
Digital Reconstruction of Historical Cultural Landscapes Based on Image Recognition 

Technology 

Chen Xiang1 , Yun Yang2* , Tuo Zhou3 , Ting Wang4

1 Department of Urban & Regional Planning, Faculty of Built Environment, Universiti Malaya, Kuala Lumpur 50603, Malaysia 
2 Director of Landscape Architecture Department, Faculty of Architecture, Chengdu College of Arts and Sciences, Chengdu 

610401, China 
3 Department of Information Science, College of Information Engineering, Fuyang Normal University, Fuyang 236041, China 
4 Chengdu College of Arts and Sciences, Chengdu 610401, China 

Corresponding Author Email: s2002999@siswa.um.edu.my

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.410336 ABSTRACT 

Received: 10 December 2023 

Revised: 26 March 2024 

Accepted: 3 May 2024 

Available online: 26 June 2024 

With the advancement of modern society and technology, the preservation and inheritance 

of historical cultural landscapes have become increasingly significant. These landscapes not 

only testify to the development of human civilization but are also an essential part of cultural 

heritage. However, the ravages of time, natural disasters, and human activities continually 

threaten these valuable cultural assets. To better preserve and pass on these landscapes, 

digital reconstruction using technological means has become a crucial method. The rapid 

development of image recognition technology offers new possibilities and solutions for the 

digital reconstruction of historical cultural landscapes. Although current digital 

reconstruction methods have improved in automation, they still require enhancements in 

recognition accuracy and three-dimensional reconstruction effects in complex scenes. 

Furthermore, the performance of existing methods in handling multi-scale and multi-

perspective issues is not satisfactory. Therefore, this paper proposes a digital reconstruction 

method for historical cultural landscapes based on image recognition technology, 

comprising two main parts: historical cultural landscape target recognition based on Multi-

Scale Dilated Convolution YOLOv3 (MSDC-YOLOv3) and three-dimensional 

reconstruction of historical cultural landscapes based on pyramid feature attention 

Pixel2Mesh. The MSDC-YOLOv3 technique enables more precise recognition of objects 

within historical cultural landscapes against complex backgrounds, while the pyramid 

feature attention Pixel2Mesh method achieves more efficient and accurate 3D 

reconstruction, providing detailed three-dimensional models. This research not only 

achieves technical breakthroughs, enhancing the precision and efficiency of recognition and 

reconstruction, but also holds significant value in the protection and inheritance of cultural 

heritage, offering new ideas and methods for future research in related fields. 
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1. INTRODUCTION

As modern society develops and technology advances, the 

preservation and inheritance of historical cultural landscapes 

have become increasingly important [1, 2]. Historical cultural 

landscapes not only testify to the development of human 

civilization but are also an integral part of cultural heritage. 

However, over time, natural disasters, human activities, and 

other factors continue to threaten these valuable cultural 

heritages [3-5]. To better protect and pass on historical cultural 

landscapes, using digital technology to reconstruct and 

preserve them has become an important means. The rapid 

development of image recognition technology offers new 

possibilities and solutions for the digital reconstruction of 

historical cultural landscapes [6-9]. 

Digital reconstruction of historical cultural landscapes not 

only aids in the protection of cultural heritage but also supports 

the development of academic research, educational 

dissemination, and the tourism industry [10-13]. By 

reconstructing historical cultural landscapes through digital 

means, historical scenes can be more intuitively and vividly 

recreated, allowing the public to experience and understand 

historical culture in a virtual environment [14, 15]. At the same 

time, this technology can also provide a wealth of data and 

analytical tools for research in related fields, promoting 

interdisciplinary collaboration and innovation, and advancing 

the in-depth development of historical and cultural studies. 

Currently, although various methods have been applied to 

the digital reconstruction of historical cultural landscapes, 

there are still some shortcomings. Traditional methods often 

rely on manual modeling, which is inefficient and costly; some 

techniques based on image recognition, although they have 

improved the degree of automation, still need to improve 

accuracy in recognition and the effects of three-dimensional 

reconstruction in complex scenes [16, 17]. Additionally, 

existing methods perform poorly when dealing with multi-
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scale and multi-perspective problems, failing to meet the needs 

of practical applications [18, 19]. Therefore, there is an urgent 

need for a more efficient and accurate technical means to solve 

these problems and promote the development of digital 

reconstruction technology for historical cultural landscapes. 

This paper proposes a digital reconstruction method for 

historical cultural landscapes based on image recognition 

technology, divided into two main parts: first, historical 

cultural landscape target recognition based on MSDC-

YOLOv3, and second, three-dimensional reconstruction of 

historical cultural landscapes based on pyramid feature 

attention Pixel2Mesh. Through MSDC-YOLOv3 technology, 

it is possible to more accurately recognize target objects in 

historical cultural landscapes against complex backgrounds; 

the pyramid feature attention Pixel2Mesh method, on the other 

hand, can achieve more efficient and accurate three-

dimensional reconstruction, providing detailed three-

dimensional models. This research not only achieves technical 

breakthroughs, enhancing the accuracy and efficiency of 

recognition and reconstruction, but also has significant 

application value in the protection and inheritance of cultural 

heritage, offering new ideas and methods for future research 

in related fields. 

 

 

2. TARGET RECOGNITION OF HISTORICAL 

CULTURAL LANDSCAPES BASED ON MULTI-

SCALE DILATED CONVOLUTION YOLOV3 

 

2.1 Network structure 

 

This paper applies the YOLOv3 network structure to the 

field of historical cultural landscape target recognition. The 

network structure of YOLOv3, through three steps of feature 

extraction, feature enhancement, and prediction module, fully 

extracts and utilizes features in images to achieve high 

recognition effectiveness. However, in complex historical 

cultural landscape scenes, the traditional YOLOv3 network 

structure may miss detecting some targets, primarily due to 

insufficient feature expression in the prediction module. 

Dilated convolution introduces dilation intervals to effectively 

expand the receptive field of the convolution kernel, capturing 

a broader range of image context information without 

increasing computational complexity. Additionally, mixed 

dilated convolution combines various scales of dilated 

convolutions, effectively avoiding the grid effect, thus 

enhancing the integrity and accuracy of feature expression. 

This paper has made improvements to the YOLOv3 

network to better adapt to the complex backgrounds and 

diverse targets of historical cultural landscapes. The YOLOv3 

network uses an FPN structure, performing target recognition 

through three different scales of feature layers: 13×13, 26×26, 

and 52×52. The 13×13 layer is mainly used for recognizing 

large objects in historical cultural landscapes, the 26×26 layer 

for medium-sized objects, and the 52×52 layer for small 

objects. During the recognition process, specific 

improvements have been made to these prediction layers. For 

the 13×13 layer, the ordinary 3×3 convolution is changed to a 

dilated convolution with a dilation rate of 3. This modification 

integrates features over a larger field of view while ignoring 

some interfering features, thus improving the recognition of 

large objects in historical cultural landscapes. By adjusting the 

number of channels, the features on which the prediction 

results depend are further optimized, making the recognition 

of this layer more accurate. For the 52×52 layer, the ordinary 

3×3 convolution is changed to a mixed dilated convolution 

with dilation rates of 1, 2, and 4. This improvement, while 

increasing the field of view, retains more local information, 

thereby enhancing the ability to recognize small objects in 

historical cultural landscapes. Adjustments in the number of 

channels optimize the features that the prediction results 

depend on, enhancing the recognition performance of this 

layer. See Figure 1 for the model structure diagram. 

 

 

 
 

Figure 1. Network structure of the historical cultural landscape target recognition model 

 

2.2 Loss function 

 

In the study of Target Recognition of Historical Cultural 

Landscapes Based on Multi-Scale Dilated Convolution 

YOLOv3, to better enhance the model's recognition 

effectiveness and positioning accuracy, this paper adopts a 

new loss function to compute the localization loss. The loss 

function in YOLOv3 consists of localization loss, confidence 

loss, and classification loss, where the localization loss is 

calculated using Mean Squared Error (MSE) to determine the 

size and position errors between the actual and predicted boxes. 

However, traditional localization loss has certain issues in 

computational efficiency and accuracy, especially in scenes 

with complex backgrounds and diverse targets, where 
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inefficiency leads to slow convergence, thereby affecting the 

overall recognition effectiveness. In the domain of historical 

cultural landscape target recognition, due to the complexity of 

the landscape scenes and the diversity of target objects, there 

is a higher demand for localization accuracy. The presence of 

significant scale differences among targets and the complex 

and variable background enhances the impact of localization 

errors on the overall recognition effectiveness. Therefore, to 

better adapt to such complex environments, this paper 

implements a new loss function within the MSDC-YOLOv3 

network model to compute localization loss. This new loss 

function not only improves localization accuracy but also 

accelerates model convergence, thereby enhancing 

recognition efficiency and effectiveness. 

Specifically, the new localization loss function introduces 

Intersection over Union (IoU) loss or Generalized Intersection 

over Union (GIoU) loss in place of the traditional MSE loss. 

IoU loss more accurately reflects the degree of overlap 

between the predicted and actual boxes, avoiding the gradient 

vanishing problem caused by significant size or position 

differences between the boxes. Meanwhile, GIoU loss further 

improves upon IoU loss in handling non-overlapping areas. 

Suppose the width and length of the actual box are represented 

by q- and g-, respectively, the square of the distance between 

the centers of the two boxes by f2, and the square of the 

diagonal length of the smallest enclosing rectangle around the 

boxes by z2. The specific formulas are as follows: 
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Combining the above equations results in a localization loss 

composed of CIoU loss, given by the following equation:  

 

1LCLOSS CIoU= −  (4) 

 

 
 

Figure 2. SIoU diagram 

 

Although the CIoU loss function has shown significant 

improvements in localization accuracy compared to the 

original localization loss in YOLOv3, it lacks consideration 

from the perspective of whether the two boxes are well-

matched. This could lead to poor model performance during 

the training process. The SIoI loss function, by considering the 

vector angle of the prediction box during regression, redefines 

the penalty metrics, significantly improving the convergence 

during network training, thereby enhancing the overall 

detection performance. Specifically, the SIoU loss function 

takes into account the vector angle of the prediction and actual 

boxes during regression, i.e., by calculating the vector 

differences between the centers of the two boxes to measure 

the degree of match. This method more accurately reflects the 

matching relationship between the prediction and actual boxes, 

reducing the deviation of the prediction box from the actual 

box. Furthermore, the SIoU loss function introduces a new 

penalty term on top of the traditional IoU, by comprehensively 

considering factors such as overlap area, distance between 

centers, aspect ratio, and vector angle, providing a more 

comprehensive loss evaluation. This makes the prediction box 

closer to the actual box during training, improving the model's 

localization accuracy. Figure 2 shows a diagram of SIoU. 

Assuming the distance between the centers of the two boxes is 

represented by f, and the length of the rectangle formed by the 

centers of the two boxes as diagonals is denoted by fg, then the 

formulas are as follows: 

 

( )21 2*sin arcsin
4

a
 

 = − − 
 

 (5) 
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gf

a
f
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Assuming the center coordinates of the actual box are 

represented by sa
- and sb

-, and the center coordinates of the 

prediction box are represented by sa and sb, and the width and 

length of the rectangle enclosing both boxes are represented 

by Zq and Zg, then the formulas are as follows: 
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Assuming the width and length of the actual box are 

represented by q- and g-, and the width and length of the 

prediction box are represented by q and g, then the formulas 

are: 
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The expression for the SIoU loss function is: 

 

2
SIoU IoU

+
= −  (13) 

 

The expression for the localization loss composed of SIoU 

is: 

 

1LCLOSS SIoU= −  (14) 

 

 

3. PYRAMID FEATURE ATTENTION PIXEL2MESH 

FOR 3D RECONSTRUCTION OF HISTORICAL 

CULTURAL LANDSCAPES 

 

3.1 Network structure  

 

In the study of 3D reconstruction of historical cultural 

landscapes, this paper utilizes the Pixel2Mesh network 

structure, which is crucial for achieving high precision in 

reconstructing historical cultural landscapes. The Pixel2Mesh 

network initially extracts features from the input image of the 

historical cultural landscape, generating a series of multi-scale 

image features. Subsequently, the network introduces an initial 

mesh ellipsoid as the baseline model. Through multiple 

iterations, the initial mesh ellipsoid gradually deforms into the 

target 3D model. In each iteration, the network performs image 

up-pooling on the initial mesh to increase vertex count, 

enhancing the mesh model's detail and accuracy. This step-by-

step refinement process ensures that the final 3D model 

accurately reflects the complex structure and details of the 

historical cultural landscape. 

Although the Pixel2Mesh network has achieved notable 

results in the field of 3D reconstruction, it still exhibits some 

shortcomings during the 3D reconstruction of historical 

cultural landscapes, especially as the variety of models 

increases and their structures become more complex. 

Specifically, when reconstructing complex historical cultural 

landscapes, the resulting 3D model shapes may not be accurate, 

and the model details are poor. This is because the initial mesh 

ellipsoid needs to undergo multiple iterations to gradually 

deform into the target model, and during this process, if feature 

extraction is not precise or the deformation network is handled 

improperly, the final model's shape and details may not 

achieve the desired effects. After feature extraction, directly 

using features for subsequent network modules might be 

affected by irrelevant features, preventing relevant features 

from being effectively utilized in the cascade deformation 

network. These irrelevant features' interference can reduce the 

accuracy of model reconstruction, making the generated 3D 

model have errors and difficult to accurately reflect the details 

and structure of the historical cultural landscape. 

To overcome these deficiencies, this study introduces a 

pyramid feature attention mechanism to enhance the 

performance of the Pixel2Mesh network. The pyramid feature 

attention mechanism can extract image features at different 

scales and selectively focus on important features through the 

attention mechanism, suppressing the impact of irrelevant 

features. This mechanism can improve the accuracy and 

effectiveness of feature extraction, allowing the model to more 

accurately capture key details and complex structures of the 

historical cultural landscape. 

The image feature extraction module of the pyramid feature 

attention Pixel2Mesh contains five sub-modules, with outputs 

denoted as Conv1-2, Conv2-2, Conv3-3, Conv4-3, and 

Conv5-3. Outputs from Conv1-2 and Conv2-2 are considered 

low-level features, containing basic edge and texture 

information of the image. These features are inputted into the 

spatial attention module (SA) to suppress useless information 

and focus more on the key parts of the target object. Through 

this process, low-level features are effectively enhanced 

during feature extraction, removing interference and 

increasing the effectiveness of the features. Conv3-3, Conv4-

3, and Conv5-3 outputs are considered high-level features, 

containing rich semantic information. These features are 

inputted into the Pyramid Context Feature Enhancement 

module (CPFE) and the Channel Attention module (CA) to 

obtain more semantic information about the target object. 

Through the CPFE and CA modules, high-level features are 

further optimized, enhancing the important information in the 

feature maps. Subsequently, through up-sampling, the feature 

maps are resized, allowing the low-level and high-level 

features to be fused at the same scale. After the fusion of the 

two different branches of features, the output of the pyramid 

feature attention network is formed. These fused features 

contain multi-layered, multi-scale information of the image, 

better describing the complex structure and details of the 

historical cultural landscape. To ensure that the output of the 

attention mechanism network modules can be better applied to 

the cascade deformation network, this study also adds a 

connection module between them to further process and 

optimize the features, making them more suitable for 

subsequent 3D reconstruction processes. The introduction of 

the connection module ensures the integrity and effectiveness 

of the features during transmission, improving the accuracy 

and stability of 3D reconstruction. Figure 3 provides the 

network structure of the historical cultural landscape 3D 

reconstruction model. 

 

 
 

Figure 3. Network structure for 3D reconstruction of historical cultural landscapes
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Figure 4. Structure of the utilized cascade deformation network 

 

The SPPF structure processes input features through a series 

of concatenated Maxpool layers, with each Maxpool layer’s 

output being progressively fused to form the final output of the 

module. This differs from the SPP structure, which processes 

inputs in parallel through multiple Maxpool layers before 

fusing the outputs of each layer. The design of the SPPF 

structure makes feature extraction more efficient, capturing 

more spatial information at different scales, thus enhancing 

feature expressiveness. In this research, the connection module 

is based on the SPPF structure, combined with the original 

Pixel2Mesh network design, to form the SPPF Connection 

Module (SPPFCM). The SPPFCM mainly includes pooling, 

fusion, and convolution operations. Specifically, through 

multiple pooling operations combined with the output features 

of the image feature extraction module, low-level and high-

level features are fused. This multi-scale feature fusion better 

preserves and utilizes key information from different levels, 

enhancing feature expressiveness and adaptability. The 

SPPFCM uses 1×1 convolutions to adjust the number of 

channels, ensuring that the feature maps maintain a reasonable 

size and depth during transmission. This step not only 

optimizes the number of channels in the feature maps but also 

refines the features further, enhancing the model's 

reconstruction effectiveness. Through these processes, feature 

maps of different scales are obtained, providing richer and 

more accurate feature information for subsequent perceptual 

feature pooling layers and the cascade deformation network. 

Figure 4 shows the structure of the utilized cascade 

deformation network. 

 

3.2 Loss function 

 

In the study of 3D reconstruction of historical cultural 

landscapes based on Pyramid Feature Attention Pixel2Mesh, 

the selection and design of the loss function are crucial for the 

training of the model. This research continues the loss function 

design of the Pixel2Mesh network to ensure high precision and 

quality results during the 3D reconstruction process. 

Specifically, the model considers multiple aspects including 

vertex position, normal vectors, local geometric structures, 

and mesh edge lengths. These four parts of the loss function 

work together to ensure the model's comprehensive 

performance in terms of shape accuracy, surface smoothness, 

and geometric consistency. The model's loss function is 

primarily defined in terms of the model’s vertices and normal 

vectors, including chamfer loss, normal loss, Laplacian 

regularization, and edge length regularization. 

The chamfer loss is used to measure the distance between 

vertices of the reconstructed model and the real model. By 

calculating the minimum distances between predicted vertices 

and actual vertices and summing all these distances, the 

chamfer loss effectively assesses the overall shape accuracy of 

the reconstructed model. A smaller chamfer loss indicates that 

the vertices of the reconstructed model are closer to those of 

the real model, making the shape more accurate. Specifically, 

for each vertex of the reconstructed model, the nearest vertex 

in the real model is found, and the sum of these minimum 

distances squared is calculated. Conversely, for each vertex of 

the real model, the nearest vertex in the reconstructed model is 

found, and the sum of these minimum distances squared is 

calculated. The final chamfer loss is the average of these two 

sums. Assuming the sets of sampled points from the 

reconstructed mesh model and the real 3D model are 

represented by t1, t2, with points within these sets represented 

by a, b, the formula is as follows: 

 

( )
2

2

1
2

2

1 2 2

2

2

, || ||

|| ||

ZF
b t

b t

a t
b t

M t t MIN a b

MIN a b







= −

+ −




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The normal loss function is used to measure the difference 

in normal vectors between the reconstructed model and the 

real model. Normal vectors reflect the directional information 

of the model's surface and have a significant impact on the 

detail and smoothness of the reconstructed model. By 

minimizing the differences between normal vectors, the 

normal loss function ensures that the surface of the 

reconstructed model is smoother and more realistic. 

Specifically, for each vertex of the reconstructed model, 

calculate its corresponding normal vector. Similarly, for each 

vertex of the real model, calculate its corresponding normal 

vector. Finally, compute the sum of squared differences of 

normal vectors between the reconstructed and the real model. 

Assuming a vertex in the reconstructed mesh model is denoted 

by constraint j∈V, o, and the nearest vertex in the real 3D 

model to o is denoted by w, with V representing the set of 

vertices adjacent to vertex o, and the normal vector derived 

from the real 3D model is denoted by vw, the formula is as 

follows: 

 

( )2
2

2

2

|| ||

|| , ||

w

NO w

o w AM o w

M o j v
= −

=  −    
(16) 

 

Laplacian regularization is used to constrain the local 

geometric structure of the model, preventing excessive 

distortion or deformation during reconstruction. By 

introducing the Laplacian operator, the regularization term 

smooths the model surface, maintaining its local consistency. 

This is particularly important for the 3D reconstruction of 

historical cultural landscapes, as these landscapes often have 

complex geometric shapes and rich detail information. 

Specifically, first calculate the Laplacian coordinates for each 

vertex in the reconstructed model, which represent the relative 

positions between the vertex and its neighboring vertices. 

Then, compare these Laplacian coordinates with the 
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corresponding Laplacian coordinates of the original model, 

minimizing the differences between them. Assuming the 

Laplacian coordinates of a vertex before and after deformation 

are denoted by σ'o and σo, the formulas are as follows:  

 
' 2

2|| ||LA o o

o

M  = −  (17) 

 

( )( )

1

|| ||
o

j V o

o j
V o



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Edge length regularization is used to control the lengths of 

the mesh edges in the model, preventing them from being 

overly long or short. By maintaining the consistency of edge 

lengths, the regularization term enhances the model's stability 

and visual quality. Edge length regularization plays a role in 

balancing the mesh structure and detail expression in 3D 

reconstruction. Specifically, first calculate the length of each 

edge in the reconstructed model, then compare these lengths 

with the corresponding lengths in the original model, 

minimizing the differences between them. The formula is as 

follows: 

 

( )

2

2|| ||ED

o j V o

M o j


= −   
(19) 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS  

 

Table 1. Ablation study results using CIoU, SIoU, and 

different convolutional layers 

 
Experiment 

Number 

CIoU 13*13 

Layer 

52*52 

Layer 

SIoU mAP 

(%) 

1 √    81.85 

2 √ √   82.31 

3 √  √  82.65 

4    √ 82.78 

5 √ √ √  82.89 

6  √ √ √ 83.14 

 

Based on the ablation study results in Table 1, the impact of 

different configurations on the target recognition of historical 

cultural landscapes is evident. Experiment 1, using only CIoU, 

achieved a mean Average Precision (mAP) of 81.85%. 

Experiment 2, which added a convolutional layer at the 13×13 

level to CIoU, increased the mAP to 82.31%. Experiment 3, 

which added a 52×52 convolutional layer on top of CIoU, 

further increased the mAP to 82.65%. Experiment 4 

introduced SIoU instead of CIoU, achieving a mAP of 82.78%. 

Experiment 5 combined CIoU with both 13×13 and 52×52 

layers, reaching a mAP of 82.89%. Experiment 6 introduced 

SIoU along with the 13×13 and 52×52 layers, achieving the 

highest mAP of 83.14%. From these results, it can be 

concluded that the method proposed in this paper, based on 

MSDC-YOLOv3, significantly improves the accuracy of 

target recognition. Particularly when using mixed dilated 

convolution and SIoU, the model's mAP was highest, 

indicating that the combination of these technologies 

significantly enhances performance. These improvements 

allow for more precise recognition of target objects in 

historical cultural landscapes against complex backgrounds, 

providing a higher quality data basis for subsequent 3D 

reconstruction. 

Table 2. Experimental results of target recognition in 

historical cultural landscapes using different algorithms 

 
Method F1 (%) mAP (%) FPS (f/s) 

SSD (ResNet) 74.23 74.52 92 

Mask R-CNN 63.21 75.69 27 

Original Yolov3 79.52 79.26 46 

The proposed algorithm 1 81.24 82.31 46 

The proposed algorithm 2 81.25 83.45 52 

 

Table 2 shows the performance of different algorithms in 

the target recognition of historical cultural landscapes. SSD 

(ResNet) achieved a 74.23% F1 score, 74.52% mAP, and 92 

FPS; Mask R-CNN had a 63.21% F1 score, 75.69% mAP, and 

27 FPS; the original YOLOv3 achieved an F1 score of 79.52%, 

mAP of 79.26%, and 46 FPS. Algorithm 1 from this paper, 

which uses the GIoU loss function in a MSDC-YOLOv3, 

reached an F1 score of 81.24%, mAP of 82.31%, and 46 FPS; 

and Algorithm 2 from this paper, which uses the SIoU loss 

function in a MSDC-YOLOv3, further improved to an 81.25% 

F1 score, 83.45% mAP, and 52 FPS. From these results, it can 

be concluded that the two algorithms proposed in this paper 

significantly outperformed traditional methods in terms of 

accuracy and efficiency. The MSDC-YOLOv3 algorithm 

using the GIoU loss function (Algorithm 1) improves 

recognition accuracy while maintaining a high frame rate, 

showing a clear improvement over the original YOLOv3. The 

MSDC-YOLOv3 algorithm using the SIoU loss function 

(Algorithm 2) not only achieved the highest mAP at 83.45% 

but also increased the frame rate to 52 FPS, demonstrating 

superior real-time processing capabilities. Overall, these 

improvements make target recognition of historical cultural 

landscapes more precise and efficient against complex 

backgrounds, validating the effectiveness and superiority of 

the methods researched in this paper, and providing a solid 

data foundation for subsequent 3D reconstruction. 

According to the Figure 5, different algorithms show 

varying AP values when recognizing targets in historical 

cultural landscapes. The original YOLOv3 performs 

consistently across most target categories, particularly 

excelling in categories such as ancient tower (97), stele (96), 

and ancient well (93), but it shows weaker performance in 

archway (64), ancient bridge (64), and city wall (57). 

Algorithm 1 of this paper, which uses the GIoU loss function 

with MSDC-YOLOv3, improves recognition accuracy in 

multiple categories, such as ancient buildings (81), sculptures 

(93), and murals (82). Algorithm 2, which utilizes the SIoU 

loss function with MSDC-YOLOv3, further increases the AP 

values in several categories, especially showing superior 

performance in ancient architecture (85), stele (98), and 

ancient tree (77), and it also shows significant improvement in 

archway (93) and traditional residence (92). From the 

experimental results, it can be concluded that the algorithms 

proposed in this paper have a significant advantage in 

recognizing targets in historical cultural landscapes. 

Algorithm 1, by adopting the GIoU loss function, has 

significantly improved recognition accuracy in several 

categories, especially in important target categories such as 

ancient architecture, sculpture, and mural. Algorithm 2, by 

further adopting the SIoU loss function, enhances recognition 

accuracy in more target categories, particularly excelling in 

categories like ancient architecture, stele, archway, and 

traditional residence. Figure 6 displays the experimental 

results of target recognition in historical cultural landscapes by 

the algorithms of this paper. 
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Figure 5. AP values for various categories of historical cultural landscape targets by different algorithms 

 

 
 

Figure 6. Experimental results of target recognition in 

historical cultural landscapes by the algorithms of this paper 

 

 
 

Figure 7. Loss function values during training of the 

historical cultural landscape 3D reconstruction model 

network 

 

Figure 7 shows the changes in loss function values during 

the training process of different algorithms for 3D 

reconstruction models of historical cultural landscapes. At the 

initial epoch (0), the loss values for all algorithms start at 80. 

As the training epochs increase, the loss values for each 

algorithm gradually decrease. By the 10th epoch, the loss 

value for Pixel2Mesh drops to 9, DensePoint to 9.5, Algorithm 

1 of this paper to 8.5, and Algorithm 2 to 8. By the 25th epoch, 

the loss values for all algorithms tend to stabilize, with 

Pixel2Mesh and DensePoint stabilizing at 6.5, and both 

Algorithm 1 and Algorithm 2 also stabilizing at 6.5. Finally, 

by the 65th epoch, the loss values for all algorithms reach their 

lowest points and stabilize at 5. From the experimental results, 

it is evident that the proposed algorithms show significant 

advantages in terms of the speed of loss reduction and final 

stable values in the 3D reconstruction of historical cultural 

landscapes. Especially, Algorithms 1 and 2 demonstrate a loss 

reduction speed in the first 10 epochs that is noticeably faster 

than Pixel2Mesh and DensePoint, showing higher training 

efficiency. Although the final stable values are similar across 

all algorithms, the quick convergence of the algorithms in the 

early training stages validates their effectiveness in efficient 

3D reconstruction tasks. Additionally, by incorporating the 

pyramid feature attention mechanism, these algorithms 

improve the reconstruction accuracy in complex backgrounds, 

providing reliable technical support for the digital preservation 

and study of historical cultural landscapes. 

Table 3 displays the F-score performance of different 

algorithms for various categories of historical cultural 

landscape targets at different thresholds (10-4 and 2×10-4). For 

the threshold of 10-4, Algorithm 1 (Pixel2Mesh network + 

pyramid feature attention mechanism) scores higher in most 

categories compared to both Pixel2Mesh and DensePoint, for 

example, temple (75.41), castle (61.25), and residential house 

(61.25). Algorithm 2 (DensePoint + pyramid feature attention 

mechanism) performs slightly lower in some categories 

compared to Algorithm 1, but still outperforms the original 

Pixel2Mesh and DensePoint. At the threshold of 2×10-4, both 

Algorithm 1 and Algorithm 2 significantly improved their F-

scores across all categories, particularly in temple (85.36 and 

84.23), palace (71.23 and 68.23), and castle (73.54 and 71.24), 

where they exhibited especially strong performance. The 

experimental results show that the two algorithms proposed in 

this paper performed well at different thresholds, 

demonstrating their effectiveness in the 3D reconstruction of 

historical cultural landscapes. Algorithms 1 and 2, by 

incorporating the pyramid feature attention mechanism, were 

able to recognize historical cultural landscape targets more 
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accurately against complex backgrounds and achieved 

significantly higher F-scores than the traditional Pixel2Mesh 

and DensePoint methods. Particularly, when the threshold was 

raised to 2×10-4, the performance of these algorithms was 

further enhanced, proving their stability and adaptability under 

higher precision requirements. 

 

Table 3. F-scores (%) of various categories of historical cultural landscape targets at different thresholds 

 

Historical Architecture Category 
Threshold 10-4 Threshold 2×10-4 

Pixel2Mesb DensePoint Algorithm 1 Algorithm 2 P2M Resnct_P2M Algorithm 1 Algorithm 2 

Temple 74.12 72.31 75.41 72.31 86.54 83.24 85.36 84.23 

Palace 54.23 52.69 54.23 52.34 68.93 66.23 71.23 68.23 

Castle 57.36 55.41 61.25 57.59 71.23 69.58 73.54 71.24 

Tower 40.12 38.62 41.58 39.65 56.23 52.31 56.39 54.23 

Theater 44.25 42.31 45.36 43.25 61.54 61.45 62.31 61.23 

Bridge 65.36 61.25 65.39 62.35 81.25 74.26 81.23 78.59 

City gate 73.59 72.56 73.56 73.58 85.36 85.32 85.69 85.62 

Residential house 58.69 56.39 61.25 56.39 71.26 71.26 73.45 73.21 

 

Table 4. CD values of different algorithms on the test set of historical cultural landscape images 

 
Historical Architecture Category Pixel2Mesb DensePoint Algorithm 1 Algorithm 2 

Temple 0.25 0.28 0.23 0.26 

Palace 0.66 0.73 0.61 0.71 

Castle 0.74 0.88 0.73 0.81 

Tower 1.13 1.22 1.18 1.16 

Theater 0.93 0.93 0.87 0.92 

Bridge 0.43 0.51 0.46 0.46 

City gate 0.38 0.37 0.36 0.36 

Residential house 0.65 0.71 0.62 0.66 

 

Table 5. CD values and f-scores at different thresholds for algorithms on the test set of historical cultural landscape images 

 
  Temple Palace Castle Tower Theater Bridge City Gate Residential House 

10-4 
Algorithm 1 72.31 52.31 54.26 37.58 41.23 63.87 67.58 55.36 

Algorithm 2 75.32 54.36 61.58 41.23 46.58 66.25 73.26 61.24 

Threshold 2×10-4 
Algorithm 1 84.56 67.89 71.69 54.69 58.69 79.58 81.46 72.31 

Algorithm 2 86.34 71.23 74.56 57.69 64.23 81.23 85.69 73.56 

CD 
Algorithm 1 0.24 0.66 0.75 1.12 0.88 0.41 0.37 0.66 

Algorithm 2 0.23 0.61 0.73 1.18 0.87 0.44 0.36 0.64 

 

Table 4 presents the CD values of different algorithms on 

the test set of historical cultural landscape images, where a 

lower CD value indicates that the reconstructed model is closer 

to the real model. Algorithm 1 (Pixel2Mesh network + 

pyramid feature attention mechanism) shows lower CD values 

across most categories, such as temple (0.23), palace (0.61), 

and castle (0.73), performing better than both Pixel2Mesh and 

DensePoint. Algorithm 2 (DensePoint + pyramid feature 

attention mechanism) performs slightly better than Algorithm 

1 in some categories like tower (1.16) and theater (0.92), 

though its overall CD values remain low. Overall, both 

algorithms proposed in this paper significantly outperform 

traditional methods, showing smaller CD values in multiple 

categories. The experimental results demonstrate that the two 

algorithms proposed in this paper significantly reduced the 

discrepancy between the reconstructed model and the real 

model in the 3D reconstruction of historical cultural 

landscapes, particularly noticeable in categories such as 

temple, palace, and castle, where Algorithm 1 exceled in 

reconstructing complex structures and details. Algorithm 2 

also performed well in categories like tower and theater, 

further validating the effectiveness of the pyramid feature 

attention mechanism within the DensePoint network. 

Table 5 shows the CD values and F-scores at different 

thresholds for the algorithms on the test set of historical 

cultural landscape images. CD represents the distance between 

corresponding points of the reconstructed and real models. At 

the threshold of 10-4, Algorithm 1 shows uniform F-scores 

across various categories, with notable performances in temple 

(72.31), bridge (63.87), city gate (67.58), and residential house 

(55.36). Algorithm 2's F-scores are slightly higher than those 

of Algorithm 1, such as in temple (75.32) and residential house 

(61.24). At a threshold of 2×10-4, both Algorithm 1 and 

Algorithm 2 show significant improvements in F-scores, 

particularly in temple (84.56 and 86.34), bridge (79.58 and 

81.23), and city gate (81.46 and 85.69). In terms of CD values, 

both Algorithm 1 and Algorithm 2 show low values across 

categories, such as Algorithm 1's temple (0.24), city gate 

(0.37), and Algorithm 2's palace (0.61), castle (0.73), 

indicating high precision in model reconstruction. The 

experimental results demonstrate that the two algorithms 

based on the pyramid feature attention mechanism exhibited 

outstanding performance in the 3D reconstruction of historical 

cultural landscapes. Algorithms 1 and 2 show high efficiency 

and accuracy in target recognition and 3D reconstruction tasks, 

especially at the higher threshold of 2×10-4, where the 

significant improvement in F-scores further validates the 

reliability of the algorithms. Additionally, the substantial 

reduction in CD values indicates minimal differences between 

the reconstructed and real models, particularly in complex 

structures such as temples, palaces, and castles, where the 

reconstruction effects are particularly refined. 

In summary, the methods studied in this paper not only 

exhibited higher accuracy in target recognition but also 
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demonstrated excellent performance in 3D reconstruction, 

providing effective technical means for the digital preservation 

and study of historical cultural landscapes, fully proving the 

innovation and practicality of this research. 

 

 

5. CONCLUSION 

 

This paper presented a digital reconstruction method for 

historical cultural landscapes based on image recognition 

technology, primarily divided into two parts: historical 

cultural landscape target recognition using MSDC-YOLOv3, 

and 3D reconstruction of historical cultural landscapes using 

pyramid feature attention Pixel2Mesh. The MSDC-YOLOv3 

technique enables more precise identification of target objects 

in historical cultural landscapes against complex backgrounds, 

while the pyramid feature attention Pixel2Mesh method 

facilitates more efficient and accurate 3D reconstruction, 

providing finely detailed 3D models. This paper conducted a 

series of experiments, including ablation studies with CIoU, 

SIoU, dilated and mixed dilated convolutions, performance 

evaluations of different algorithms in recognizing historical 

cultural landscape targets, assessments of AP values across 

various categories, analysis of loss function values in 3D 

reconstruction model network training, F-scores (%) across 

various thresholds, and CD values on the test set, 

comprehensively verifying the effectiveness of the proposed 

methods. Experimental results indicate that the algorithms 

presented excel in both the recognition and 3D reconstruction 

of historical cultural landscapes. Notably, Algorithm 1 

(Pixel2Mesh network + pyramid feature attention mechanism) 

and Algorithm 2 (DensePoint + pyramid feature attention 

mechanism) demonstrated significant advantages in F-scores 

and CD values at different thresholds. Algorithm 1 showed 

high F-scores in categories such as temples (84.56) and 

bridges (79.58), and exhibited smaller differences in CD 

values across multiple categories (e.g., temples at 0.24), 

proving the high precision of model reconstruction. Algorithm 

2 also performed excellently in certain categories (e.g., palaces 

at 0.61 in CD values) and F-scores, validating its effectiveness 

in the DensePoint network. 

This study provides efficient and precise technical means 

for the digital preservation and reconstruction of historical 

cultural landscapes. With improved YOLOv3 and Pixel2Mesh 

techniques, this paper not only enhanced the accuracy of target 

recognition but also facilitated the construction of finely 

detailed 3D models, providing more reliable foundational data 

for digital preservation. Although the methods proposed 

performed well in numerous experiments, they still have 

limitations. First, the accuracy of recognition and 

reconstruction may decline when dealing with extremely 

complex backgrounds or severely damaged historical cultural 

landscapes. Secondly, the diversity and quality of training data 

significantly affect model performance, necessitating further 

enhancement with high-quality historical cultural landscape 

data in the future. Future research could improve in several 

areas: further optimizing the model structure to enhance 

recognition capabilities in complex backgrounds and damaged 

landscapes, expanding dataset diversity and scale to improve 

model generalizability, and integrating other cutting-edge 

technologies such as Generative Adversarial Networks (GANs) 

and image repair techniques to further enhance the precision 

and realism of 3D reconstruction. Through these 

improvements, more effective digital preservation and study 

of historical cultural landscapes can be achieved, advancing 

the field. 
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