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In the study involving turning Monel K500 with a Cubic Boron Nitride Insert, experiments 

assessed flank wear using the Edge Detection Technique, which is crucial for maintaining 

machined surface quality and the workpiece's fatigue resistance. Monel K500, widely used 

in aerospace for high-temperature applications, demands preserved surface integrity and 

minimized tool wear. This research aimed to establish optimal machining parameters for 

this specific alloy-insert combination while developing a novel method for precise flank 

wear measurement. FlankPix, an innovative tool wear monitoring approach in machining, 

employs pixel distance measurement and image edge detection to identify tool edges 

accurately while disregarding background noise for precise measurement. This method 

ensures a smooth tool contour, effectively evaluating the tool's condition. With an average 

prediction error of 1.29%, FlankPix significantly enhances accuracy in assessing tool 

geometry changes, improving product quality, and reducing errors in tool condition 

estimation during manufacturing. 
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1. INTRODUCTION

1.1 Background 

Many experts have written volumes and articles on the 

subject of tool wear. On the other hand, flank wear has 

received a relatively minor amount of attention, even though 

both online and offline methods for monitoring the state of 

machining tools have been offered. In their study, Danesh and 

Khalili [1] used a non-decimated wavelet transform and 

statistical data on surface flaws to look at how tool wear 

compared to the surface texture of the turned piece. As a result, 

they could detect how tool wear affected the texture of the 

workpiece's surface. Researchers [2, 3] used edge recognition 

and morphological component analysis to find blunted edges 

in industrial environments. Researchers [4, 5] used tungsten 

carbide inserts to measure the depth of the crater wear during 

quasi-orthogonal cutting tests on AISI 1045 steel. They used a 

synthetic neural network to help them accomplish this, which 

allowed them to succeed. Matlab served as the primary 

modelling tool in developing an image-processing method by 

Xiong and his colleagues to assess the degree of tool wear. The 

image capture system comprises high-frequency linear 

fluorescent light, a high-resolution CCD camera, and a data-

gathering module [6, 7]. 

1.2 Literature review 

Researchers [8-10] developed an automated tool wear 

monitoring system using the active contour approach and 

neural networks to analyse tool flank wear. Urbicain and Trejo 

[11] created a system to measure milling and insert cutting-

edge flaws in real-time without interfering with production.

An edge-preserving smoothing filter, picture gradient

computation, and a cutting-edge damage assessment based on

geometrical features make up a three-stage technique. The

ANOVA (Analysis of Variance) and fuzzy rule methods [11,

12] were used to determine how much the AISI 5140 steel

alloy wore down and how much noise it made. The L27

orthogonal array method, the MSER algorithm, and the deep

pattern network [13] were used to measure the alloy's surface

roughness and flank wear when dry. To determine how long a

tool made from AISI 4340 steel will last, the study [14] ran

tests on the material with an L9 orthogonal array, analysed the

results with an ANOVA, and relied on Gilbert's method. For

Gamma-Prime-reinforced alloys, the study [15] employed

Kalman filtering to estimate tool wear and reported an 18%

filter rate of error. Of these papers, the study [16] MSER

Algorithm and DPN, published under the name FlankNet, are

the most promising candidates for the method used to assess

tool wear, in particular flank wear.

Ant Colony Optimization (ACO) and Canny's Edge 

Detection (Canny) have been used together to find skin lesions 

much more effectively in a study of optimisation and edge 

detection methods [17]. As a result, Fuzzy Logic's 

performance ranges from roughly 87% to 91%, with an 

average inaccuracy of 87%. The cutting forces and 
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temperature acting cumulatively on the cutting tool throughout 

the machining operation create normal tool wear. Tool wear 

would have a significant impact on the surface quality of the 

machining workpiece. Improving workpiece surface quality is 

required to increase economic efficiency. A precise tool wear 

value, which may be utilised to schedule cutting tool 

replacement properly, can assist in providing optimal 

machining settings. The ideal machining parameter values can 

be found. As a result, much emphasis has been placed on 

developing the tool wear monitoring system [18-21]. Using the 

FlankPix algorithm, enhancing the accuracy of the Average 

Error Prediction of Flank Wear in Monel K500 to achieve the 

target sum (in percentage terms) is essential. If the proposed 

method succeeds, the typical error rate should decrease by 

over 90%. 

A comprehensive review of existing literature reveals the 

importance of monitoring cutting tool technology, specifically 

in assessing the machinability of difficult-to-machine 

materials. The significance of flank wear in mining and 

various industries is underscored. Different ways of measuring 

tool wear have been looked into in the past, including non-

decimated wavelet transform, edge recognition, 

morphological component analysis, neural networks, image 

processing tools like Matlab, and automated monitoring 

systems that use neural networks, edge-preserving smoothing 

filters, and real-time analysis methods. 

 

1.3 Research gap 

 

The literature survey revealed a crucial research gap 

concerning precise and reliable tool wear measurement 

techniques, particularly in high-temperature alloy applications 

like Monel K500. Existing methods, while informative, 

displayed limitations in accuracy and suitability for such 

specialized materials. There was a clear need for an advanced 

tool wear assessment approach that could effectively address 

the challenges posed by background noise, provide higher 

precision in edge detection, and offer more nuanced 

measurements of tool wear extent. The research gap made it 

clear that we need a new and improved way to measure tool 

wear that can provide higher accuracy, lower sensitivity to 

image noise, and work with the unique properties of high-

temperature alloys like Monel K500. This gap laid the 

foundation for the development of the FlankPix algorithm as a 

solution to address these shortcomings and provide an 

advanced, technically enhanced tool wear measurement 

method for precise evaluation in challenging industrial 

settings. 

 

1.4 Research objectives 

 

The main research objective is determining the average 

flank wear error percentage when turning the Monel K500. 

According to the study [22], steel alloys have several 

exceptional properties, including excellent corrosion 

resistance in chloride and Sulphur dioxide environments. In 

recent years, monitoring cutting tool technology has been 

applied to evaluate the attributes of cutting tool materials to 

identify the machinability of cutting tool materials that are 

notoriously difficult to machine [23-25]. In addition, stress and 

cracking are extremely unlikely in these environments. 

According to the study [26], monitoring tool wear reduces 

workpiece errors by preventing unexpected breakage or 

overuse. If wear is not considered, the tool wear may cause 

damage to the workpiece or the machine itself. The importance 

of flank wear in the mining sector must be emphasized. 

According to the study [27], alloys are utilized in various 

global industries, including manufacturing, aerospace, the 

military, and medicine. According to the study [28], crater and 

flank wear are two additional types of tool wear, with the latter 

being crucial for machine stability, dependability, and 

diametric accuracy. 

 

1.5 Significance of the study 

 

Improving tool wear assessment accuracy is crucial for 

optimizing machining parameters and workpiece surface 

quality, enhancing economic efficiency. The development of 

the FlankPix algorithm is anticipated to fill the existing 

research gap and provide a technically advanced tool wear 

measurement method for high-temperature alloy applications. 

 

 

2. MATERIAL AND METHODS 

 

The corrosion resistance of Alloy 400 is combined with the 

high-strength corrosion fatigue and erosion resistance of 

Monel K500, a nickel-copper alloy that may be age-hardened. 

MONEL K500 is an aluminium and titanium-added nickel-

copper alloy with precipitation-hardening properties. Both 90-

mm and 180-mm-diameter Monel K500 alloys were evaluated 

for turning purposes. The workpiece's (in-weight percentage) 

chemical components are listed as follows: Ni 63.0 Cu 29.5 Al 

2.7, Ti 0.6 C 0.18 Fe 2.0 Mn 1.5 Si 0.50 S 0.010. The turning 

path was constructed using a NAGMATI 175 centre lathe. We 

employed Cubic Boron Nitride (CBN) inserts manufactured 

by Sandvik and meeting the requirements of CNGA 120 

408S01030A, 7025 Grade, fixed in a PCLNR 2020 K12 tool 

holder for the experiments. 

 

2.1 Monel K500 alloy: Specifications 

 

Chemical Composition (approximate percentages): 

Nickel (63%), Copper (29.5%), Aluminum (2.7%), Titanium 

(0.6%), Carbon (0.18%), Iron (2.0%), Manganese (1.5%), 

Silicon (0.50%), Sulfur (0.010%). 

Mechanical Properties: Monel K500 offers high tensile 

strength, excellent corrosion resistance, good hardness, and 

fatigue strength. The hardness of the Monel K 500 is 35HRC. 

Temperature Resistance: Exhibits outstanding resistance 

to a wide range of temperatures, making it suitable for high-

temperature applications. 

Age-Hardening Alloy: It can be strengthened through 

precipitation hardening after aging heat treatment. 

 

2.2 CBN inserts: Specifications 

 

Material Composition: CBN inserts are made from 

synthetic crystalline structures of boron and nitrogen. 

Hardness: Extremely high hardness comparable to 

diamond, making them suitable for machining hard materials 

like hardened steels, cast iron, and superalloys. 

High Thermal Conductivity: CBN inserts possess 

excellent thermal conductivity, aiding in dissipating heat 

generated during machining processes. 

Wear Resistance: Known for their exceptional wear 

resistance, CBN inserts offer extended tool life even under 

high-speed machining conditions. 
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Machining Applications: Often used in machining 

applications requiring high-speed cutting, high precision, and 

durability, particularly in hard materials where traditional 

carbide inserts might wear out quickly. 

Investigators regularly measured flank wear offline with a 

universal measuring microscope. For the experiment, an L27 

orthogonal array was used. Table 1 shows the values for the 

machining parameters feed rate, depth of cut, and cutting 

speed. Testing was carried out in a dry setting. Images of 

worn-out equipment were taken using a scanning electron 

microscope (SEM) for computer vision analysis. 

 

Table 1. Machining parameters 

 

Sl. 

No 
Parameters Unit Symbols L1 L2 L3 

1 
Cutting 

speed 
m/min V 450 660 900 

2 Feed rate mm/rev S 0.125 0.16 0.20 

3 Depth of cut mm D 0.6 0.8 1.0 

 

 

3. FLANKPIX ALGORITHM 

 

The core steps of the FlankPix algorithm rely on the Canny 

edge detection technique, a multi-stage process that identifies 

abrupt changes in intensity within grayscale images. The steps 

in this method are 

•Noise reduction using Gaussian blur; 

•Gradient calculation to find out the strengths and directions 

of edges; 

•Non-maximum suppression keeps track of the ridges 

representing edges, and hysteresis thresholding is used to 

create edge maps based on high and low thresholds. 

FlankPix stands out for its ability to precisely identify tool 

edges while disregarding background noise, resulting in 

accurate measurements of tool wear. Its effectiveness lies in 

the combination of pixel distance measurement and edge 

detection techniques, which contribute to maintaining a 

smooth and precise tool contour, which is critical for 

evaluating the tool's condition. This method demonstrates an 

average prediction error of just 1.29%, showcasing its high 

accuracy in assessing tool geometry changes and enhancing 

product quality in manufacturing processes. 

The images of the tool wear were first processed using the 

Innovative FlankPix algorithm, then submitted to the edge 

detection algorithm and pixel measurement to estimate the 

amount of flank wear that each of the respective images has. 

The % error is the ratio of the difference between the measured 

value and predicted value to the measured value, as in Eq. (1). 

 

%Error =
𝑀 − 𝑃

𝑀
 (1) 

 

where, M is experimental value of Flank wear, P is predicted 

value using FlankPix method. 

 

3.1 Canny edge detection 

 

A canny edge detector is a multi-stage operator for edge 

detection that can identify various image edges. Moreover, 

Canny provided a computational edge detection theory to 

clarify the efficacy of his approach. It was intended to create a 

superior edge detector that the Canny operator developed. It 

takes in a grayscale image and spits out a second image 

labelled with the coordinates of any abrupt changes in intensity 

that it detects. There are five stages to the Canny Edge 

detection method. Methods of reducing noise, calculating 

gradients, employing non-maximal suppression, utilizing a 

double threshold, and using hysteresis to track edges are 

discussed. 

Several steps are required for the Canny operator to 

complete his work. Gaussian convolution is first used to 

smooth the image. A straightforward 2-dimensional first 

derivative operator was applied to the smoothed image to draw 

attention to areas with high first spatial derivatives. With the 

magnitude of the gradient, edges create ridges. The algorithm 

then follows the crests of these ridges, performing non-

maximal suppression by setting all pixels that are not actually 

on the ridge top to zero. This results in a narrow line in the 

final output. Two thresholds, T1 and T2, govern the hysteresis 

shown in the tracking process, with T1 being higher than T2. 

Assuming T1 is the starting location, tracking can only start at 

a higher ridge. From there, they tracked in both directions until 

the ridge's elevation was lower than T2. Using hysteresis like 

this helps to prevent the splintering of loud edges into smaller 

pieces. 

Gaussian Blur Kernel Size (σ): The size of the Gaussian 

blur kernel influences the amount of smoothing applied to the 

image. A larger kernel (higher σ) produces more blur, reducing 

noise but potentially blurring edges. Common σ values range 

from 1 to 3. 

High and Low Thresholds: The Canny edge detector uses 

two thresholds to determine which edge pixels to consider as 

strong, weak, or non-relevant: 

High Threshold (T₁): Determines the minimum gradient 

value required for a pixel to be considered a strong edge pixel. 

Low Threshold (T₂): Sets the minimum gradient for a pixel 

to be considered a weak edge pixel. Any pixel with a gradient 

value between T₁ and T₂ is marked as a weak edge pixel. 

Hysteresis Thresholding: This step helps in connecting 

edge pixels into continuous edges. It involves: 

Strong Edge Pixel: Pixels above the high threshold (T₁). 

Weak Edge Pixel: Pixels between the high (T₁) and low (T₂) 

thresholds. 

Non-relevant Edge Pixel: Pixels below the low threshold 

(T₂) are considered non-relevant. 

Edge Connectivity: Weak edge pixels are considered part 

of the edge if they are connected to strong edge pixels. This 

connectivity step forms continuous edges. 
 

3.1.1 Noise reduction 

One way to remove noise from an image is to apply a 

Gaussian blur. It is achieved using the Gaussian Kernel (3×3, 

5×5, 7×7, etc.) image convolution technique. The degree of 

blur is the most critical factor when choosing a blur kernel. 

The blur becomes less apparent as the size of the kernel 

decreases. This research uses a 5×5 Gaussian kernel. 
 

lessto = 

1

2𝜋𝜎2
exp(−

(𝑒 − (𝑘 + 1))
2
+ (𝑓 − (𝑘 + 1))

2

2𝜎2
) 

1≤e, f≤(2k+1) 

(2) 

 

S=I*g(x, y) (3) 
 

where, 
 

𝑔(𝑥, 𝑦) =
1

√2𝜋𝜎1
𝑒
𝑥2+𝑦2

2𝜎2  (4) 
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Hef = Filter function 

 

Eq. (2) shows the Gaussian Kernel filter equation. 

 

3.1.2 Gradient calculation 

The gradient size throughout the dimensions can be 

determined by computing the filter's derivative for the X and 

Y dimensions and then converging that result with I. It is also 

possible to determine the image's orientation by calculating the 

tangent of the angle between the two measurements. A 

gradient vector, complete with magnitude and direction, 

results from the convolution. In the end, the Gaussian 

derivatives are responsible for the staleness of the final edges. 

 

3.1.3 Non maximum suppression 

Consider the three edge points on edge shown in Figure 1. 

Consider the coordinates (x,y) as an example, assuming the 

edge gradient is at its highest level. It must be proven that the 

gradient perpendicular to the edge is less than (x,y). If the 

values are less than the (x,y) gradient, the non-maximal 

locations along the curve can be skipped. 

 

 
 

Figure 1. Non – maximum suppression 

 

3.1.4 Hysteresis thresholding  

When creating an edge map, hysteresis thresholding 

considers both high and low thresholds before settling on a 

solution (see Figure 2). A significant improvement over single 

thresholding can be achieved by appropriately computing both 

the low and high points and then processing the resulting 

thresholder images. In contrast to single thresholding, 

hysteresis thresholding uses low and high thresholds to find 

edges via a linking procedure. 

 

 
 

Figure 2. Hysteresis thresholding 

 

3.2 Flank wear measurement using distancing method 

 

The FlankPix algorithm incorporates distance measurement 

through the utilization of Canny edge detection. After the 

Canny edge detection technique identifies edges within 

grayscale images, the algorithm calculates the distance or 

extent of flank wear based on these detected edges. Canny 

edge detection, within the context of FlankPix, helps pinpoint 

the abrupt changes in intensity that signify the edges of the 

worn tool. The outcome of the canny edge detection can be 

seen in Figure 3. 

  
(a) Original image (b) Edge detected image 

 

Figure 3. (a) Tool wear SEM image, (b) Edge detected 

image of original SEM image 

 

Once the edges are identified, FlankPix utilizes distance 

measurement techniques to determine the amount of wear 

along these edges precisely. It involves calculating the 

distance between specific points on the edges, allowing for an 

accurate estimation of the flank wear's extent. By integrating 

distance measurement with the information obtained through 

Canny Edge detection, FlankPix ensures a detailed assessment 

of the tool's wear, improving accuracy in evaluating tool 

conditions and ultimately enhancing manufacturing quality. 

 

 
 

Figure 4. Proposed methodology 
 

The process followed in tool wear detection from SEM 

images is illustrated in Figure 4, as given below. The input test 

image is pre-processed by converting it to grayscale binary. 

The bwconncomp command calculates the binary cumulative 

area. Moreover, the orientation, minor axis length, and 

significant axis length at their maximums can be obtained. The 

pixels of the captured image are determined, as illustrated in 

Figure 5. After examining the collected image of the 

interconnected construction blocks, we calculated the size of 

each pixel in the x and y directions using the number of pixels 

placed in the x and y directions. The capture event command 

reads the coordinates of the point in the X and Y directions. 
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Figure 5. FlankPix analysis 

 

The measured parameters are as follows:  

Major Axis Length 583.54 mm  

Minor Axis Length 200.36 mm 

 

3.2.1 Steps in FlankPix algorithm 

1. Open CV 

2. Create a new file 

3. Launch a Python program 

4. Import the files that contain the headers 

5. Download and install the necessary Python interpreters 

for the algorithms, such as OpenCV, matplotlib, and NumPy 

6. Change the color mode of the image to grayscale 

7. To detect edges in the photos, run Canny's Edge 

Detection Algorithm 

8. Fix the threshold value (Edge detection) 

9. Accumulate Pixel coordinates in Px and Py 

10. Calculate the distance from the pixel coordinates 

12. Convert the value from Pixels to mm 

13. Compare the predicted value with the respective 

experimental data  

15. Calculate the % Error and average error percentage 

 

3.2.2 Sensitivity analysis of the vision system 

The precision of the suggested vision system depicted in 

Figure 6 was determined by comparing the measured values 

for flank wear. 

Error Sensitivity = [ Experimental Value]-[Predicted 

Value]/ 

[Experimental value]* 100 

For the given input image, 

Experimental measured value = 0.43 mm 

FlankPix predicted value = 0.4296 mm 

Error Sensitivity = (0.43-0.4296)/0.43 = 0.00093×100 = 

0.093% 

Average Prediction error = 1.29% 

 

 
 

Figure 6. Flank wear measurement using FlankPix 

 

 

4. RESULTS AND DISCUSSION 

 

Table 2. Flank wear was measured using experimental values and the FlankPix algorithm 

 

Experiment 

Number 

Cutting 

Speed (V)  

m/min 

Feed Rate (S) 

mm/rev 

Depth of 

Cut (D) mm 

Experimental Flank 

Wear in mm 

Flank Wear Predicted 

Using FlankPix in mm 

Prediction 

Error 

1 450 0.125 0.6 0.542 0.54 0.3690 

2 450 0.125 0.8 0.531 0.528 0.56497 

3 450 0.125 1.0 0.532 0.53 0.37593 

4 450 0.16 0.6 0.65 0.649 0.15384 

5 450 0.16 0.8 0.362 0.36 0.55248 

6 450 0.16 1.0 0.633 0.629 0.63191 

7 450 0.20 0.6 0.75 0.749 0.13333 

8 450 0.20 0.8 0.242 0.24 0.82644 

9 660 0.20 1.0 0.135 0.133 1.48148 

10 660 0.125 0.6 0.432 0.429 0.69444 

11 660 0.125 0.8 0.321 0.314 2.18068 

12 660 0.125 1.0 0.272 0.261 4.04411 

13 660 0.16 0.6 0.481 0.471 2.07900 

14 660 0.16 0.8 0.477 0.453 5.03144 

15 660 0.16 1.0 0.498 0.481 3.41365 

16 660 0.20 0.6 0.278 0.272 2.15827 

17 660 0.20 0.8 0.263 0.261 0.76045 

18 660 0.20 1.0 0.252 0.249 1.19047 

19 900 0.125 0.6 0.284 0.282 0.70422 

20 900 0.125 0.8 0.267 0.262 1.87265 

21 900 0.125 1.0 0.281 0.272 3.20284 

22 900 0.16 0.6 0.292 0.29 0.68493 

23 900 0.16 0.8 0.874 0.871 0.34324 

24 900 0.16 1.0 0.574 0.572 0.34843 

25 900 0.20 0.6 0.972 0.97 0.20576 

26 900 0.20 0.8 0.43 0.4296 0.23255 

27 900 0.20 1.0 0.363 0.361 0.55096 
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Monel K500 was turned with a cubic boron nitride insert. 

Several experiments were conducted. The edge detection 

technique was utilized to determine the extent of flank wear. 

The worn insert would undermine the integrity of the 

machined surface, diminishing the workpiece's resistance to 

fatigue and, consequently, its longevity. The aerospace 

industry uses the alloy known as Monel K500 extensively for 

high-temperature applications. As a direct result, it is essential 

that the integrity of the machined surface of this alloy is 

maintained and that tool wear is minimized. In addition, it is 

vital to define the proper machining parameters for this insert 

material and alloy combination. Throughout this investigation, 

a novel method for measuring flank wear was devised. 

Table 2 displays the results of the flank wear analysis 

performed with FlankPix and the Tool Maker's Microscope. It 

also includes factors, dependents, and error percentages for 

traditional and non-traditional flank wear measurements. 

When predicting the flank wear of the insert, FlankPix 

performs admirably, with impressively high accuracy and a 

significantly reduced error percentage; the new Edge detection 

technique has an average error of 1.29%. 

For each experimental trial, researchers estimated flank 

wear width (VB). With FlankPix analysis, captured images are 

processed. The image processing system known as FlankPix 

could precisely estimate the amount of flank wear. Unlike 

previous measuring systems, this one does not require a 

separate calibration of the visual system. This method is highly 

accurate for assessing flank wear width, with an average error 

rate of 1.29% compared to its existing counterparts. 

The comparison in Table 3 focuses on the average 

prediction error as a key metric to evaluate the effectiveness 

of FlankPix in estimating tool wear compared to conventional 

methods such as the Tool Maker's Microscope and other 

established techniques. 

 

Table 3. Flank wear measurement comparison of FlankPix 

algorithm with conventional techniques 

 
Method Average Prediction Error 

FlankPix (Proposed) 1.29% 

Functional Data Analysis [29] 1.9% 

FlankNet [30] 3.03% 

CUSUM Algorithm [31] 2.5% 

 

The FlankPix algorithm, while innovative, exhibits 

limitations that warrant consideration. Sensitivity to image 

quality variations, reliance on specific parameter settings, 

potential computational demands, and adaptability challenges 

across diverse machining conditions are primary concerns. 

Furthermore, its performance may rely heavily on the initial 

image quality, risking accuracy with poor inputs, and potential 

overfitting issues could restrict generalizability. Addressing 

these limitations is crucial for refining the algorithm's 

robustness and applicability in diverse industrial settings. 

 

 

5. CONCLUSIONS 

 

The industrial sector will find this approach of measuring 

tools wear much more helpful than using a single metric. The 

Edge Detection Method was developed to measure the amount 

of wear on the Cubic Boron Nitride insert used to turn Monel 

K500. It is essential to preserve the integrity of the machined 

surface and keep tool wear to a minimum.  

The subsequent findings are given below: 

• The FlankPix method may be utilized to measure 

flank wear. 

• It is a promising and practicable method for 

measuring flank wear in-process for industrial 

applications. 

• Minimal flank wear was attained at medium and 

moderate cutting speeds with a low feed rate. 

Compared to the standard way of evaluating flank wear 

using a toolmaker's microscope, the flank wear measured with 

FlankPix yielded greater accuracy, with an average percentage 

of 1.29 percent. FlankPix algorithm's applications in precision 

tool wear measurement across aerospace, manufacturing, 

defense, and medical sectors. 

Some potential limitations include susceptibility to image 

quality variations, sensitivity to lighting conditions, challenges 

with complex tool geometries, and the need for further 

validation in diverse industrial settings to confirm its 

generalizability and performance under varying conditions. 

Improvements for FlankPix could involve refining the 

algorithm, integrating advanced technologies like AI, ensuring 

robustness across varied conditions, validating in different 

industries, and developing methodologies for quantifying tool 

life, enhancing its reliability and wider applicability. 
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NOMENCLATURE 
 

V Cutting speed 

S Feed rate 

D Depth of cut 

M Experimental value of Flank wear 

P Predicted value using FlankPix method 
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