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In this paper, we introduce a fractional-order variant of the Stockwell transform, specifically 

designed for analyzing signals that can be represented in terms of a graph data structure and 

integrates the ideas of fractional Stockwell transform and spectral graph theory. The 

proposed transform is named the ‘Spectral Graph Fractional Stockwell Transform’ or 

‘SGFrST’ for short. Fundamentally, SGFrST makes use of the graph spectral domain to 

extract the underlying connection patterns and network structure of complex systems. 

SGFrST essentially fills the gap between signal processing methods and spectral graph 

theory by providing a flexible instrument that allows for hitherto unheard-of levels of 

precision and efficiency when comprehending and interpreting signals on graph-based 

domains. To begin, we introduce the spectral graph Stockwell transform by modulating the 

graph wavelet transform. Subsequently, we extend this concept by incorporating the spectral 

graph wavelet operator alongside the fractional order, resulting in the SGFrST. We derive 

various mathematical properties associated with the SGFrST, including an inversion 

mechanism and an inner product theorem. The proposed transform demonstrates effective 

applicability across a spectrum of graph signal processing scenarios. Basically, this makes 

it possible to extract useful features from signals that are present on graph structures, which 

helps with a variety of tasks in domains such as the social sciences, neuroscience, image 

processing and telecommunications. These tasks include image restoration, anomaly 

detection, pattern identification, and classification. 
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1. INTRODUCTION

In signal processing, the wavelet transforms and Stockwell 

transform are two commonly used transforms for time-

frequency analysis of stationary and varying signals. Their 

fractional variants also play a promising tool in analyzing 

time-varying signals and images. Existing literature [1-4] 

depict the importance of the fractional order transforms in the 

signal and image processing. 

To analyze the signals those can be represented as graphs, a 

new domain is emerged called signal processing on graphs [5-

7]. It can be seen as an extension of classical signal processing 

while analyzing signals using results from spectral graph 

theory. Spectral graph consists of the eigenfunctions and 

eigenvalues of its graph Laplacian matrix. The basic 

approaches of the graph signal analysis is rooted in spectral 

graph theory [8] and algebraic signal processing theory [9]. 

The graph theory is a mathematical approach for 

understanding the geometrical structure and for finding a 

relationship between data points. Some of the applications of 

graph signal processing can be explored in work like sampling 

and graph-based Wiener filtering [10], graph representation of 

geometrical data [11], graph learning on biological data [12]. 

For more details about graph signal processing, one can refer 

to the study of Ortega [13]. 

In spectral graph analysis, the classical transforms were 

extended to their graph variants to deal with signal vertex-

frequency distributions on weighted graphs. Subsequently, the 

graph Fourier transform (GFT) [14, 15] and graph wavelet 

transform (GWT) [16, 17] are, respectively, the graph variants 

of the Fourier transform and wavelet transform. In general, 

graph transforms may provide a highly adaptable model for 

approximating the data domains of a wide variety of problems. 

Examples include piecewise smooth image compression [18], 

traffic prediction in transportation systems [19], and vibration 

signal denoising outcomes [20]. The GFT is a mapping 

between the graph signal set and its representation as the direct 

sum of irreducible shift-invariant subspaces. In other terms, it 

is a matrix of eigenvectors of the constructed graph Laplacian 

matrix. Hence, the frequency ordering is predicated on the 

quadratic form. Small eigenvalues correspond to low 

frequencies and vice versa due to the natural ordering of 

frequencies. The studies [16, 21, 22] devised wavelet 

transforms on graphs. Spectral Graph Wavelet Transform 

(SGWT) refers to the transformation associated with the 

classical wavelet transform in the spectral graph domain.  

The fractional form of graph transforms is also discovered 

as in the case of their integer counterparts. One such example 

is graph fractional Fourier transform (GFrFT) [23, 24]. 

Similarly, graph fractional wavelet transform (GFrWT) [25] is 

an extension of the SGWT to fractional domain. In traditional 

signal processing, the Stockwell transform was derived from 

the windowed Fourier transform to circumvent this transform's 

limitations. The Gaussian window of the S-transform, which 
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is governed by frequency, produces superior results compared 

to other conventional transforms. Thus, the graph Stockwell 

transform [26] was developed for graph-based signals by 

adjusting the window size of the graph windowed Fourier 

transform [27] for various frequencies.  

In this study, a generalization of the spectral graph 

Stockwell transform called ‘spectral graph fractional 

Stockwell transform’ (SGFrST) is proposed by incorporating 

the fractional order. Such a generalization provides a more 

flexible tool to analyze the signals/images those can be 

represented in terms of a graph signal. Hence, along with the 

definition, the study also focuses to derive some of the basic 

mathematical properties of the proposed SGFrST. Further, an 

application of the proposed transform is given for its feasibility 

in signal processing. 

The remaining sections are organized as follows: In Section 

2, we present preliminaries like fractional S-transform, 

spectral graph theory, and spectral graph S-transform. In 

Section 3, the proposed spectral graph fractional Stockwell 

transform is defined for the graph signals. We establish the 

inversion formula and the inner product theorem for the 

proposed transform in Section 4. In Section 5, an application 

is shown in image denoising. Finally, the concluding remarks 

is given in the Section 6. 

 

 

2. PRELIMINARY 

 

2.1 Fractional Stockwell transform 

 

The fractional Stockwell transform (FrST) of a signal 

𝑠(𝑡) ∈ 𝐿2(ℝ)  with respect to the window function g(t) is 

defined as [28]: 

 

S𝑠
𝜃(𝑎, 𝑏) = [S𝜓

𝜃 𝑠(𝑡)](𝑎, 𝑏)

=
1

√2𝜋
∫  𝑠(𝑡)𝑔𝜃,𝑎,𝑏

∗ (𝑡)𝑑𝑡 
(1) 

 

where, gθ,a,b(t) is defined as: 

 

𝑔𝜃,𝑎,𝑏(𝑡) = 𝑎𝑔(𝑎(𝑡 − 𝑏))𝑒𝑖𝑎𝑡 𝑐𝑠𝑐 𝜃−
𝑖

2
(𝑡2−𝑏2)𝑐𝑜𝑡 𝜃

  (2) 

 

and, θ stands for the rotation angle of FrST. 

Based on the Parseval identity of FrFT, the Eq. (1) can be 

leads to another form of FrST [28]: 

 
𝐒𝑠

𝜃(𝑎, 𝑏)

=
1

√2𝜋
𝑒−𝑖𝑎𝑏csc 𝜃 ∫  𝑒−𝑖𝑡csc 𝜃𝑠̂𝜃(𝑢)𝑔̂𝜃

∗ (
𝑢

𝑎
csc 𝜃) 𝐾𝜃

∗(𝑏, 𝑢)𝑑𝑢 
(3) 

 

where, 𝑠̂𝜃  is the FrFT of s with θ-order and 𝐾𝜃
∗(𝑏, 𝑢) is the 

complex conjugate of kernel Kθ(b, u) [28]. 

 

2.2 Spectral graph theory 

 

A weighted graph may be denoted by 𝒢 = {𝒱, ℰ, 𝜔} 

consisting of a finite set of nodes or vertices 𝑣𝑖 ∈ 𝒱  with 

|𝒱| = 𝑃 < ∞, a set of edges ℰ such that the vertices linking 

edges (𝑣𝑖 , 𝑣𝑗) ∈ ℰ and the weighted function 𝜔: ℰ → ℝ+. The 

adjacency matrix 𝒲 = {𝑤𝑖,𝑗}
𝑃×𝑃

∈ ℝ𝑃×𝑃 is used to describe 

the connectedness of vertices for the weighted graph 𝒢, where 

wi,j denotes the weight of the edge connecting vertices vi and 

vj. If the vertices vi and vj are not connected then the weight wi,j 

=0, otherwise the weight wi,j is defined as follows: 

 

𝑤𝑖,𝑗 = {
𝜔(𝑒𝑖,𝑗), if 𝑒𝑖,𝑗 connects the vertices 𝑖 and 𝑗

0                                                        otherwise,
 

 

where, 𝑤𝑖,𝑗 =∥ 𝑓(𝑖) − 𝑓(𝑗) ∥  and ∥⋅∥  represents the 

Euclidean distance between two vertices. The function 𝑓: 𝒱 →
ℝ is a real valued function on the vertices of the weighted 

graph 𝒢. The function f can be viewed as a vector in ℝ𝑃 and 

the value of the function on vertex defines each coordinate. 

For weighted graph 𝒢, the diagonal matrix 𝒟 is expressed 

as 𝒟 = diag (𝑑(𝑣1), 𝑑(𝑣2), … 𝑑(𝑣𝑃)), where d(vi) represent 

the degree of vertex 𝑣𝑖 and can be obtained by 𝑑(𝑣𝑖) = ∑𝑗  𝑤𝑖,𝑗. 

This means, the diagonal matrix 𝒟 ∈ ℝ𝑃×𝑃  describing the 

degrees of each vertex. For spectral graph analysis, the graph 

Laplacian matrix ℒ  is essential and defined as ℒ = 𝒟 − 𝒲 . 

As the matrix ℒ is real and symmetric positive definite, then it 

can be written as: 

 

ℒ = 𝒳Λ𝒳𝐻  (4) 

 

where, the eigenvector matrix 𝒳 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑃−1}  is 

shorted according to the eigenvalues 0≤λ0≤λ1≤λ2≤…≤λP-1 and 

diagonal eigenvalue matrix Λ = diag (𝜆0, 𝜆1, 𝜆2, … , 𝜆𝑃−1) 

satisfying ℒ𝑥𝑖 = 𝜆𝑖𝑥𝑖. 

 

2.3 Spectral graph Stockwell transform 

 

The graph Stockwell transform of a graph signal 𝑠 ∈ ℝ𝑃 is 

defined by the modulation (ℳ𝑞𝑠)(𝑛) = √𝑃𝑠(𝑛)𝑥𝑞
∗(𝑛)  in 

graph wavelet transform [15, 19, 20, 25] domain: 

 

W𝑠(𝑎, 𝑛) = (𝒯𝑘
𝑎𝑠)(𝑛) 

= ∑  𝑃−1
𝑞=0 𝑘(𝑎𝜆𝑞)𝑠̂(𝑞)𝑥𝑞(𝑛) = ⟨𝜓𝑎,𝑛, 𝑠⟩  

(5) 

 

where, n=1, 2, …, P and ψa,n is the coefficients of graph 

wavelet transform Ws(a, n), and 𝒯𝑘
𝑎 = 𝑘(𝑎ℒ) is the spectral 

graph wavelet operator corresponding to the scale a=(a1, a2, …, 

aJ) and J is the decomposition level. The wavelet kernel 

function k: ℝ+ → ℝ+ should behave as a band pass filter. The 

spectral graph wavelet at scale a corresponding to the vertex n 

is defined as: 

 

𝜓𝑎,𝑛(𝑚) = ∑  𝑃−1
𝑞=0 𝑘(𝑎𝜆𝑞)𝑥𝑞

∗(𝑛)𝑥𝑞(𝑚) 𝑚 = 1,2, … , 𝑃.  (6) 

 

and the graph Fourier transform is given as: 

 

𝑠̂(𝑞) = ∑  𝑃
𝑛=1 𝑠(𝑛)𝑥𝑞

∗(𝑛) = ⟨𝑠, 𝑥𝑞⟩,    

𝑞 = 0,1,2, … , 𝑃 − 1.  
(7) 

 

Hence, by the modulation of the Eq. (5), the graph 

Stockwell transform is defined as: 

 

𝒮𝑠(𝑎, 𝑛) = (𝐋𝑘
𝑎 𝑠)(𝑛) =

√𝑃𝑥𝑞
∗(𝑛) ∑  𝑃−1

𝑞=0 𝑘(𝑎𝜆𝑞)𝑠̂(𝑞)𝑥𝑞(𝑛)  
(8) 

 

where, 𝐋𝑘
𝑎 = √𝑃𝑥𝑞

∗𝒯𝑘
𝑎 . The window function k in vertex 

domain is given as: 

 

𝑘(𝑛, 𝑞) =
|𝜆𝑞|

√2𝜋
𝑒−

𝑛2𝜆𝑞
2

2   (9) 
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From the Eqs. (7) and (8), we have: 

 

𝒮𝑠(𝑎, 𝑛) = (𝐋𝑘
𝑎 𝑠)(𝑛) = ∑  

𝑃

𝑚=1

 𝑠(𝑚) (√𝑃𝑥𝑞
∗(𝑛) ∑  

𝑃−1

𝑞=0

 𝑘(𝑎𝜆𝑞)𝑥𝑞
∗(𝑚)𝑥𝑞(𝑛))

= ∑  

𝑃

𝑚=1

 𝑠(𝑚)𝑆𝑎,𝑛
∗ (𝑚) = ⟨𝑠, 𝑆𝑎,𝑛⟩

 (10) 

 

where, 

 

𝑆𝑎,𝑛(𝑚) = √𝑃𝑥𝑞(𝑛) ∑  𝑃−1
𝑞=0 𝑘(𝑎𝜆𝑞)𝑥𝑞

∗(𝑛)𝑥𝑞(𝑚)  (11) 

 

is the graph Stockwell coefficient. 

 

 

3. PROPOSED SPECTRAL GRAPH FRACTIONAL 

STOCKWELL TRANSFORM 

 

To define SGFrST, first we define the fractional Laplacian 

matrix ℒ𝜃 , where 0<θ≤1. Consider the fractional Laplacian 

matrix ℒ𝜃 is defined as: 

 

ℒ𝜃 = 𝒴𝒰𝒴𝐻  (12) 

 

where, 

 

𝒴 = [𝑦0, 𝑦1 , 𝑦2, … , 𝑦𝑃−1] = 𝒳𝜃   (13) 

 

and 

 

𝒰 = diag ([𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑃−1]) = Λ𝜃   (14) 

 

We claim that 

 

𝑦𝑞 = 𝑥𝑞
𝜃 and 𝑢𝑞 = 𝜆𝑞

𝜃 ,  𝑞 = 0,1,2, … , 𝑃 − 1  (15) 

 

The GFrFT of a signal 𝑠 on vertices 𝒱 of graph 𝒢 is defined 

as [25]: 

 

𝑠̂𝜃(𝑞) = ∑  𝑃
𝑚=1 𝑠(𝑚)𝑦𝑞

∗(𝑚) = ⟨𝑠, 𝑦𝑞⟩,    

𝑞 = 0,1,2, … , 𝑃 − 1  
(16) 

 

and the inverse GFrFT is defined by [25]: 

 

𝑠(𝑚) = ∑  𝑃−1
𝑞=0 𝑠̂𝜃(𝑞)𝑦𝑞(𝑚) = ⟨𝑠̂𝜃 , 𝑦𝑞

∗⟩,    

𝑚 = 1,2, … , 𝑃  
(17) 

 

The SGFrST on nodes 𝒱  of graph 𝒢  for a signal 𝑠  with 

operator 𝐋𝑘𝜃

𝑎  can be proposed as: 

 

𝒮𝑠(𝜃, 𝑎, 𝑛) = (𝐋𝑘𝜃

𝑎 𝑠)(𝑛) =

√𝑃𝑦𝑞
∗(𝑛) ∑  𝑃−1

𝑞=0 𝑘(𝑎𝜆𝑞
𝜃)𝑠̂𝜃(𝑞)𝑦𝑞(𝑛)  

(18) 

 

where, 𝑦𝑞
∗ is the complex conjugate of eigenvector, 𝑘(𝑎𝜆𝑞

𝜃) is 

a window function and 𝑠̂𝜃  is the graph fractional Fourier 

transform. 

Substituting the value of Eq. (16) in Eq. (18), we have: 

 

𝒮𝑠(𝜃, 𝑎, 𝑛) =

√𝑃𝑦𝑞
∗(𝑛) ∑  𝑃−1

𝑞=0 𝑘(𝑎𝜆𝑞
𝜃) ∑  𝑃

𝑚=1 𝑠(𝑚)𝑦𝑞
∗(𝑚)𝑦𝑞(𝑛)  

(19) 

 

Rearranging the above equation, we obtain: 

 

𝒮𝑠(𝜃, 𝑎, 𝑛) =

∑  𝑃
𝑚=1 𝑠(𝑚)√𝑃𝑦𝑞

∗(𝑛) ∑  𝑃−1
𝑞=0 𝑘(𝑎𝜆𝑞

𝜃)𝑦𝑞
∗(𝑚)𝑦𝑞(𝑛)   

(20) 

 

Write the equation in the form of inner product: 

 

𝒮𝑠(𝜃, 𝑎, 𝑛) = (𝐋𝑘𝜃

𝑎 𝑠)(𝑛) = ∑  𝑃
𝑚=1 𝑠(𝑚)𝑆𝜃,𝑎,𝑛

∗ (𝑚) =

⟨𝑠, 𝑆𝜃,𝑎,𝑛⟩,  𝑛 = 1,2,3, … , 𝑃  
(21) 

 

where, 

 

𝐋𝑘𝜃

𝑎 = √𝑃𝑦𝑞𝑘(𝑎ℒ𝜃) (22) 

 

𝑆𝜃,𝑎,𝑛(𝑚) = √𝑃𝑦𝑞(𝑛) ∑  𝑃−1
𝑞=0  𝑘(𝑎𝜆𝑞

𝜃)𝑦𝑞
∗(𝑛)𝑦𝑞(𝑚),    

𝑚 = 1,2,3, … , 𝑃  
(23) 

 

Thus, the Eq. (21) gives the SGFrST of a graph signal s. The 

SGFrST's capability to analyze signals with time-varying 

spectral content within the graph domain makes it a versatile 

and valuable tool across domains. Its ability to capture both 

time and frequency information simultaneously facilitates a 

comprehensive understanding of graph signals in graph-based 

systems. 

In the above definition of the GFrST, the graph fractional 

Laplacian operator ℒ𝜃  can be calculated mainly in the 

following two ways: 

(A) Using the classical definition of FrST: According to the 

window function ψθ,a,b of FrST given in the Eq. (2), the GFrST 

of a graph signal s can be defined as: 

 

𝒮𝑠(𝜃, 𝑎, 𝑛) = (𝐋𝑘𝜃

𝑎 𝑠)(𝑛) = ∑𝑚=1
𝑃  𝑠(𝑚)𝑆𝜃,𝑎,𝑛

∗ (𝑚)

= ⟨𝑠, 𝑆𝜃,𝑎,𝑛⟩,  𝑛 = 1,2,3, … , 𝑃 

 

where, 

𝐋𝑘𝜃

𝑎 = √𝑃𝑒𝑖𝑎𝑚 csc 𝜃−
𝑖
2

(𝑚2−𝑛2)cot 𝜃𝑥𝑞𝑘(𝑎ℒ)

𝑆𝜃,𝑎,𝑛(𝑚) = √𝑃𝑒𝑖𝑎𝑚 csc 𝜃−
𝑖
2

(𝑚2−𝑛2) cot 𝜃𝑥𝑞(𝑛) ∑  

𝑃−1

𝑞=0

 𝑘(𝑎𝜆𝑞)𝑥𝑞
∗(𝑛)𝑥𝑞(𝑚),  𝑚 = 1,2,3, … , 𝑃

 

 

From the above equation we can see that the basis Sθ,a,n(m) 

still depend on the same eigenvectors xq(m) of the Laplacian 

matrix ℒ. However, in this case the basis Sθ,a,n(m) depends on 

new function yq(n). 

(B) Using a different form of Laplacian operator ℒ𝜃: The 

graph fractional Laplacian operator ℒ𝜃 can also be given as the 

following: 

ℒ𝜃 = (𝒳Λ𝒳𝐻)𝜃 = 𝒳Λ𝜃𝒳𝐻  

 

Comparing the above equation with Eq. (4), we see that 

fractional Laplacian operator ℒ𝜃 use the same function 𝒳 as 

the Laplacian ℒ. Hence, define the GFrST similar to Eq. (10), 

we have: 
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𝒮𝑠(𝜃, 𝑎, 𝑛) = (𝐋𝑘𝜃

𝑎 𝑠)(𝑛) = ∑  𝑃
𝑚=1 𝑠(𝑚)𝑆𝜃,𝑎,𝑛

∗ (𝑚) =

⟨𝑠, 𝑆𝜃,𝑎,𝑛⟩,  𝑛 = 1,2,3, … , 𝑃  

 

where, 

 

𝐋𝑘𝜃

𝑎 = √𝑃𝑥𝑞𝑘(𝑎ℒ𝜃),

𝑆𝜃,𝑎,𝑛(𝑚) = √𝑃𝑥𝑞(𝑛) ∑  𝑃−1
𝑞=0  𝑘(𝑎𝜆𝑞

𝜃)𝑥𝑞
∗(𝑛)𝑥𝑞(𝑚),  

  

𝑚 = 1,2,3, … , 𝑃 

 

From the above equation we can see that the basis Sθ,a,n(m) 

still depend on the same eigenvectors xq(m) of the Laplacian 

matrix ℒ. However, in our case the basis Sθ,a,n(m) depend on 

new function yq(n). 

 

 

4. PROPERTIES OF SPECTRAL GRAPH 

FRACTIONAL STOCKWELL TRANSFORM 

 

In this section we discuss the inversion formula and inner 

product theorem of the proposed transform. 

 

4.1 Inverse spectral graph fractional Stockwell transform 

 

In many of the signal processing applications, a 

reconstruction of a signal is an essential step. The 

reconstruction of an original graph signal in spectral graph 

domain may be recovered corresponding to the given 

transform coefficients. Hence, we give the following result 

related to the inverse SGFrST which can be utilized for the 

signal reconstruction from its transform coefficients. 

Lemma 1: Let the window kernel function k of the graph 

transforms satisfies the admissibility condition: 

 

𝑃 ∫  
∞

0

𝑘2(𝑡)

𝑡
𝑑𝑡 = 𝐶𝑘𝜃

< ∞  (24) 

 

and k(0)=0. Let 𝑠 ∈ ℝ𝑃 be a signal and 𝑠# be the projection of 

𝑠  onto the orthogonal complement of the span of y0, i.e. 

s#(m)=s(m)-⟨s(m), y(m)⟩y0(m). Then the continuous 

reconstruction formula can be given as: 

 
1

𝐶𝑘𝜃

∑  𝑃
𝑛=1 ∫  

∞

0
𝒮𝑠(𝜃, 𝑎, 𝑛)𝑆𝜃,𝑎,𝑛(𝑚)

𝑑𝑎

𝑎
= 𝑠#(𝑚)  (25) 

 

In particular, the complete reconstruction formula is given 

by s(m)=s#(m)+⟨s(m), y(m)⟩y0(m). 

Proof: To prove the reconstruction formula for the SGFrST, 

we start with the definition of the transform and its coefficient. 

So, using the Eq. (18) and Eq. (23) in the Eq. (25), we have: 

 

1

𝐶𝑘𝜃

∑  

𝑃

𝑛=1

 ∫  
∞

0

 𝒮𝑠(𝜃, 𝑎, 𝑛)𝑆𝜃,𝑎,𝑛(𝑚)
𝑑𝑎

𝑎
=

1

𝐶𝑘𝜃

∑  

𝑃

𝑛=1

 ∫  
∞

0

 √𝑃𝑦𝑞
∗(𝑛) ∑  

𝑃−1

𝑞=0

 𝑘(𝑎𝜆𝑞
𝜃)𝑠̂𝜃(𝑞)𝑦𝑞(𝑛)√𝑃𝑦𝑞′(𝑛) ∑  

𝑃−1

𝑞′=0

 𝑘(𝑎𝜆𝑞′
𝜃 )𝑦𝑞′

∗ (𝑛)𝑦𝑞′(𝑚)
𝑑𝑎

𝑎
 

 

Rearranging the above equation in a simplified form, we have: 
 

1

𝐶𝑘𝜃

∑  

𝑃

𝑛=1

 ∫  
∞

0

 𝒮𝑠(𝜃, 𝑎, 𝑛)𝑆𝜃,𝑎,𝑛(𝑚)
𝑑𝑎

𝑎
=

𝑃

𝐶𝑘𝜃

∫  
∞

0

  ∑  

𝑃−1

𝑞,𝑞′=0

 𝑘(𝑎𝜆𝑞
𝜃)𝑘(𝑎𝜆𝑞′

𝜃 )𝑠̂𝜃(𝑞)𝑦𝑞′(𝑚) ∑  

𝑃

𝑛=1

 𝑦𝑞
∗(𝑛)𝑦𝑞(𝑛)𝑦𝑞′(𝑛)𝑦𝑞′

∗ (𝑛)
𝑑𝑎

𝑎
 

 

Since, the eigenvectors yq are orthonormal so 

∑𝑛  𝑦𝑞
∗(𝑛)𝑦𝑞′(𝑛) = 𝛿𝑞,𝑞′. Inserting this in above equation and 

summing over q', we have: 
 

1

𝐶𝑘𝜃

∑  𝑃
𝑛=1 ∫  

∞

0
𝒮𝑠(𝜃, 𝑎, 𝑛)𝑆𝜃,𝑎,𝑛(𝑚)

𝑑𝑎

𝑎
=

𝑃

𝐶𝑘𝜃

∑  𝑃−1
𝑞=0 (∫  

∞

0
 𝑘2(𝑎𝜆𝑞

𝜃)
𝑑𝑎

𝑎
) 𝑠̂𝜃(𝑞)𝑦𝑞(𝑚).  

 

Consider 𝑎𝜆𝑞
𝜃 = 𝑡 except 𝜆𝑞

𝜃 = 0 when q=0. Thus, we have 

∫
0

∞
 𝑘2(𝑎𝜆𝑞

𝜃)
𝑑𝑎

𝑎
= ∫

0

∞
 𝑘2(𝑡)

𝑑𝑡

𝑡
=

𝐶𝑘𝜃

𝑃
 which is independent of 

q. Hence: 

 
1

𝐶𝑘𝜃

∑  𝑃
𝑛=1 ∫  

∞

0
𝒮𝑠(𝜃, 𝑎, 𝑛)𝑆𝜃,𝑎,𝑛(𝑚)

𝑑𝑎

𝑎
= ∑  𝑃−1

𝑞=0 𝑠̂𝜃(𝑞)𝑦𝑞(𝑚) −

𝑠̂𝜃(0)𝑦0(𝑚)  

 

It’s look like the definition of inverse GFrFT. Thus, using 

the definition of the inverse GFrFT (17) and 𝑠̂𝜃(𝑞) for 𝑞 = 0, 

we obtain: 
 

1

𝐶𝑘𝜃

∑  𝑃
𝑛=1 ∫  

∞

0
𝒮𝑠(𝜃, 𝑎, 𝑛)𝑆𝜃,𝑎,𝑛(𝑚)

𝑑𝑎

𝑎
= 𝑠(𝑚) −

⟨𝑠(𝑚), 𝑦(𝑚)⟩𝑦0(𝑚)  
 

Hence, we can obtain the complete reconstruction of the 

graph signal by 𝑠 = 𝑠# + 𝑠̂𝜃(0)𝑦0 , which proves the result. 

This lemma also shows that the graph signal 𝑠  can not be 

reconstructed for zero mean of the fractional graph Stockwell. 
 

4.2 Inner product result for spectral graph fractional 

Stockwell transform 
 

The inner product theorem for a graph signal s in spectral 

graph domain with window function 𝑘(𝑛, 𝑞) =
|𝜆𝑞|

√2𝜋
𝑒−

𝑛2𝜆𝑞
2

2  in 

vertex domain is given as: 
 

∑  𝑛 |𝒮𝑠(𝜃, 𝑎, 𝑛)|2 =

𝑃 (∑  𝑞  
𝑎2𝜆𝑞

2

2𝜋
𝑒−𝑛2𝑎2(𝜆𝑞

𝜃)
2

) ⟨𝑠̂𝜃(𝑞), 𝑠̂𝜃
∗ (𝑞)⟩  

(26) 

 

where, 𝒮𝑠(𝜃, 𝑎, 𝑛), 𝑠̂𝜃  are the SGFrST and graph fractional 

Fourier transform of graph signal 𝑠 respectively. 

Proof: Let 𝑠 is a graph signal on graph 𝒢 then the SGFrST 

is given by (18): 
 

𝒮𝑠(𝜃, 𝑎, 𝑛) = √𝑃𝑦𝑞
∗(𝑛) ∑  𝑃−1

𝑞=0 𝑘(𝑎𝜆𝑞
𝜃)𝑠̂𝜃(𝑞)𝑦𝑞(𝑛)  (27) 

 

Taking the complex conjugate of (27), we get: 
 

𝒮𝑠
∗(𝜃, 𝑎, 𝑛) = √𝑃𝑦𝑞(𝑛) ∑  𝑃−1

𝑞=0 𝑘∗(𝑎𝜆𝑞
𝜃)𝑠̂𝜃

∗ (𝑞)𝑦𝑞
∗(𝑛)  (28) 

 

Thus, the LHS of Eq. (26) can be written as: 
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∑  

𝑛

 𝒮𝑠(𝜃, 𝑎, 𝑛)𝒮𝑠
∗(𝜃, 𝑎, 𝑛) = 𝑃 ∑  

𝑛

  (𝑦𝑞
∗(𝑛) ∑  

𝑃−1

𝑞=0

 𝑘(𝑎𝜆𝑞
𝜃)𝑠̂𝜃(𝑞)𝑦𝑞(𝑛))

(𝑦𝑞′(𝑛) ∑  

𝑃−1

𝑞′=0

 𝑘∗(𝑎𝜆𝑞′
𝜃 )𝑠̂𝜃

∗(𝑞′)𝑦𝑞′
∗ (𝑛)) 

 (29) 

 

Rearranging the terms of the Eq. (29), we have: 

 

∑  

𝑛

 𝒮𝑠(𝜃, 𝑎, 𝑛)𝒮𝑠
∗(𝜃, 𝑎, 𝑛)  = P ∑ ((𝑘(𝑎𝜆𝑞

𝜃)𝑘∗(𝑎𝜆𝑞′
𝜃 )𝑠̂𝜃(𝑞)𝑠̂𝜃

∗ (𝑞′)) ∑  

𝑛

 𝑦𝑞
∗(𝑛)𝑦𝑞′(𝑛)𝑦𝑞(𝑛)𝑦𝑞′

∗ (𝑛))

𝑞,𝑞′

 (30) 

 

 

Taking the summation over 𝑞′, 𝑛  and using the 

orthogonality property of eigenvectors, i.e., 

∑𝑛  𝑦𝑞
∗(𝑛)𝑦𝑞′(𝑛) = 𝛿𝑞,𝑞′, we get: 

 

∑  𝑛 |𝒮𝑠(𝜃, 𝑎, 𝑛)|2 = 𝑃 ∑  𝑞 |𝑘(𝑎𝜆𝑞
𝜃)|

2
|𝑠̂𝜃(𝑞)|2  (31) 

 

Substituting the value of window function 𝑘 in the above 

equation, we get: 

 

∑  𝑛 |𝒮𝑠(𝜃, 𝑎, 𝑛)|2 = 𝑃 ∑  𝑞
𝑎2𝜆𝑞

2

2𝜋
𝑒−𝑛2𝑎2(𝜆𝑞

𝜃)
2

|𝑠̂𝜃(𝑞)|2  (32) 

 

Rewrite the Eq. (32) in the following form: 

 

⟨𝒮𝑠(𝜃, 𝑎, 𝑛), 𝒮𝑠
∗(𝜃, 𝑎, 𝑛)⟩ =

𝑃 (∑  𝑞  
𝑎2𝜆𝑞

2

2𝜋
𝑒−𝑛2𝑎2(𝜆𝑞

𝜃)
2

) ⟨𝑠̂𝜃(𝑞), 𝑠̂𝜃
∗ (𝑞)⟩  

(33) 

 

Thus, we get the desired result. 

The theorem allows us to analyze a particular graph signal 

by examining its spectral representation. It provides insights 

into the frequency components, correlations, and interactions 

of the signal in the graph domain, enabling further analysis, 

manipulation, or reconstruction of the graph signal based on 

its spectral properties. 

 

5. APPLICATION IN IMAGE DENOISING 

 

 
 

Figure 1. First row: Denoising of a noisy image corrupted with Gaussian noise of zero mean and variance 0.08 in the transformed 

domain (with soft thresholding with fixed fractional order). Second row: The corresponding spectral graph representations 
 

 
 

Figure 2. First row: Denoising of a noisy image corrupted with Gaussian noise of zero mean and variance 0.25 in the transformed 

domain (with soft thresholding with fixed fractional order). Second row: The corresponding spectral graph representations 
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Figure 3. First row: Denoising of a noisy image corrupted with Gaussian noise of zero mean and variance 0.08 in the transformed 

domain (with soft thresholding with fixed fractional order). Second row: The corresponding spectral graph representations 

 

 
 

Figure 4. First row: Denoising of a noisy image corrupted with Gaussian noise of zero mean and variance 0.25 in the transformed 

domain (with soft thresholding with fixed fractional order). Second row: The corresponding spectral graph representations 

 

To demonstrate the practicality of the transformation, we 

have applied it to denoise medical images. In this application, 

we employed soft threshold in the transformed domain using 

the spectra of two distinct images. These images were 

corrupted with Gaussian noise of mean zero and variances of 

0.08 and 0.25. The qualitative outcomes are depicted in 

Figures 1-4. The perceptual quality of the reconstructed 

images confirms the efficacy of the transformation in restoring 

images degraded by noise. An image can be envisioned as a 

graph signal, where individual pixels serve as vertices and the 

interconnectedness of regions is akin to edge connections. We 

also provided the corresponding graph representations [29] for 

each of the results. The graph representations reveal that the 

restored image closely resembles the original, barring intensity 

variations. These variations can be addressed through post-

processing steps, such as histogram specification. 

Furthermore, the proposed transformation holds potential 

for image segmentation (as indicated by the graph 

representations). Beyond image processing, the same 

transformation can be harnessed to analyze other graph signals 

across diverse domains like social networks, sensor networks, 

data analysis on graph structures, and other fields where time-

frequency analysis plays a pivotal role. 
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6. CONCLUSIONS 

 

We first introduced a new variant of the S-transform say 

SGST in spectral graph domain. Then the approximation of 

graph Stockwell coefficients has been examined. The main 

contribution of this paper is summarized as:  

(1) A new transform namely SGFrST is defined for 

analysing Graph signals.  

(2) For the proposed transform the inversion formula is 

established which is based on the admissibility condition of 

window kernel function.  

(3) The inner product theorem for the proposed transform is 

derived with the help of a fixed window function.  

The proposed transform is having applications for analysing 

signals those can be representing in terms of graph-based data 

structures. The proposed transform is highly dependent on the 

underlying graph structure of the signals. Moreover, the value 

of fractional order will depend on the signal underlying to have 

a best transform domain representation. Hence, choice of the 

appropriate fractional order for such a transform is challenging. 

In future, we will try to extend this work for having a signal-

driven choice of the fractional order and other parameters. 

Further, we will explore the applications of the proposed 

transform in the domains like social network analysis and 

recommendation systems.  
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