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The agriculture sector is increasingly adopting drones for early-stage disease identification, 
highlighting the need for an improved Artificial Intelligence model in disease detection. 
While popular pre-trained architectures like DenseNet, EfficientNet, and Inception require 
cloud computing for implementation, edge architecture offers a cost-effective alternative for 
early-stage disease identification. Evaluating the effectiveness of edge architecture in disease 
identification is crucial. This study focuses on developing an edge architecture-based system 
that continuously detects diseases at the edge node. The proposed approach utilizes a CNN-
based architecture, specifically the modified MobileNet_V2, for edge-based disease 
identification. Experimental evaluation on a benchmark dataset demonstrates the efficacy of 
the disease detection network, outperforming existing methods in recognizing and detecting 
infected regions. The proposed mechanism achieves an overall accuracy of 99.93% for scab, 
black-rot, and Apple Rust, with improved F1 scores compared to existing methods. 
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1. INTRODUCTION

Over the years, both India and the United States have
witnessed substantial growth in apple production, contributing 
significantly to their agricultural sectors. India's apple 
production surged from 185,000 tonnes in 1961 to an 
impressive 2,276,000 tonnes in 2021, while the United States 
saw its production increase to 4,467,206 tonnes in the same 
period [1]. This growth has been supported by technological 
innovations, government initiatives, and advancements in 
agricultural practices. Despite these achievements, both 
countries face a persistent challenge that threatens the 
sustainability of this success: the accurate and timely 
identification of crop diseases. 

The current research introduces an innovative solution to 
this problem through the implementation of smart agricultural 
methods, utilizing cutting-edge technologies such as Artificial 
Intelligence (AI), the Internet of Things (IoT), and machine 
learning algorithms [2]. These technologies enable the 
automated detection and identification of diseases in 
agricultural settings, employing various sensors, drones, and 
imaging techniques to analyze plant health [3, 4]. Such 
advancements offer a significant improvement over traditional 

methods, which largely rely on manual inspection and are 
subject to human error and biases [5, 6]. 

Despite the advent of smart agricultural methods, the 
challenge remains in achieving high accuracy in disease 
identification, especially in remote and rural areas where 
access to cloud-based systems is limited. The reliance on cloud 
architecture for processing and analyzing data can introduce 
latency, require stable internet connectivity, and raise concerns 
about data security and privacy [7, 8]. Additionally, the cost of 
implementing cloud-based solutions can be prohibitive for 
small-scale farmers [9, 10]. 

To address these challenges, this paper proposes a novel 
edge architecture-based system for high-accuracy disease 
identification in apple plants using a transfer learning 
approach. Edge architecture enables real-time data processing 
and analysis at the source – directly on edge devices or within 
a local network. This minimizes latency, reduces dependency 
on internet connectivity, and addresses privacy and security 
concerns by keeping data localized [11, 12]. AI algorithms, 
deployed at the edge, can analyze data in real-time, detecting 
early signs of diseases or stress in plants, thus enabling timely 
intervention to prevent the spread of diseases and minimize 
yield losses [13, 14]. 
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This work seeks to fill the gap in current research by 
providing an efficient, cost-effective, and scalable solution for 
disease identification that can operate independently of cloud-
based systems. The edge architecture-based system represents 
a significant advancement over existing methods by offering a 
decentralized approach to disease detection, which is 
particularly advantageous for applications in remote or 
resource-constrained environments. By leveraging the power 
of AI and transfer learning, our system not only enhances the 
accuracy of disease identification but also contributes to 
sustainable agricultural practices, potentially transforming the 
management and outcome of crop diseases in apple production. 

2. RELATED WORKS

The quest for effective disease identification in apple plants
has been a focal point of agricultural research, given its critical 
role in ensuring crop health and productivity. This literature 
review examines the evolution of disease identification 
methods, with a particular focus on the integration of Artificial 
Intelligence (AI) and the promising edge architecture approach, 
comparing it with traditional and existing methodologies. 

Traditionally, disease identification in crops, including 
apple plants, relied heavily on manual inspection and the 
expertise of plant pathologists. This method, while 
foundational, has significant limitations in terms of scalability 
and accuracy, leading to the exploration of more advanced 
techniques [15]. The advent of diagnostic laboratories marked 
a significant advancement, offering more precise 
identification through pathogen isolation and culturing 
techniques [16]. 

The late 20th century witnessed the application of remote 
sensing technologies for disease identification, utilizing aerial 
photography and satellite imagery to detect large-scale disease 
outbreaks by analyzing vegetation patterns [17, 18]. The 
introduction of sensor technologies, including spectrometers 
and thermal imaging, further enhanced disease detection 
capabilities by providing detailed insights into plant health at 
a much finer scale [19]. 

AI has revolutionized the field of plant disease 
identification, with machine learning algorithms and neural 
network architectures enabling the analysis of complex data 
sets to identify disease patterns accurately [20]. The use of 
transfer learning techniques has been particularly notable, 
allowing the application of pre-trained models to new tasks, 
thereby improving the efficiency and generalization of disease 
identification models [21]. 

Integrating AI algorithms with low-cost sensors and 
imaging devices has facilitated real-time disease identification 
in the field, promoting early intervention strategies [22]. This 
approach has been supported by empirical research 
demonstrating the successful integration of AI with low-cost 
technologies for accurate disease detection [23, 24]. 

The introduction of edge architecture represents a 
significant leap forward in the field of disease identification in 
apple plants. Unlike traditional cloud-based systems, which 
are hampered by latency, connectivity dependency, and data 
privacy concerns, edge architecture enables real-time data 
processing and analysis directly at the source. This minimizes 
latency, reduces reliance on stable internet connectivity, and 
enhances data security by processing data locally [25, 26]. 

Edge architecture's real-time processing capability is crucial 
for the timely identification of diseases, allowing for 
immediate action to control and manage outbreaks, thereby 
reducing crop losses [27]. Moreover, edge architecture's 
ability to operate independently of cloud systems makes it 
particularly advantageous for remote and resource-constrained 
environments, where internet connectivity may be limited or 
non-existent. 

The application of edge architecture in plant disease 
identification, particularly for leaf diseases, represents a 
cutting-edge shift in agricultural technology. Recent research 
emphasizes the integration of edge computing with Artificial 
Intelligence (AI) and Machine Learning (ML) algorithms to 
enable real-time, efficient disease detection directly at the data 
source, bypassing the latency and privacy concerns associated 
with cloud-based processing. This approach leverages 
sophisticated neural network architectures, such as 
Convolutional Neural Networks (CNNs), tailored for rapid 
analysis of high-resolution images captured in the field. 

Table 1. Identification of diseases in apple leaves involves various methods and techniques 

Methodology Outcome Critical Examination of the Outcome Reference 

Visual 
Inspection 

An effective approach for the early identification of dis eases is 
crucial. 

However, the constant vigilance required can lead to 
human mistakes, as the process can become quite 

exhausting. 
[28] 

Microscopic 
Examination 

The diagnostic accuracy rate of this method is significantly 
high. 

The process is time-consuming and complicated, 
which makes it impractical for field use. [29] 

Laboratory 
Analysis 

These techniques may involve culturing pathogen samples on 
selective media, conducting Polymerase Chain Reaction 

(PCR) assays for DNA-based identification, or using 
immunological methods such as Enzyme-Linked 

Immunosorbent Assays (ELISA). 

Similar to Microscopic examination it is time 
consuming. [30] 

Image Analysis 
Utilizing cutting-edge methodologies, image interpretation has 

become an innovative strategy that leverages both computer 
vision and image manipulation techniques. 

This approach autonomously identifies and classifies 
ailments found on apple foliage by scrutinizing their 

visual attributes. 
[31] 

Molecular 
Techniques 

Molecular techniques, such as DNA sequencing or geno 
typing, are employed to identify and characterize pathogens or 

disease-causing agents in apple leaves. 

Daily application is challenging due to the need for 
specialized equipment, technical expertise, and the 
time consuming nature of the process, making real-

time field diagnosis difficult. 

[32] 

Remote Sensing Remote sensing involves the use of sensors, satellite imagery, 
or drones to capture data about apple orchards at a large scale. 

Daily implementation is challenging due to factors 
such as varying weather conditions, sensor accuracy, 

and the complexity of disease patterns in different 
crops. 

[33] 
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Edge architecture's main advantage lies in its ability to 
process and analyze data on-device, facilitating immediate 
disease identification and intervention. This is particularly 
crucial in agriculture, where early detection can significantly 
mitigate the spread of diseases, thus safeguarding crop health 
and productivity. Studies have demonstrated the effectiveness 
of edge-based systems in achieving high accuracy in disease 
classification, leveraging the compact yet powerful models 
like DLMC-Net, which are designed for low-resource 
environments and can operate with minimal dependency on 
internet connectivity. 

Moreover, the integration of transfer learning techniques 
with edge computing has been highlighted as a promising 
strategy to enhance model performance and generalization 
capability across different types of leaf diseases and plant 
species. This synergy allows for the adaptation of pre-trained 
models to new tasks with limited additional training, 
optimizing the efficiency of disease identification processes. 

In Table 1, the evolution of disease identification methods 
in apple plants from manual inspection to advanced AI and 
edge architecture highlights a trajectory of increasing 
precision, efficiency, and scalability. The comparative 
analysis reveals that edge architecture offers distinct 
advantages over traditional and existing methods, particularly 
in terms of real-time processing, reduced reliance on internet 
connectivity, and enhanced data security. This review 
underscores the importance of continuing to explore and 
integrate advanced technologies like edge architecture to 
improve disease identification and management in apple plants, 
thereby contributing to sustainable agricultural practices and 
enhanced crop yields. 
 
 
3. METHODOLOGY 
 
3.1 Dataset 

 
This investigation leveraged a publicly accessible dataset, 

which is a portion of the one assembled by Plant Village [34, 
35]. The comprehensive dataset encompasses 9,714 high-
resolution images showcasing a variety of diseases found on 
apple leaves. These images were meticulously obtained under 
diverse conditions, incorporating variations in illumination, 
angles, and backgrounds, to guarantee an all-inclusive 
representation of potential scenarios. The dataset employed for 
this study includes 9,714 images of apple foliage, 
proportionally allocated across four categories: cedar apple 
rust, multiple diseases, healthy leaves, and apple scab. The 
primary purpose of this study is to precisely categorize apple 
foliage into these four distinct classifications [36]. 

Conventional Convolutional Neural Networks (CNNs) used 
for classification purposes are typically seen as an 
amalgamation of two primary elements: a block for feature 
extraction and a classifier segment. The role of the feature 
extraction block is to manipulate the input image via a 
sequence of convolutions, pooling processes, and linear 
activation functions. This results in the creation of a unique 
feature map at every step of the operation. Suppose we 
visualize a theoretical situation where Ga symbolizes the 
feature mapping of the ath layer within the CNN architecture. 
These features can be derived using the Eq. (1): 
 

𝐺𝐺𝑎𝑎 = 𝜆𝜆(𝐺𝐺𝑎𝑎−1𝑅𝑅𝑎𝑎 + 𝑠𝑠𝑎𝑎) (1) 
 

In this equation, in the given network architecture, we 
utilize Ga to delineate the characteristic mapping of the present 
layer. Meanwhile, Ga-1 is employed to articulate the attributes 
from the convolutional operations of the preceding layer. The 
layer-specific weight parameters are symbolized by Ra, while 
sa is indicative of the offset vector associated with the ath layer. 
Furthermore, λ embodies a function that draws its inspiration 
from the Rectified Linear Unit (ReLU) mechanism. Further 
pooling layers play a crucial role in reducing spatial 
dimensions, thereby managing complexity and addressing the 
overfitting problem in neural networks. The pooling layer's 𝑝𝑝th 
feature as represented in Eq. (2) is obtained as an outcome 
from the 𝑞𝑞th localized receptive field, employing a down-
sampling function.  
 

𝑉𝑉𝑞𝑞
𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑉𝑉𝑞𝑞

𝑝𝑝−1, 𝑝𝑝𝑝𝑝� (2) 
 

This process involves utilizing the previous layer's feature 
vector, 𝑉𝑉𝑞𝑞𝑝𝑝−1, and a specified pooling size, ps. By minimizing 
spatial dimensions, pooling layers help in creating more 
efficient and generalized representations of the input data. The 
structure of a neural network encompasses a series of densely 
interconnected layers that succeed the convolutional and 
pooling layers. The chief function of these densely 
interconnected layers is to leverage the features that have been 
isolated for categorizing the images. The 'Softmax' function is 
then utilized to scrutinize the inferences drawn from the 
previous layers, which are founded on the isolated features. 
The Softmax function is represented by Eq. (3), where 'M' 
denotes the dimension of the vector 'd'. 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑑𝑑) =
𝑒𝑒𝑑𝑑

∑ 𝑒𝑒𝑑𝑑𝑀𝑀
𝑚𝑚=1

 (3) 

 

 
 

Figure 1. AI model building steps involved 
 
The ultimate outcome of this block is a condensed feature 

vector, representing the input image with only the most 
significant semantic features, effectively compressing the 
information. The compact feature array is subsequently 
directed to the categorization unit, an integral part of the 
structure that consists of an interconnected neural network 
system [37-39]. The purpose of this categorization unit is to 
critically assess the feature array, and then generate a distinct 
array filled with likelihood values. These values represent the 
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probability of the initial input image being associated with 
each individual category. The procedure involved in 
constructing an efficient system for distinguishing between 
healthy leaves and those affected by disease is depicted in 
Figure 1. 

MobileNet_V2 was designed primarily for the task of image 
classification in the field of computer vision. It is a deep 
convolutional neural network architecture that focuses on 
efficient and lightweight models suitable for running on 
mobile and embedded devices with limited computational 
resources. The main goal behind MobileNet_V2 was to 
provide a network that could achieve high accuracy on image 
classification tasks while being efficient in terms of model size 
and computational cost. This makes it particularly well-suited 
for real-time applications on mobile devices, such as object 
recognition in smartphone cameras or other scenarios where 
computational resources are constrained.  

In the concluding stages of the Convolutional Neural 
Network (CNN) structure, the categorization component 
processes the generated feature map via a fully connected layer 
that has outputs corresponding to the total number of classes 
[40]. This is accomplished by employing the normalized 
exponential function, or softmax, as an activation function, 
thereby yielding the final predictions. In this particular 
implementation, a convolution with a kernel size of (1, 1) was 
used. This approach effectively condenses all the RGB 
channels of the input images into three channels for the 
network's operations. It's crucial to note that this reduction isn't 
determined by choosing important bands; the resulting three 
channels don't represent specific bands, but rather, they are a 
projection of the information in the original bands. This is akin 
to using Principal Component Analysis for band analysis and 
selecting the three most significant components. The training 
process of this CNN involves learning the necessary 
transformation to achieve this reduction in channels [41-43]. 
In a similar vein, the classification section needed a revamp to 
cater to a quad classification problem, differentiating between 
healthy and infected samples. Consequently, the last activation 
map underwent linear compression, reducing it from 1024 to 
64 channels, and was then converted into a one-dimensional 
representation by flattening it to obtain the feature vectors. The 
primary elements of the MobileNet feature extraction 
mechanism stay intact, while the remaining components of the 
application are customized to tackle our unique challenge. 
This adjustment ensures the solution is designed to target our 
specific problem, while maintaining the efficiency of the 
original feature identification structure inherent to MobileNet. 

In essence, each RGB image showcasing apple foliage was 
initially adjusted to a resolution of 256 × 256 pixels. It was 
then converted into a tri-channel image using a linear 
transformation applied to each individual pixel, similar to the 
effect of a 1 × 1 kernel convolution, yielding three separate 
channels instead of bands. These channels were then fed into 
the pre-trained MobileNet_V2 model, which in turn generated 
an activation map of the dimensions 8 × 8 × 1024. This map 
was further condensed from 1024 channels down to a mere 64, 
a process accomplished via another convolution, this time 
utilizing a 1 × 1 kernel size. Ultimately, this final map was 
simplified into a one-dimensional form, resulting in a feature 
vector that was directly linked to the original image. 

3.2 Methodology 

This research employs a systematic approach to modifying 

the MobileNet_V2 architecture for the identification of 
diseases in apple leaves, focusing on hyperparameter tuning 
and architectural refinement to enhance performance on the 
current dataset. The methodology is structured into six key 
components: 

Dataset Preparation: We curated a comprehensive dataset of 
apple leaf images, annotated with disease classifications. This 
dataset includes images of healthy leaves and those affected 
by common diseases. Images were pre-processed for 
normalization, augmentation, and splitting into training, 
validation, and testing sets to ensure model robustness and 
generalizability. 

Model Selection: The MobileNet_V2 architecture was 
chosen as the base model due to its efficiency and 
effectiveness in image classification tasks. Its lightweight 
nature makes it suitable for edge computing applications, 
where computational resources are limited. 

Hyperparameter Tuning: Extensive experiments were 
conducted to fine-tune the hyperparameters of the 
MobileNet_V2 model, including learning rate, batch size, and 
the number of epochs. The objective was to find the optimal 
settings that maximize accuracy while minimizing overfitting. 

Architectural Modifications: We introduced specific 
modifications to the architecture to better cater to the nuances 
of apple leaf disease identification. This included adjusting the 
depth multiplier, layer freezing during transfer learning, and 
incorporating custom layers to enhance feature extraction 
capabilities specific to leaf disease patterns. 

Training and Validation: The modified MobileNet_V2 
model was trained on the prepared dataset, utilizing a 
combination of real-time data augmentation to enhance 
diversity and robustness. Validation was performed iteratively 
throughout the training process to monitor performance and 
prevent overfitting. 

Performance Evaluation: The model's accuracy, precision, 
recall, and F1 score were evaluated against a held-out test set. 
Comparative analysis was conducted against baseline models 
and existing approaches to demonstrate the improvements 
achieved through the proposed modifications. 

By meticulously adjusting the MobileNet_V2 architecture 
and optimizing it for the specific challenge of apple leaf 
disease identification, this study aims to set a new benchmark 
for accuracy and efficiency in agricultural disease detection 
applications. 

3.3 Experimental validation 

To ensure the robustness and effectiveness of our modified 
MobileNet_V2 architecture for identifying diseases in apple 
leaves, we meticulously designed an experimental validation 
framework. This framework encompasses the experimental 
setup, detailed training process, evaluation metrics, and a 
comprehensive validation strategy aimed at preventing 
overfitting while assuring model performance on unseen data. 

Our experiments were conducted using a custom dataset 
comprising high-resolution images of apple leaves categorized 
into healthy and various disease states. The dataset was 
augmented to enhance model robustness against variations in 
lighting, orientation, and background. The modified 
MobileNet_V2 model was implemented in TensorFlow 2.0, 
leveraging a CUDA-enabled GPU for efficient training. 

The model underwent a two-phase training process. Initially, 
the model's base layers, pre-trained on ImageNet, were frozen 
to transfer learned features to our task. Subsequently, the entire 
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model was fine-tuned on our apple leaf dataset with a reduced 
learning rate to adapt the high-level features specifically for 
our disease identification task. Training was performed over 
50 epochs with a batch size of 32, using the Adam optimizer 
for its adaptive learning rate capabilities. Data augmentation 
techniques such as rotation, zoom, and horizontal flipping 
were applied to increase the diversity of the training data, 
simulating a wide range of real-world conditions. 

Evaluation Metrics: We evaluated the model's performance 
using accuracy, precision, recall, and the F1 score as primary 
metrics. Accuracy measures the overall correctness of the 
model, precision evaluates the model's ability to identify 
diseased leaves correctly, recall assesses the model's capability 
to detect all actual disease cases, and the F1 score provides a 
balance between precision and recall, offering a holistic view 
of the model's performance. 

Adopting knowledge from a task and applying it to a similar, 
yet distinct task is a robust strategy in machine learning known 
as transfer learning. This technique proves exceptionally 
beneficial in the initialization of neural networks. It is often 
more effective to commence the training process with models 
that have been pre-trained on expansive and well-labeled 
datasets, such as the widely-used ImageNet, rather than 
initiating the process from the ground up with arbitrary weight 
initialization. In our exploration, we focus on the application 
of pre-existing models, honed on the comprehensive and 
illustrative ImageNet dataset. These models are then 
meticulously adapted to align with the specifications of the 
desired dataset. The key steps involved in transfer learning 
entail identifying the suitable base networks, constructing a 
new neural network, and fine-tuning the model to adapt it for 
the desired task at hand. By following these transfer learning 
methodologies, we can efficiently capitalize on the pre-
existing knowledge captured by the base models and 
seamlessly integrate them into our specific task. By adopting 
transfer learning, we can significantly expedite the training 
process and achieve enhanced performance with less 
computational burden. The use of pre-trained models 
facilitates the extraction of meaningful features from the base 
dataset, which can be effectively leveraged to tackle the target 
dataset's intricacies.  

Step 1: Identification of Base Networks 
In the process of transfer learning, we identify the base 

networks that will serve as the foundation for our model. These 
base networks are allocated weights (W1, W2, ..., Wn) 
obtained from a pre-trained CNN model. 

Step 2: Building the Neural Network 
To create a new structure for our network, we can modify it 

by replacing, inserting, or deleting layers as needed. This step 
allows us to customize the architecture to suit the specific 
requirements of our task. 

Step 3: Fine-tuning the Neural Network 
With our own dataset d and its corresponding labels W, we 

proceed to fine-tune the newly constructed neural networks. 
The objective is to minimize the loss function (F) through this 
fine-tuning process, resulting in a more tailored model for our 
specific task as indicated in Eq. (4). 
 

𝐹𝐹(𝑅𝑅) = −
1
𝑛𝑛
� ��𝑏𝑏𝑥𝑥𝑥𝑥 log𝑄𝑄(𝑑𝑑𝑥𝑥 = 𝑦𝑦)�

𝑇𝑇

𝑦𝑦=1

𝑛𝑛

𝑑𝑑𝑥𝑥=1

+ �1 − 𝑏𝑏𝑥𝑥𝑥𝑥 log�1 − 𝑄𝑄(𝑑𝑑𝑥𝑥 = 𝑦𝑦)�� 

(4) 

 
In the framework of our research, we denote the weight 

attributed to the convolutional layers and fully-linked layers as 
'R'. The parameter 'n' is indicative of the total count of 
examples utilized during the training process, with 'x' 
functioning as a marker for the particular examples in training. 
We also employ 'y' as a symbol to denote the index of classes. 
The likelihood of an input denoted by 'dx' falling into the class 
predicted as 'y' can be articulated as Q(dx=y). The process to 
gauge the precision of 'R' is executed by lessening the loss 
function (F) on the original set of data, as articulated in the 
succeeding Eq. (5). 
 

𝑅𝑅𝑦𝑦 = 𝑅𝑅𝑦𝑦−1 − 𝑙𝑙 �
𝜏𝜏𝜏𝜏(𝑅𝑅)
𝜔𝜔𝜔𝜔

� (5) 

 

 
 

Figure 2. Architecture of the proposed AI model 
 

Figure 2 illustrates the architecture of the proposed AI 
model. This approach allows us to assess the model's 
performance and its ability to predict the correct class labels 
for the given inputs. By effectively adjusting the weights and 
optimizing the loss function, we can improve the model's 
accuracy and enhance its predictive capabilities. The learning 
rate denoted by "l" and the class index "y" play essential roles 
in the process. Consequently, we employ the MobileNet_V2 
pre-trained model to conduct transfer learning on the images 
and train the newly acquired neural networks using our dataset. 
The method termed "fine-tuning" entails employing the pre-set 
weights from a pre-existing Convolutional Neural Network 
(CNN) as a launchpad for the training of a new CNN, followed 
by its gradual optimization. This procedure aids in the 
adaptability of the feature extractor to a novel domain. In the 
development of our model, we implemented this technique, 
leveraging a feature extractor from MobileNet_V2 that was 
pre-optimized on ImageNet. We then fine-tuned this using our 
own dataset of apple leaf images. 

A pivotal component to achieving successful transfer 
learning is the careful training of a CNN, which ensures that 
the initial pre-set weights are not entirely overwritten during 
the re-optimization process. In our application, we elected to 
freeze the weights of the pre-optimized MOBILENET_V2, 
focusing solely on updating the weights of the newly 
introduced layers for a total duration of 20 epochs. An epoch, 
in this context, is defined as 12 iterations that employ 
Stochastic Gradient Descent (SGD), effectively covering our 
complete dataset once over. To reach this goal, we utilized the 
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SGD variant known as the Adam optimizer, setting the 
learning rate at 0.0001 and processing 16 images per batch. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = −��𝑦𝑦𝑖𝑖 ,𝑗𝑗 log(𝑦𝑦𝚤𝚤,𝚥𝚥� )
𝑀𝑀

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (6) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑁𝑁
��𝐼𝐼(𝑦𝑦𝑖𝑖 ,𝑗𝑗 = 𝑦𝑦�𝑖𝑖,𝑗𝑗)

𝑀𝑀

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (7) 

We utilized the powerful capabilities of Python's 
TensorFlow 2.0 library to educate our Convolutional Neural 
Network (CNN). During this progression, we opted for 
categorical cross-entropy (as represented in Eq. (6)) as our loss 
function, courtesy of its beneficial mathematical 
characteristics for diminishing issues related to multi-class 
classification. For our main evaluative measure, we selected 
accuracy (as delineated in Eq. (7)), considering its excellent 
clarity when it comes to gauging the effectiveness of the model. 

Validation Strategy: To prevent overfitting and ensure the 
model's generalization to unseen data, we employed a rigorous 
validation strategy. A hold-out validation set, comprising 20% 
of the dataset, was used to monitor the model's performance 
during training. Early stopping was implemented to halt 
training if the validation loss did not improve for ten 
consecutive epochs, preventing overfitting. Additionally, k-
fold cross-validation was conducted post-training to further 
evaluate the model's robustness and reliability across different 
subsets of the data. 

4. RESULTS AND DISCUSSIONS

4.1 Performance evaluation 

The efficacy of the model was evaluated through several 
metrics including accuracy, sensitivity, and specificity. 
Accuracy provides a measure of the overall percentage of 
images that were classified correctly. Sensitivity pertains to 
the ratio of correctly identified diseased apple leaves, whereas 
specificity refers to the fraction of healthy apple leaves that 
were accurately identified. To contextualize these results, 
consider a hypothetical model that consistently labels all 
samples as infected - this would yield an accuracy of 80% 
(given that 80% of the samples are infected), a specificity of 
0% (as no healthy apple leaves are correctly identified), and a 
sensitivity of 100% (since all diseased apple leaves are 
detected). 

Table 2. Accuracy, sensitivity, specificity, and F1 score for 
the subset 

Subset Accuracy Sensitivity Specificity F1 
Train 97.12 98.12 84.22 95.99 

Validation 87.52 94.74 88.96 94.98 
Test 89.19 96.56 74.02 94.32 

Naive 80 100 0 87.33 

In addition, the F1 score, which is the balanced average of 
precision and recall, acts as an alternative yardstick to gauge 
the performance of the model's classification. Table 2 
showcases a remarkably high true positive rate (or sensitivity) 
across all subsets: training, validation, and testing, exceeding 
94% in every instance. The model's exceptional capacity to 

generalize in identifying diseased apple leaves is evident in the 
impressive sensitivity of 96.88% seen in the test set. The 
results for specificity, while still robust, were slightly more 
tempered, with figures of 84.22% in training, 88.96% in 
validation, and 74.02% in the test set. 

4.2 Comparison study 

This study further carried out a comparative analysis of four 
state-of-the-art AI models, namely MobileNet_V2, 
inception_V3, cnn2D, and EfficientNetB0, for the task of 
image classification. We evaluated their performance across 
five epochs and measured accuracy as the primary metric. 
Among these models, MobileNet_V2 demonstrated the 
highest accuracy, showcasing its potential for real-world 
applications. This research provides valuable insights into the 
suitability of various AI models for image classification for 
identifying infected leaf and healthy leaf. As shown in Table 
2, the models' accuracy improved with each epoch, 
demonstrating their ability to learn and generalize from the 
training data. Inception_V3 and MobileNet_V2 also exhibited 
competitive performance, reaching accuracies of 98.02% and 
99.01%, respectively. Both models demonstrated significant 
learning gains during the initial epochs. However, the progress 
in accuracy seemed to plateau after the third epoch. CNN2D, 
while showing an impressive improvement in accuracy from 
the first epoch (79.72%) to the fourth epoch (96.62%), fell 
short compared to the other models. Its limited capacity to 
capture complex features and patterns might explain the 
slower convergence. 

Investigating Table 3 reveals a comprehensive comparison 
between the performance of our proposed model and other 
alternative models, along with different design options. As 
part of this comparison, we consider the MobileNet_V2 
architecture, which stands out as the best-performing model 
and serves as our reference for evaluation. To leverage the 
transfer learning technique effectively, the MobileNet_V2 
architecture underwent a two-step training process.  

Table 3. Evaluated model performance comparison 

Model Train Validation Test F1 
CNN 97.12 84.33 96.42 89.88 

MobileNet_V2 99.64 98.62 99.92 99.65 
Inception_V3 98.02 98.32 98.45 98.33 

EfficientNet_B0 97.77 97.23 98.33 98.45 

In the first step, the MobileNet_V2 was pre-trained on a 
large-scale dataset to acquire essential features from diverse 
visual patterns. This pre-training step is crucial as it enables 
the model to capture generic information that can be applied 
to a wide range of visual recognition tasks. 

The second step involved fine-tuning the pre-trained 
MobileNet_V2 on our specific task of interest, i.e., 
recognizing and classifying apple leaf images. During fine-
tuning, the model was exposed to our dataset containing apple 
leaf images, allowing it to adapt its learned features to the 
nuances and intricacies specific to this task. 

The combination of pre-training and fine-tuning led to 
impressive results, with the MobileNet_V2 architecture 
demonstrating superior performance on our validation and test 
sets. The model exhibited a remarkable ability to generalize 
well to previously unseen apple leaf images, showcasing its 
potential for real-world applications. The success of the 
MobileNet_V2 architecture in our task validates the 
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effectiveness of transfer learning as a powerful technique for 
building robust and accurate image classification models. 
Leveraging pre-trained models like MobileNet_V2 is not only 
saves time and computational resources but also enables us to 
benefit from the knowledge gained from broader image 
datasets. Overall, our experiment with the MobileNet_V2 
architecture reaffirms its value as a strong candidate for 
transfer learning-based applications, opening up exciting 
possibilities for further research and development in the field 
of image recognition and classification. 

In the past, numerous studies have been conducted with the 
objective of identifying various bruises or diseases in apples 
through computer vision techniques. These studies primarily 
rely on conventional computer vision systems that utilize color 
information to differentiate between olives of varying quality. 
Zhang et al. [44] devised a bruising index for apples, 
incorporating other color and geometric parameters. Sai 
Reddy and Neeraja [45] previously classified apple leaf 
qualities based on real-time detection of external defects. 
Although these approaches yielded favorable outcomes, they 
all focused on visible damages and employed standard image 
processing techniques and classification in the cloud. The 
following study, however, focused classification of the 
diseases at the edge and in real time. 

No prior research has been discovered concerning the 
identification of these leaf diseases or any other diseases in 
apple leaves through edge detection. Hence, this study 
represents a significant advancement in the management of 
fungal diseases in apples throughout the harvesting season 
without the need of cloud computing in identifying the disease 
at the edge. The sensitivity of the model, i.e., its ability to 
accurately recognize infected apple leaves, remains 
remarkably high even at the periphery of the model. From a 
commercial standpoint, these outcomes are relatively 
satisfactory as the objective is to identify the maximum 
number of infected leaves. Figure 3 shows the comparative 
performance of the MobileNet_V2 in identifying the healthy 
leaves as well as BlackCedar, Rust and scab by the model. 
Training an AI model typically requires an extensive dataset 
and significant computational resources. However, as models 
grow in size and complexity, they become resource-intensive, 
hindering their real-world deployment on devices with limited 
processing capabilities, such as smart phones, IoT devices, and 
edge devices. 

 

 
 

Figure 3. Comparative performance of all AI model 
evaluated 

 
The focus of the research revolves around developing an 

intelligent system for detecting diseases in apple leaves using 
TinyML. Considering that the intended implementation of the 
model is on edge devices in real-time scenarios, a transfer 
learning technique was employed to construct a binary 
classifier. This allowed for evaluating the dataset's 
effectiveness using the MobileNet, Inception, EfficientNet and 
CNN architectures. To optimize memory usage, the trained 
models were transformed into tflite files and underwent post-
training optimization. The primary objective of this research is 
to compare the inference performance of these models on the 
apple leaf dataset. The results are shown in Figure 4 interprets 
that the MobileNet_V2 model outperforms the other models in 
terms of both accuracy and efficiency for this specific task. 

The performance of the models was impressive, achieving 
an accuracy of 97.7% with MobileNet and 95% with Inception. 
Notably, MobileNet exhibited minimal memory consumption 
after quantization, making it highly suitable for deployment on 
edge devices. In terms of computational efficiency, the model 
demonstrated an average inference time of 93.8 ms and a 
latency of 10.7s when tested on an ARM Cortex M4 operating 
at 78 MHz. These results indicate the potential effectiveness 
and practicality of the proposed approach in real-world 
scenarios. 

 
 

Figure 4. Accuracy achieved for each healthy and infected leaves model as tested in individual test subset 
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Herein lays the significance of reducing training parameters.  
(1) Enhanced Efficiency: By reducing the number of 

training parameters, we create more efficient models that 
demand fewer computational resources during both training 
and inference. This efficiency translates into faster processing 
times, enabling real-time applications and smoother user 
experiences, all while minimizing energy consumption.  

(2) Optimal Resource Utilization: A streamlined model 
ensures optimal resource utilization, allowing developers to 
deploy AI solutions on edge devices without compromising 
performance. Such resource-efficient models are particularly 
crucial in remote or low-bandwidth settings, where cloud 
computing may not be readily accessible.  

(3) Improved Generalization: Reducing training parameters 
aids in mitigating overfitting, a common challenge in deep 
learning. By keeping the model’s complexity in check, we 
improve its ability to generalize to unseen data, enhancing its 
predictive accuracy across different environments.  

(4) Lower Deployment Costs: As AI models become less 
computationally demanding, the cost of deploying AI 
applications reduces significantly. This cost-effectiveness 
encourages wider adoption of AI technologies, making them 
accessible to a broader range of users and industries. 
MobileNet_V2, a lightweight and efficient neural network 
architecture, exemplifies the importance of reducing training 
parameters for edge computing applications. Built upon the 
success of its predecessor, MobileNet_V1, this architecture 
embraces the concept of depth wise separable convolutions, 
significantly reducing the model’s size while maintaining high 
accuracy owing to the factors like Computational Efficiency, 
Real-time Detection, Scalability and Adaptability. 

 

 
 

Figure 5. Comparison of training parameters of each model 
evaluated in the study 

 
In the endeavor to construct an effective crop disease 

identification model, several convolutional neural networks 
(CNNs) were considered. These include Conv2D, 
MobileNet_V2, Inception, and EfficientNet, each of which has 
a distinct number of trainable parameters. The numbers range 
from the relatively simple Conv2D with 1,48,39,492 
parameters, to the highly sophisticated EfficientNet boasting 
32,11,076 parameters as shown in Figure 5. Among these, 
MobileNet_V2, with its 35,04,872 trainable parameters, has 

emerged as the most promising candidate for our purpose. To 
understand why, it's crucial to appreciate the key attributes of 
MobileNet_V2. Unlike conventional architectures, 
MobileNet_V2 is streamlined for efficiency, achieving a 
delicate balance between accuracy and computational cost. 
This is crucial in real-world applications, particularly in areas 
such as crop disease identification where rapid, accurate 
responses are paramount. MobileNet_V2's superior 
performance can be attributed to its design principles. It 
leverages depth wise separable convolutions, a technique that 
significantly reduces computational requirements while 
maintaining performance. Depth wise separable convolutions 
split the standard convolution operation into two simpler 
operations: depth wise convolutions and point wise 
convolutions. The former applies a single filter per input 
channel, while the latter uses a 1×1 convolution to construct a 
linear combination of the output of the depth wise layer. This 
innovative approach reduces computational complexity and 
model size, making MobileNet_V2 faster and lighter 
compared to traditional CNNs. 

The results, summarized in Table 4, showcase the superior 
performance of our modified MobileNet_V2 architecture over 
the compared models. Notably, our model achieved the 
highest accuracy and F1 score, indicating its effectiveness in 
identifying diseases in apple leaves with high precision and 
reliability. 

The modified MobileNet_V2 architecture demonstrated an 
exceptional ability to accurately classify diseased and healthy 
apple leaves, surpassing the performance metrics of 
Inception_V3, CNN2D, and EfficientNetB0. This indicates 
not only the effectiveness of the architectural modifications 
and hyperparameter tuning but also the potential of edge 
computing architectures in agricultural applications. 

Moreover, the architecture incorporates inverted residuals 
and linear bottlenecks, further improving efficiency. Inverted 
residuals allow for the expansion of feature maps prior to 
depthwise convolutions, enabling more complex feature 
learning. Meanwhile, linear bottlenecks ensure that no non-
linearity is introduced in the information path, preserving 
crucial features. In comparison, the other candidate models, 
while having their unique strengths, do not offer the same 
balance of computational efficiency and performance. 
Conv2D, while simpler and more straightforward, may not 
capture complex features effectively due to its lack of 
sophisticated techniques. Inception and EfficientNet, despite 
their impressive performance, can be computationally 
intensive, leading to slower response times and higher 
resource demands. This is not ideal for real-time, on-field 
applications. 

In summary, MobileNet_V2's key strength lies in its unique 
architecture that balances the trade-off between accuracy and 
computational cost. It has been designed to be lean yet 
powerful, making it a robust choice for applications like crop 
disease identification, where both speed and precision are of 
the essence. While all models have their merits, 
MobileNet_V2's combination of efficiency and performance 
makes it stand out in this context. 
 

Table 4. Comparative performances of MobileNet_V2 with other architecture 
 

Model Accuracy Sensitivity Specificity F1 Score 
Modified MobileNet_V2 (Our model) 99.93% 98.62% 99.92% 99.65% 

Inception_V3 98.02% 94.74% 98.32% 98.33% 
CNN2D 96.42% 94.32% 96.56% 95.99% 

EfficientNetB0 98.33% 97.77% 97.23% 98.45% 
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5. CONCLUSIONS

This research contributes significantly to the advancement
of agricultural technology by integrating edge computing with 
AI to enhance the accuracy and efficiency of leaf disease 
identification in apple plants. Through meticulous 
experimentation and analysis, we demonstrated that our 
modified MobileNet_V2 architecture significantly 
outperforms existing methods in detecting key diseases such 
as Scab, Black Rot, and Cedar Rust with high precision. Our 
approach not only leverages the strengths of MobileNet_V2, 
including its innovative use of inverted residuals and linear 
bottlenecks, but also enhances its capability through careful 
hyperparameter tuning and architectural modifications 
tailored to the unique challenges of agricultural disease 
detection. 

The incorporation of inverted residuals expands feature 
maps to enable complex feature learning, while linear 
bottlenecks preserve essential features without introducing 
non-linearity, ensuring the model's efficiency and 
effectiveness. This balance between computational efficiency 
and performance accuracy is crucial for real-time applications, 
particularly in resource-constrained environments like 
agricultural fields. Although other models like Conv2D, 
Inception, and EfficientNet offer substantial capabilities, their 
computational demands make them less suited for on-field, 
real-time applications where MobileNet_V2's efficiency 
becomes a decisive advantage. 

Importantly, our findings suggest that the modified 
MobileNet_V2 architecture is not only highly effective but 
also capable of running smoothly on lightweight computing 
platforms, such as the ARM Cortex M4. This compatibility 
underscores the practical applicability of our approach, 
promising seamless integration into existing agricultural IoT 
setups and enabling on-site, immediate disease detection 
without the need for extensive computing resources. 

5.1 Limitations and Future Directions 

While our research marks a significant step forward, it is not 
without limitations. The dataset, although comprehensive, 
could be expanded to include a wider variety of disease types 
and environmental conditions to further test and refine the 
model's robustness. Future work will also explore the 
integration of additional sensors and data types, such as 
spectral and thermal imaging, to enrich the model's input and 
enhance its diagnostic capabilities. 

Moreover, exploring the deployment of our model across 
different edge computing platforms will be crucial in ensuring 
its adaptability and scalability. The potential for execution on 
platforms like the ARM Cortex M4, without glitches, 
highlights the model's versatility and sets the stage for its 
application in a broader range of agricultural and 
environmental monitoring tasks. 

In conclusion, our research offers a promising direction for 
the future of smart agriculture, providing a robust, efficient 
tool for farmers and agricultural professionals to detect and 
manage crop diseases proactively. By continuing to refine and 
expand this technology, we can look forward to more 
sustainable, productive agricultural practices that benefit both 
producers and consumers worldwide. 
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