    

=  
   

 = =

 (2) 

 

In what situation does 𝜕T/ ∂𝑥 = 0 occur when 𝑥 = 𝑑, 𝜆 ⋅
𝜕𝑇/𝜕𝑥 = ℎ(𝑇 − 𝑇𝑒); λ represents the building exterior wall 

insulation layer's (unit 𝑊 ⋅ 𝑚−1 ⋅° 𝐶−1 ); T is the layer's 

temperature inside the building at any given point (unit ∘C); ρ 

is the layer's density (unit kg ⋅ 𝑚−3); c is the layer's specific 

heat capacity (unit 𝐽 ⋅ kg−1 ⋅° 𝐶−1 ); and x is the space 

coordinates' direction. 

We may formulate the differential equation of thermal 

conductivity and the edge value condition as follows for the 

defect-free insulating layer: 𝜃 = 𝑇 − 𝑇𝑎. 

 

2

2

0 0 a0,

a
t X

t T T

 

 
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=

 
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 (3) 
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where, 𝑎 = 𝜆/𝜌𝑐  is the ambient temperature parameter in 

degrees Celsius, and 𝑇𝑎 is the thermal conductivity coefficient. 

After replacement, 𝑋 = 𝑥/𝑑 is used as the coordinate variable, 

while 𝐹 = 𝜃/𝜃0 is used as the temperature variable. The data 

are dimensionless. 

 

( )

2

22

0

,
at /

0, 1

F F

Xd

t F F

  
=



= = =

 (4) 

 

For this simulation, the criterion Bivolt number is 𝐵𝑖 =
ℎ𝑑/𝜆. The criterion Fourier number is 𝐹0 = at/𝑑2, which is 

the time variable of the heat conduction process in the 

insulation layer after substitution. This can be stated as follows: 

the dimensionless coordinate variable X, the Bivolt number 𝐵𝑖 , 
and the Fourier number 𝐹0  function to determine the 

dimensionless temperature variable F. 

 

( )0 , ,iF g F B X=  (5) 

 

The construction surface of the insulation layer can be 

thought of as a defect within it, supposing that there is a finish 

layer on it that is minuscule in thickness. The surfaces of the 

building and non-building surfaces can be found by setting the 

surface temperatures of the insulated building surface part (𝑇1) 

and the non-building surface part (𝑇ℎ) respectively. 

 

1 hT T T= −  (6) 

 

Taking into account the significance of the building 

surface's dimensions, specifically length (l), width (w), and 

thickness (δ), 𝛥𝑇 can be represented as: 

 

( )0 , , , , , , , ,T g t a d h l w   =  (7) 

 

where, ℃ is the unit of 𝜃0; s is the unit of t; 𝑚2 ⋅ 𝑠−1 is the 

unit of a; m is the unit of d; and m is the unit of 𝛿. 

The other physical quantities in the physical process 

involved in the functional connection can be stated as follows, 

in accordance with the fundamental idea of the magnitude 

analysis method (π theorem), which is to choose the four 

physical quantities 𝛥𝑇, 𝑡, 𝜆, 𝑑 with the magnitude. 
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Using the quantum harmony principle, each π term's 

exponent equals to: 
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The resulting dimensionless equation is: 
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i.e.,: 
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where, A is the building surface's actual size, C is the 

surrounding air temperature, and R is the thermodynamic 

constant. 

In conclusion, the size of the building surface itself and the 

surrounding air temperature are the primary determinants of 

the temperature differential between the building surface and 

the non-building surface area when infrared thermal imaging 

technology is utilized to identify the building surface of the 

outer insulation layer of the building wall. This provides a 

theoretical basis for the simulation study. 

 

 

3. CONSTRUCTION AND VERIFICATION OF A 

FINITE ELEMENT SIMULATION MODEL  
 

3.1 Numerical simulation of finite elements with ANSYS 

Fluent 
 

Strong finite element simulation capabilities can be found 

in ANSYS, particularly in its subsystem. The needs of this 

study are satisfied by ANSYS Fluent's precise simulation of 

the heat transport system under natural convection and light 

radiation conditions meets the needs of this study. As a result, 

this experiment decided to create a three-dimensional model 

for an infrared thermal imaging assessment of the building's 

exterior thermal insulation layer using ANSYS Fluent. 
 

3.2 Building exterior thermal insulation layer modeling 
 

We selected polystyrene foam board (EPS) as our study 

subject because of its low thermal conductivity, superior 

thermal insulation performance, and affordability. EPS is a 

newly developed lightweight roof insulation material that is 

now quite popular on the market. The experiment's test 

samples are 50 mm thick and measure 700 mm by 650 mm in 

area. We simplified the irregular building surface into regular 

building surfaces with different dimensions to simulate the 

external wall insulation layer in various insulation failure 

situations. This is because the building surface of the 

insulation layer is random, and it is difficult to control the 

building surface dimensions (length, width, and thickness).  

Numerous variables, like the refractive index of the object 

being tested, the surrounding temperature, the equipment's 

temperature range, and resolution, might impact an infrared 

camera's ability to detect objects. The infrared camera is very 

sensitive to changes in ambient temperature. The effectiveness 

of infrared detection will be impacted when there is a 

significant disparity in temperature between the equipment 

and the surrounding environment, or when the ambient 

temperature fluctuates significantly. The environmental 

factors are always changing throughout the actual 

measurement, making it challenging to record them in a timely 

manner. Therefore, the uncertainty of other external factors on 
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the experiment can be controlled to avoid the influence of the 

difference in the performance of the infrared camera in the 

experimental results by studying the trend of the influence of 

the main influencing factors. 

The ANSYS Fluent software creates the fluid region, builds 

the three-dimensional heat transfer model of the building 

surface on the exterior insulation layer of the building exterior 

wall based on the actual size of the experimental material, and 

meshes the model as depicted in Figure 5. Next, the fluent 

thermal analysis is set up according to the study item and the 

type of the calculation problem.  

Choose the natural convection technique of thermal 

convection: It is required to open the gravity term, specify the 

gravity size and direction, and assume that the gas density is 

incompressible because the fluid flow is driven by the density 

change under the gravity field. Less than 2300 is the computed 

Reynolds number, indicating a laminar flow state.  

Establish the radiation boundary conditions by turning on 

the energy equation, selecting the discrete coordinate (DO) 

model as the thermal radiation model, and entering the 

radiation parameters that match the experiment's 

environmental parameters. 

Enter the experimental material specifications. By default, 

the wall is adiabatic, and the boundary conditions are specified. 

The primary thermodynamic parameters of the polystyrene 

foam board are displayed in Table 1.  

 

 

 
 

Figure 5. 3D model for polystyrene foam board IRT 

inspection (a) Polystyrene foam board overall schematic;  

(b) Model meshing 

 

Table 1. Primary thermodynamic parameters of foam boards made of polystyrene 

 

Length /mm Width/mm Thickness/mm Specific Heat Capacity/(J·kg-1·K-1) 
Density 

/(kg·m-3) 

Thermal Conductivity 

/(W·m-1·K-1) 
Absorption Coefficient/m-1 

700 650 50 1600 36 0.04 1 

 

Launch the simulation computation to set the various 

operating conditions for the experiment. A short-time steady-

state thermal analysis is performed first, and the iterative 

calculation leads to smooth temperature information as the 

final result. This is because the temperature field of the 

insulation layer is greatly affected by the time factor, and it is 

necessary to analyze the influence of the stable thermal load 

on the insulation layer insulation failure condition. 

 

3.3 Model validation  

 

This effort included the development of a three-dimensional 

heat transfer detection model to ensure the accuracy of the heat 

transfer model. The data from the simulation calculation was 

compared with field inspection data of the insulated building 

surface under various thickness conditions. Because of the 

high internal temperatures and low exterior temperatures, IRT 

requires a specific temperature differential between the inside 

and outside of the building envelope of at least 10°C in order 

to detect heat loss. The study was conducted at 7:00 a.m. with 

an outdoor temperature of 5 degrees Celsius (23 degrees 

Fahrenheit), which satisfies the requirement for a temperature 

difference. The suggested average temperature for indoor 

areas in Germany is 17 degrees Celsius (63 degrees 

Fahrenheit). The five scenarios that best capture the 

experimental summary of this study are "Campus 

45*35meter", "Campus 45*60meter", "Campus 30*60meter", 

and "City 45*60meters". The camera angles on the flight 

pathways in (3) and (4) were examined in Experiment 2, while 

the architectural styles in (2) and (5) were compared in 

Experiment 4. "Campus 45*35meters" required more time for 

data collection and processing in these trials.  

We chose a campus building to evaluate the usefulness of 

data fusion in many architectural domains. Traditional 

European urban construction is concentrated in urban 

locations, whereas modern buildings are constructed in more 

remote parts of the campus. Figure 6 shows the point cloud 

and thermal model of various building areas. Figures 6(a) and 

6(b) depict the campus' RGB point cloud and thermal model, 

respectively. The thermal model is shown in an iron palette, 

with yellow representing high temperatures and purple 

representing low temperatures. Figures 6(c) and 6(d) illustrate 

the urban area's RGB point cloud and the thermal model 

produced from the RGB model. 

 

3.3.1 Plateau comparison experiment 

In the first experiment, we investigated various elevations 

between 35 and 60 meters. For these two flight heights, the 

Surface Averaged Vertical Distance, or SAVS, was computed 

and summarized. The precise findings are as follows: there are 

six rows for the test at 35 m altitude (rows 1, 5, 9, 13, 17, and 

21) and six rows for the test at 60 m altitude (rows 2, 6, 10, 14, 

18, and 22). As illustrated in Figure 6(a), these six rows 

correspond to six evaluations of various point cloud objects, 

including buildings 1, 2, 3, and 4. Table 2 provides an 

overview of the four structures and their surroundings, which 

include roads, meadows, and trees. The parameters for 

restricting the distance between the destination and projection 

points are shown in the column. Rays convey thermal imaging 

pixels to 3D models, where they blend into the final point 
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cloud models. This procedure computes the distance to the 

closest point in the point cloud. When the distance is beyond a 

certain threshold, such as 0.1, 0.2, 0.3, 0.4, or 0.5 meters, there 

is no connection between the projected point and any target 

point. The scenario in which there is no threshold is indicated 

by column "N". In Section 2.2, the remaining rows are set 

aside for other trials. 

 

 
 

Figure 6. Campus building thermal modeling schematic 

 

Furthermore, we provide a summary of the contact point 

SAVS [20] (Table 3). The data fusion techniques varied, even 

though the experimental setup was different. Context Capture 

gave the 2D coordinates of the connection points, which were 

immediately employed by data fusion for the connection 

points. However, since Context Capture does not generate 

issues between the 3D and 2D coordinates of the 3D point 

cloud model, the algorithm described in Section 2 must be 

utilized for the data fusion of all points. A program that 

overlays the data from the 2D picture onto the 3D model must 

be put into place. 

The distribution of the other SD values is used to compute 

the SAV. The TL distribution with 0.01 bin sizes is displayed 

in Figure 7 to help visualize the distribution. The experimental 

"Campus45 Mesh 35m" distribution is displayed in Figure 7 

(a), (b), and (c), whereas the experimental "Campus45 Mesh 

60m" distribution is given in Figure 7 (d), (e), and (f). Figure 

7 covers the additional tests described in Sections 2.2 and 2.3. 

The first column of Figure 7 depicts the distribution of points 

in and around all buildings, the x-axis is the probable SD value, 

and the y-axis is the distribution of SD values at the connection 

sites in prior research [21], and the SD values for all the points 

generated by the proposed fusion method. All data pertain to 

the experimental case where there is no restriction between the 

target and projection points, and no other thresholds such as 

0.1 to 0.5 m are plotted in the data. 

3.3.2 A comparison of camera angles 

In experiment 2, different camera angles of 45 and 30 

degrees were investigated. Table 2 presents the computed 

SAVS estimates from both perspectives. The 45-degree 

experiment contains six rows (2, 6, 10, 14, 18, and 22), while 

the 30-degree experiment has six columns (3, 7, 11, 15, 19, 

and 23). Figures 7 (d), (e), and (f) show the distribution of the 

Campus 45 Mesh 60 m experiment, while Figures 7 (g), (h), 

and (i) show the distribution of the "Campus 30 Mesh 60 m" 

trial. 

When we initially compare Figures 7(d), (e), and (f) to 

Figures 7(g), (h), and (i), we can see that the 45-degree camera 

angle has a more dispersed distribution than the 30-degree 

camera angle. Furthermore, the later trial was dispersed closer 

to the y-axis than the former, resulting in a higher proportion 

of locations with lower SD values. Second, regardless of how 

the subpopulations and thresholds were set up, the SAVS of 

the first experiment was always higher than that of the second. 

Third, as can be seen in Figures 7(f) and 7(i), the vertical 

SAVS lines for each grouping in the first trial were 

significantly farther away from the y-axis than in the second 

trial. More specifically, the vertical lines in the second 

experiment were denser than in the first. Fourth, as the 

threshold was lowered in the earlier and later trials, the SAV 

dropped.  
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Figure 7. SD value distribution for many tests (binary size = 0.01) 

 

3.4 Comparison of flight paths 

 

Several flight patterns, such as a Y-shaped and cross-grid 

flying path, were tested in Experiment 3. Table 2 summarizes 

and calculates the SAV evaluations for both paths. Lines 3, 7, 

11, 11, 15, 19, and 23 correspond to a cross-mesh flight, 

whereas lines 4, 8, 12, 16, 20, and 24 relate to a Y-shaped flight. 

The experimental "Campus 30° Mesh 60 m" distribution is 
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presented in Figures 7 (g), (h), and (i), while the experimental 

"Campus 30° Y 60 m" distribution is displayed in Figures 6 (j), 

(k), and (l). 

When additional flight configurations are provided, the 

distribution of the grid trajectory is more concentrated than 

that of the Y-shaped trajectory, as demonstrated in Diagrams 

7 (g), (h), and (i) against Diagrams 7 (j), (k), and (l). The 

second experiment's distribution was erratic. Table 2 shows 

that certain subgroups have two or three peaks in the distance 

between the target and projection points, in both experiments, 

the SAV is always smaller in the former. Third, the 

distribution in the vertical direction was more prominent in the 

former trial than in the later, as seen in Figures 7(i) and 7(l). 

Fourth, this experiment similarly showed the same 

phenomenon of diminishing SAVS with a decreasing 

threshold. Lastly, there were differences in SAVs between 

flight paths for contact points and all points. The SAV for grid 

flights (1.265) was marginally greater than the SAV for the Y 

path (1.53) for contact locations. Conversely, the SAV for the 

Y-path (3.832) was higher than the SAV for the grid-fly path 

(3.042) at every point.  

3.5 Architectural style comparison 

 

Tables 2 and 4 present the results of the tests conducted on 

campus buildings and urban buildings, and the SAVS 

evaluations that were computed for these two distinct building 

types and densities. Table 2 summarizes the experimental data 

for the campus region ("Campus 45 grid 60 meters"), while 

Table 4 summarizes the experimental data for the urban area 

("City 45 grid 60 meters"). Six rows (rows 2, 6, 10, 14, 18, and 

22 in Table 2) comprise the tests for the campus area, whereas 

six columns (columns 1, 2, 3, 4, 5, and 6 in Table 4) include 

the examinations for the city region. Because the university 

region and the city region have different architectural styles, 

the data fusion performance evaluation results are broken 

down into separate tables. Four structures in the metropolitan 

area were also looked into as potential targets. These six lines 

also correspond to six estimations for numerous point cloud 

groupings, including Building 1, Building 2, Building 3, 

Building 4, and all buildings and their environs (e.g., meadows, 

trees, and roads). Figures 5(c) and 5(d) show three-

dimensional representations of these buildings.  

 

Table 2. Displays the statistical information regarding the evaluation criteria applied to different tests conducted under different 

circumstances 

 
Subgroup One: Building 1 Subgroup Two: Building 2 

Experiments Threshold 

  0.1 0.2 0.3 0.4 0.5 N 0.1 0.2 0.3 0.4 0.5 N 

1 
Campus_45

。

_Mesh_35m 
4.955 5.007 5.062 5.075 5.095 5.096 5.308 5.388 5.449 5.499 5.508 5.510 

2 
Campus_45

。

_Mesh_60m 
5.569 5.699 5.778 5.792 5.909 5.909 5.496 5.596 5.689 5.729 5.755 5.759 

3 
Campus_30

。

_Mesh_60m 
3.321 3.339 3.381 3.398 3.402 3.402 3.167 3.274 3.323 3.366 3.366 3.367 

4 
Campus_30

。

_Y_60m 
4.972 4.985 5.025 5.042 4.996 4.965 4.144 4.201 4.259 4.2283 4.287 4.287 

Subgroup Three: Building 3 Subgroup Four: Building 4 

Experiments Threshold 

  0.1 0.2 0.3 0.4 0.5 N 0.1 0.2 0.3 0.4 0.5 N 

9 
Campus_45

。

_Mesh_35m 
3.954 4.002 4.033 4.054 4.059 4.061 3.445 3.542 3.619 3.655 3.711 3.733 

10 
Campus_45

。

_Mesh_60m 
4.457 4.569 4.637 4.677 4.686 4.685 4.382 4.355 4.379 4.396 4.404 4.404 

11 
Campus_30

。

_Mesh_60m 
2.893 2.938 2.957 2.969 2.969 2.971 2.785 2.831 2.829 2.844 2.855 2.855 

12 
Campus_30

。

_Y_60m 
3.800 3.853 3.869 3.871 3.887 3.892 3.308 3.310 3.388 3.406 3.414 3.415 

Subgroup Five: All Buildings 
Subgroup Six: All Buildings with Their Surrounding 

Environment 

Experiments Threshold 

  0.1 0.2 0.3 0.4 0.5 N 0.1 0.2 0.3 0.4 0.5 N 

17 
Campus_45

。

_Mesh_35m 
4.505 4.557 4.612 4.639 4.655 4.658 4.063 4.144 4.179 4.224 4.236 4.899 

18 
Campus_45

。

_Mesh_60m 
5.044 5.147 5.211 5.247 5.257 5.257 4.806 4.898 4.961 4.995 4.998 4.998 

19 
Campus_45

。

_Mesh_60m 
3.058 3.118 3.151 3.162 3.166 3.166 2.944 2.955 3.022 3.040 3.039 3.039 

20 
Campus_30

。

_Y_60m 
4.161 4.203 4.233 4.255 4.259 5.259 3.739 3.797 3.815 3.829 3.833 3.833 

 

Table 3. Collar point SAV statistics for several trials carried out in various environments 

 
Experiment Campus_45°_Mesh_35m Campus_45°_Mesh_60m Campus_30°_Mesh_60m Campus_30°_Y_60m City_45°_Mesh_60m 

SAV 1.371 1.745 1.366 1.149 1.192 
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Table 4. Statistical parameters of assessment standards for various tests carried out in various environments 

 

 SAV  

 Threshold Grouping 0.1 0.2 0.3 0.4 0.5 N 

1 Building 1 2.879 3.959 4.007 4.052 4.039 4.039 

2 Building 2 3.372 3.427 3.473 3.501 3.506 3.506 

3 Building 3 3.822 3.882 3.935 3.959 3.955 3.955 

4 Building 4 3.409 3.681 3.489 3.506 3.503 3.503 

5 All buildings 3.607 3.449 3.721 3.739 3.731 3.734 

6 All buildings and their surroundings 3.618 3.397 3.734 3.759 3.757 3.756 

 

 
 

Figure 8. SD value distribution for various experiments 

 

Figure 7 presents the findings of the experiment "City_45 

grid 60m," which is contrasted with the experiment "Campus 

45 grid 60m" in Figure 7 to visualize the distribution 

characteristics. Figure 8 (a), (b), and (c) depict scenarios 

without a distance standard between the target point and the 

projection point, which correspond to Figures 7 (d), (e), and 

(f). However, the case with a distance threshold of 0.1-0.5 m 

is not shown. Figure 7 compares the outcomes of the 

experiments "Campus 45 grid 60 m" with "City 45 grid 60 m." 

We only looked into the overall effectiveness of the data 

fusion methods for the campus and urban region because 

Building 1 on the campus and Building 1 in the urban area 

have completely distinct architectural styles and volumes that 

make them impossible to compare directly. It can be observed 

that the distribution of the campus experiment is more diffused 

than that of the city-region experiment with the other flight 

configurations fixed by comparing. In the campus experiments, 

the vertical lines that represented the SAV of the various 

subgroups were similarly more spread and located farther 

away from the Y-axis (Figures 7(f) and 8(c)). Furthermore, as 

the thresholds were lowered, the SAV values for the urban area 

experiments also declined. 

 

 

4. CONCLUSION 

 

This study examined the properties of heat transmission on 

building surfaces and the exterior building insulation using 

IRT in conjunction with finite element numerical modeling 

(ANSYS Fluent). Understanding how building surfaces affect 

heat transfer performance is made easier with the help of 

ANSYS Fluent software, which accurately simulates 

complicated heat transfer systems. The variations in settings 

and architectural types could be the cause of this. As the 

distance threshold was lowered, the SAV values declined as 

well, although the decrease in the campus area was less 

pronounced, suggesting a more stable detection.  

In order to support a greater variety of building types and 

intricate climatic circumstances, the application of IRT can be 

further enhanced in the future to increase the model's accuracy 

and computing efficiency. To enhance the use of IRT in the 

detection of building surfaces on building facades, it is also 

possible to investigate the impact of additional influencing 

elements, such as variations in ambient temperature and 

measurement accuracy, on the detection findings. 
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