
A Compare Research of Two Different Point Clouds 3D Object Detection Methods

Yang Gao , Zhenxu Wang* , Honggang Luan , Zengfeng Song , Chuanxi Zhang , Jingshuai Yang

School of Automobile, Chang’an University, Xi’an 710021, China

Corresponding Author Email: wangzhenxu@chd.edu.cn

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410347 ABSTRACT

Received: 9 February 2024

Revised: 7 May 2024

Accepted: 11 June 2024

Available online: 26 June 2024

Object detection in point clouds serves as an important foundation for many applications

such as autonomous driving and roadside perception. The existing methods for this

foundation can be roughly divided into two categories, which are one-stage methods and

multi-stage methods. For the one-stage method, an improved Pointpillars neural network,

called MSCS-Pointpillars, was proposed to detect objects directly from point clouds. Here,

an attention mechanism and pillars of different scales for the Pointpillars network were

introduced to solve the problem of information loss caused by single scale pillar partition.

For the multi-stage method, a flexible multi-stage algorithm AF3D, where point clouds were

first clustered into clusters which were then detected by a much simpler classifier based on

deep learning, was proposed. The two methods on both KITTI dataset and our own dataset

have been compared. The results show that MSCS-Pointpillars exhibits better accuracy, but

it is difficult to maintain its good performance in unfamiliar scenes. For AF3D, the accuracy

appears worse, but it demonstrates much better robustness to unfamiliar scenes.

Keywords:

autonomous vehicles, 3D object detection,

deep learning, point clouds, MSCS-

Pointpillars

1. INTRODUCTION

The development of Intelligent Connected Vehicle (ICV)

and Cooperative Vehicle Infrastructure System (CVIS) is

expected to greatly improve the safety and the efficiency of

our traffic system [1]. Among many related technologies,

environmental perception plays a very important and

fundamental role for both ICV and CVIS. Benefit from its

strong environmental adaptability and the capability to acquire

accurate distance information, LiDAR has become one of the

most popular sensors for the perception task [2, 3]. Quite

different from camera, which is arguably the most popular

sensor in this field, LiDAR provides 3D point clouds rather

than 2D image. So, detecting objects from 3D point clouds is

becoming an important research.

Traditional approaches for the recognition task in 3D points

cloud generally adopt a multi-stage frame, which clusters the

points and then recognizes the clusters. On the other hand,

many cutting-edge researches proposed a one-stage frame,

which employs deep learning technology to recognize objects

in an end-to-end manner [4]. One-stage methods are generally

more accurate, while needing a very complex classifier. On the

other hand, multi-stage methods generally generate proposals

in the first stage, and then recognize objects in the second stage.

For the proposal generation stage, they mostly generate

proposals through methods, such as sliding window method,

anchor-based method, etc. For the recognizing objects stage,

pattern match technology and deep learning technology are

widely used.

Although one-stage methods have shown great accuracy on

performance, they greatly rely on the quality of sample data

and show quite different characteristics compared with the

multi-stage methods. So in this paper, the performance of the

two different frames using two algorithms, namely MSCS-

Pointpillars and AF3D, was compared.

For the one-stage method, MSCS-Pointpillars (Multi-Scale

Channel Spatial Attention Pointpillars) method was proposed,

which reduces the information loss, based on the Pointpillars

method. For the multi-stage methods, a flexible multi-stage 3D

point clouds object detection method AF3D (Accurate and

Flexible 3D Object Detection Algorithm) was proposed,

where the points are first clustered and then detected by a

neural network.

The rest of the paper is organized as follows. Section 2

briefly reviews relevant research about 3D object detection,

which will be the basis for our later work. Section 3 introduces

the details of our methods and the verification on the KITTI

3D Object dataset. In section 4, the experiments on our vehicle

were described and the character of the two frames of

detection based on the experiment results was discussed.

Concluding the paper and propose the future work in Section

5.

2. RELATED WORK

2.1 End to end frame methods

Deep learning-based methods generally adopt end-to-end

frames, which can be divided into two categories according to

the input form of points. The two categories include methods

based on structured grid and methods based on raw point

clouds. The first category of methods generally feeds the deep

learning network different types of grid representation while

Traitement du Signal
Vol. 41, No. 3, June, 2024, pp. 1597-1607

Journal homepage: http://iieta.org/journals/ts

1597

https://orcid.org/0000-0002-3069-9268
https://orcid.org/0009-0006-6717-4357
https://orcid.org/0009-0004-6963-2759
https://orcid.org/0009-0007-0657-2551
https://orcid.org/0009-0002-5157-8307
https://orcid.org/0000-0002-5702-7904
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410347&domain=pdf

the latter category feeds the raw points directly. These grid

representations generally include voxel methods, multi-view

projection image and higher dimensional lattices.

The methods based on structured grid are generally efficient

while they inevitably lose information. The detection methods

based on raw points can retain more details, while they

generally consume more computation resources.

2.1.1 Grid-based methods

Typical grid-based methods may first map 3D point clouds

into voxel space, and then use 3D convolution or sparse

convolution for feature extraction. The classical models

include VoxelNet [5], SECOND [6], Pointpillars [7], etc. Zhou

and Tuzel [5] proposed the VoxelNet algorithm, which divides

the raw point clouds into several voxel grids, uses VFE (Voxel

Feature Encoding) layer for local point clouds feature

extraction, and 3D convolution to obtains global features while

a RPN (Region Proposal Network) is used to detect and locate

the objects. Y. Yan etc. [6] improved the VoxelNet and

proposed a spatially sparse convolutional network called

SECOND which reduced the consumption of computation

resources and improved the training speed. Lang et al. [7]

proposed a very efficient algorithm called Pointpillars, which

divides the point clouds into a certain number of pillars, and

then converts them into pseudo-images [8]. However,

Pointpillars compresses the raw points into single scale pillar

division, which may still cause information loss.

Some other methods project the original point clouds into

an aerial view or a frontal view, so that the unordered point

clouds in 3D space would be converted into a regular image,

which is more convenient to apply image recognition

algorithms like Yolo, CNN etc. The classical models of this

type include YOLO3D [9], Complex-YOLO [10], etc.

2.1.2 Raw point clouds-based methods

Classic raw point clouds-based detection methods include

Pointnet [11], Pointnet++ [12], 3D-SSD [13], Point-GNN [14],

SPG [15], etc. In 2017, Qi et al. [11] proposed Pointnet, which

directly feeds a deep learning network with raw point clouds.

Then Pointnet extracts features from point clouds through a

number of shared MLPs, and performs maximum pooling in

each dimension of the feature map to obtain global features.

Paigwar et al. [16] improved Pointnet with a visual attention

mechanism. Qi et al. [12] proposed an improved version called

Pointnet++, which presented a hierarchical feature learning

architecture for better abstraction of multi-scale features. Yang

et al. [13] proposed 3D-SSD algorithm which uses a feature

distance-based farthest point sampling method to exclude

background points, while semantic information has also been

considered. In 2021, Xu et al. [15] proposed a so-called SPG

method, which generates semantic point sets and then merges

them with the original point clouds to obtain an enhanced point

clouds. After that, a point clouds detector is employed to

obtain the detection results.

2.2 Multistep frame methods

Multistep frame methods generally include a points

extraction or cluster step before the recognizing step. Common

clustering methods include five categories, that are partition

clustering, distance clustering, density clustering, hierarchical

clustering and grid clustering [17]. K-means clustering

algorithm may be one of the most typical partition clustering

algorithms, which iteratively finds the centers of different

clusters and the points nearest to the centers respectively.

However, K-means algorithm requires too many manually-

adjusted parameters and performs poorly regarding complex

shape objects. Recent progress of the partition clustering

algorithm may be found in the study [18]. Euclidean clustering

may be one of the most typical distance clustering algorithms,

which clusters the nearest points into one class. As a very

typical density cluster algorithm, DBSCAN (Density-Based

Spatial Clustering of Applications with Noise) treats the

closely-linked points as one cluster. Some recent progress of

this category may be found in the studies [19, 20]. In recent

years, hybrid clustering algorithms, which combine several

different cluster algorithms, have gradually attracted more

attention. Wang et al. [21] proposed the SPSO-FCM algorithm

which combines the improved particle swarm optimization

algorithm with the fuzzy C-means algorithm to cluster the

points. The algorithm has fast convergence speed and clear

boundary region segmentation. For scenes with complex

profile and large number of point clouds, it can get better

segmentation results. There will be more hybrid clustering

algorithms in the future.

For detection, traditional methods have developed various

algorithms based on the 3D geometric features of the points.

Tan [22] has selected the outer contour and the reflection

intensity of the cluster to build a feature vector. Using that

feature vector, SVM (Support Vector Machine) has then been

employed to detect the cluster. This algorithm has obtained

good accuracy at the cost of efficiency. Yang [23] has

clustered the point clouds based on the spatial scale, reflection

intensity, overall distribution and other geometrical

characteristics. Then the clusters were classified by SVM as

well. In 2019, Shi et al. [24] migrated the image segmentation

network RCNN to point clouds data and proposed a multi-

stage 3D object detection network called Point RCNN. The

author has further proposed an improved version called PV-

RCNN [25] which uses efficient 3D voxel convolution and

point clouds convolution to estimate the confidence and spatial

location of objects. In 2021, Li et al. [26] proposed an efficient

multi-stage detection network LiDAR-RCNN. This method

uses a voxelization method to remove background points, and

then builds a Pointnet-based network to extract features,

classify the object and locate it.

3. METHODOLOGY

3.1 MSCS-Pointpillars

3.1.1 Pointpillars

As a popular 3D point clouds detection method, Pointpillars

[6] algorithm is composed of several modules that includes:

pillars feature extraction module, feature extraction module

and single shot multiple frame detection module. In order, an

improved Pointpillars called MSCS-Pointpillars, which

employs a multi-scale pillars module and an attention

mechanism to enhance its ability to detect objects in different

sizes was proposed. As shown in Figure 1, the original single-

scale pillars with three different scales pillars in the pillars

feature extraction module was replaced, and the attention

mechanism has been applied.

1598

channel attention
mechanism

MaxPool

AvgPool

channel

weight Mc

spatial attention
mechanism

Spatial

wight Ms

H

W
C

[MaxPool,AvgPool]

Conv:7

*7
FC

pillars feature
extraction network

feature extraction
network

Single shot multiple
frame detector(SSD)

Point Cloud Predictions

Pointnet

Pointnet

Pointnet
H

W

C

Multiscale pillar feature extraction network

Figure 1. Overview of MSCS-Pointpillars network

Pointnet

Pointnet

Pointnet

2
H

C

C

C

H
H

H

W

W

W

1/2C

1/2C

1/2C

2W

C

C

H

W

1/2W

1
/2

H

C

Conv

3/2C

Conv

Deconv

Conv

Concat

W

H

PL

PM

PH

H

W

C

F

Figure 2. Multiscale pillar feature extraction module of MSCS-Pointpillars, there are three sizes of pillars

H

W

C

channel attention
mechanism

MaxPool

AvgPool

channel

weight Mc

FC

spatial attention
mechanism

Spatial

wight Ms

H

W

C

[MaxPool,AvgPool]

Conv:7*

7
FC

F FCS

H

W

C

matrix multiplication Sigmoid activation function matrix addition

MaxPool

AvgPoolMLP

Figure 3. Attention module

3.1.2 Multiscale pillars feature extraction network

As shown in Figure 2, 3D laser point clouds data is divided

into three pillars of different scales according to the 𝑋𝑌-plane

where it is located (without considering the 𝑍 axis). Beside the

basic scale (𝐻,𝑊) proposed by Pointpillars, another two

scales of pillars which are (𝐻 2⁄ ,𝑊 2⁄) and (2𝐻, 2𝑊) in

addition were induced. As a result, three different scales

feature maps would be obtained respectively whose size are

(𝐶, 2𝐻, 2𝑊), (𝐶, 𝐻,𝑊), and (𝐶, 𝐻 2⁄ ,𝑊 2⁄) respectively. By

applying a convolution operation, the feature map whose size

is (𝐶, 2𝐻, 2𝑊) would be compressed to a smaller image

whose size is (𝐶 2⁄ , 𝐻,𝑊). Similarly, the feature map whose

size is (𝐶, 𝐻,𝑊) would be transformed to a smaller size

(𝐶 2⁄ , 𝐻,𝑊) while the feature map whose size is

(𝐶, 𝐻 2⁄ ,𝑊 2⁄) would be transformed to (𝐶 2⁄ , 𝐻,𝑊). After

that, the three different feature maps with three scales would

1599

be fused in the channel direction. So that the size of the fused

feature map would be (3𝐶 2⁄ , 𝐻,𝑊). After that the fused

feature map is further convolved to a smaller feature map 𝐹,

whose size is (𝐶, 𝐻,𝑊).

3.1.3 Improved feature extraction based on attention module

As shown in Figure 3, introduce a CBAM (Convolutional

Block Attention Module) to improve the detection effect of the

network. This makes the network pay more attention on the

important information helpful for recognition task. Firstly,

apply global max-pooling and average-pooling operations on

the feature map 𝐹 obtained by the multi-scale pillar feature

extraction module. The pooling results are then subjected to a

matrix add operation after MLP to generate the channel weight

𝑀𝐶ϵ𝑅
𝐶∗1∗1 . Then 𝑀𝐶ϵ𝑅

𝐶∗1∗1 are multiplied to the fused

feature map 𝐹 to obtain a channel attention feature map 𝐹𝐶 .

Secondly, 𝐹𝐶 is subjected to global max-pooling and average-

pooling operations by the channel as well. The pooling results

are spliced and then subjected to a 7*7 convolution operation

to generate another spatial weight 𝑀𝑆ϵ𝑅
1∗𝐻∗𝑊 . Then the

spatial weights 𝑀𝑆ϵ𝑅
1∗𝐻∗𝑊 and 𝐹𝐶 are multiplied to obtain a

weighted feature map 𝐹𝐶𝑆 with channel spatial weight

information, and then 𝐹𝐶𝑆 is sent to the feature extraction

network for higher level representations. Specifically, it

involves feature extraction of feature maps through two-

dimensional convolution.

3.1.4 Loss function

The output of the MSCS-Pointpillars network mainly

includes the category of the object and the parameters of the

3D bounding box. The 3D bounding box can be represented

by parameters (𝑥, 𝑦, 𝑧, 𝑤, 𝑙, ℎ, 𝜃) , where (𝑥, 𝑦, 𝑧) represents

the coordinates of the center of the 3D bounding box. (𝑤, 𝑙, ℎ)
represents the width, length, and height of the 3D bounding

box respectively. 𝜃 represents the rotation angle around the 𝑍-

axis (the 𝑍-axis is the axis perpendicular to the ground). So,

the loss function is designed as shown in Eq. (1), which

includes 3D bounding box regression loss, classification loss,

orientation loss.

ℓ =
1

𝑁𝑝𝑜𝑠

(𝛽𝑙𝑜𝑐ℓ𝑙𝑜𝑐 + 𝛽𝑐𝑙𝑠ℓ𝑐𝑙𝑠 + 𝛽𝑑𝑖𝑟ℓ𝑑𝑖𝑟) (1)

where, 𝑁𝑝𝑜𝑠 represents the number of positive samples

generated boxes, ℓ𝑙𝑜𝑐 represents the 3D box regression loss

function, ℓ𝑐𝑙𝑠 represents the classification loss function, and

ℓ𝑑𝑖𝑟 represents the object orientation loss function. 𝛽𝑙𝑜𝑐, 𝛽𝑐𝑙𝑠,
𝛽𝑑𝑖𝑟 are the corresponding weights. In this paper, use the loss

function parameters of Pointpillars network for reference, and

set 𝛽𝑙𝑜𝑐 = 2, 𝛽𝑐𝑙𝑠 = 2, 𝛽𝑑𝑖𝑟 = 2.

The 3D bounding box regression loss function is shown in

Eq. (2), which mainly includes the 3D box position regression

loss, the size regression loss and the orientation regression loss,

as shown in Eqs. (3), (4) and (5) respectively.

ℓ𝑙𝑜𝑐 = ∑ Smooth𝐿1(∆𝑏)

𝑏ϵ(𝑥,𝑦,𝑧,𝑤,𝑙,ℎ,𝜃)

 (2)

∆𝑥 =
𝑥𝑔𝑡 − 𝑥𝑝

𝑑𝑝
, ∆𝑦 =

𝑦𝑔𝑡 − 𝑦𝑝

𝑑𝑝
, ∆𝑧 =

𝑧𝑔𝑡 − 𝑧𝑝

𝑑𝑝
 (3)

∆𝑤 = log
𝑤𝑔𝑡

𝑤𝑝

, ∆𝑙 = log
𝑙𝑔𝑡

𝑙𝑝
, ∆ℎ = log

ℎ𝑔𝑡

ℎ𝑝
 (4)

∆𝜃 = sin(𝜃𝑔𝑡 − 𝜃𝑝) (5)

𝑑𝑝 = √𝑤𝑝
2 + 𝑙𝑝

2 (6)

where, 𝑥𝑔𝑡 , 𝑦𝑔𝑡 , 𝑧𝑔𝑡 , 𝑤𝑔𝑡 , 𝑙𝑔𝑡 , ℎ𝑔𝑡 , 𝜃𝑔𝑡 represent the truth

value. The 𝑥𝑝 , 𝑦𝑝 , 𝑧𝑝 , 𝑤𝑝 , 𝑙𝑝 , ℎ𝑝 , 𝜃𝑝 represent the predicted

value by the network.

The classification loss ℓ𝑐𝑙𝑠 is shown in Eq. (7):

ℓ𝑐𝑙𝑠 = −𝛼𝑎(1 − 𝑝𝑎)𝛾 log𝑝 𝛼 (7)

where, 𝑝𝑎 represents the possibility of a certain category. Ac-

cording to reference paper Lang et al. [7], set 𝛼 to 0.25, and 𝛾

to 2.

Since Eq. (5) cannot distinguish the 3D box flipping 0° and

180°, ℓ𝑑𝑖𝑟 uses the Softmax function to learn the orientation of

the 3D bounding box in discrete directions [6].

3.2 AF3D

Our work combined traditional object detection algorithms

and built a PFC-Net network based on Pointnet, proposing a

flexible and accurate 3D object detection algorithm AF3D.

The AF3D algorithm framework is shown in Figure 4. The

entire algorithm framework mainly consists of two stages. In

the first stage, ground segmentation is performed first, and

then the remaining point clouds are clustered to obtain point

clouds clusters {𝐶1, 𝐶2, 𝐶3, ⋯ , 𝐶𝑘−1, 𝐶𝑘}. In the second stage,

the point clouds classification network PFC-Net is first built.

Secondly, clusters are inputted into the trained classification

network PFC-Net to classify the clusters. Subsequently, obtain

the semantic information of each cluster class, perform

bounding box fitting on the classified objects, and obtain

network inference results.

Input point cloud Ground Plane Fitting Clustering

Stage-1

Classification

Stage-2

PFC-Net

PFC-Net

PFC-Net

PFC-Net

：
：
：

C1

C2

Ck-1

：
：
：

Ck

Classification

network

Figure 4. AF3D network overview

1600

3.2.1 Stage 1: Ground point clouds segmentation and non-

ground point clouds clustering

A segmentation fitting algorithm proposed by Zermas et al.

[27] to extract and remove the ground points was employed.

After that, the non-ground point clouds were segmented and

clustered using DBSCAN algorithm.

For the DBSCAN algorithm, the clustering neighborhood

radius (Eps) was set to 0.45 meters, the Euclidean distance

metric was adopted, and the minimum number of points

required for a core point (MinPts) was set to 10. The non-

ground point clouds clustering effect obtained by using

DBSCAN is shown in Figure 5. The first column shows the

point clouds clustering effect, and the second shows the

original images accordingly. It was found that all the point

clouds are properly clustered.

3.2.2 Stage 2: Point clouds Classification Network PFC-Net

Because point clouds have been clustered, a very simple

classification network named PFC-Net to classify each cluster

was designed. The network structure of PFC-Net is shown in

Figure 6. The clusters were inputted as a tensor with size (𝑁, 3),
where 𝑁 represents the number of points inputted and 3

represents the channel information of each point. Feature

extraction is performed by a multiple weight-shared MLP

modules. So that a feature map 𝐹1 represented by a tensor with

size (𝑁, 1024) is obtained. After that, a global feature map,

with size (1,1024), is obtained by a Max-Pooling layer. By

concatenating both the global feature and the feature map 𝐹1,

a feature map 𝐹2, which is represented by a tensor with size

(𝑁, 2048), is obtained. 𝐹2 contains both the detailed features

and the global features of the cluster. The feature map 𝐹2 is

then passed through two weight-shared MLPs and a Max-

Pooling layer for further feature extraction to form a new

feature map 𝐹3 represented by a tensor whose size is (1,1024).
After that 𝐹3 is sent to three fully connected layers for

classification result.

Figure 5. Point clouds clustering results based on DBSCAN

algorithm

Shared

N
*

3

N
*

1
0

2
4

 M
ax

p
o
o

l

1*1024

MLP

Shared M
ax

p
o

o
l

N
*

2
0

4
8

Concatenate
MLP

1*1024

Global FeatureGlobal Feature

fully connected

layer FC

[512,256,128,4]
[2048,1024][64,256,512,1024]

F1 F2

F3

Figure 6. The structure of the point clouds classification network PFC-Net: it takes N points as input, and output the

classification scores for 4 classes, namely pedestrian, car, cyclist and other object

3.2.3 PFC-Net network training

1) KITTI 3D Object Dataset

Here KITTI 3D Object dataset was used to train PFC-Net

and to test its performance. As one of the most commonly used

public dataset, KITTI 3D Object dataset [28] was chosen to

verify the performance of PFC-Net network. KITTI 3D Object

dataset consists of 7481 training samples and 7518 testing

samples, mainly including various types of cars, pedestrians,

and cyclists. The KITTI 3D Object dataset covers multiple

scenes such as highways, suburbs, and urban roads. Each

frame of data includes both point clouds and their

corresponding RGB images, label files, etc. According to the

cutoff value and the occlusion scale, the dataset samples can

be categorized into easy, medium and difficult levels, which

also represent the difficulty of detection as shown in Table 1.

2) Dataset reconstruction

The original KITTI 3D Object dataset contains point clouds

of the whole scene rather than the clusters, which cannot be

directly used for PFC-Net. Therefore, the KITTI 3D Object

dataset was reconstructed. First, according to the label files,

the point clouds data belonging to three categories, namely

cars, cyclists, and pedestrians, is extracted. Second-ly, the data

augmentation method to balance the number of samples in

each category for better training effect was used. The specific

steps are as follows:

a) Object point clouds extraction

For each frame of point clouds in the KITTI training set, the

label categories of “Van”, “Car”, “Truck”, and “Tram” are

unified into “Car”. So that only "Car", "Pedestrian", "Cyclist"

are kept. Figure 7 (a) and (b) show an extraction example

where a pedestrian denoted by green points has been extracted

from the original points clouds. The visualization results of the

extracted clusters belonging to the three categories are shown

in Figure 8 (a), (b) and (c) respectively. In addition, due to the

characteristics of lidar, the spatial information of objects may

seriously be missing due to too sparse points. Therefore, three

threshold values for the number of points belonging to the

category of "Car", the "Pedestrian", the "Cyclist" that are 200,

1601

50, 50 were stipulated respectively.

Table 1. KITTI dataset object detection level division

Level Easy Medium Difficult

degree of

occlusion
Fully visible

partially

visible

Hardly

visible

cutoff value 15% 15%~50% 50%

number of pixels 40 25

(a) Raw points cloud from

camera view

(b) The points cloud after

extracting the target

Figure 7. Object point clouds extraction process

(a) Pedestrian (b) Car (c) Cyclist

Figure 8. Visualization results of point clouds extraction for

each category of KITTI dataset

b) Data augmentation

After object points extraction, the amount of "Car",

"Pedestrian", "Cyclist" categories are 12564, 3272, 1526

respectively. It can be found that the proportions of the three

types in the samples are imbalanced, thus making training for

the category insufficient due to imbalanced proportions, and

impacting the classification accuracy.

Therefore, apply data augmentation to the categories with

small proportion in training set. The samples in the categories

with small proportion were translated and randomly rotated

angle around the 𝑍-axis of the lidar coordinate system. On the

other hand, the Weighted Random Sampler method, which

selects training data based on the weight of each category was

also used, to solve the problem of imbalanced sample

proportions. The proportion of samples after data

augmentation and weighted random sampling is shown in

Table 2.

According to the study [29], only objects located within

40m ahead, would be properly detected when the speed of the

car reaches 80 Km/h. So only obstacles located in that range

would be classified by the algorithms in the following

verification.

Table 2. The proportion of each category before and after

data augmentation (%)

Category Car Pedestrian Cyclist Other Objects

Before data

augmentation
46.92 13.41 5.24 44.91

After data

augmentation
37.45 23.67 18.33 20.55

After weighted

random sampling
25.46 24.67 24.36 25.51

3) Verification of PFC-Net

The verification was running on a workstation equipped

with Intel i7 10700KF and NVIDIA RTX 3080 graphics card.

The software environment includes Ubuntu 18.04 LTS,

CUDA 11.1, cuDNN 8.0.5, and Python 3.7.

If the number of the inputted points is less than 1024, it will

be augmented to 1024 using zero padding. If the number of the

inputted points is bigger than 1024, it will be down sampled to

1024 using farthest points sampling technique.

The reconstructed KITTI 3D Object dataset is divided into

training set and test set according to the ratio of 8:2. The cross-

entropy loss function shown as Eq. (8) was adopted for PFC-

Net.

𝐿 =
1

𝑁
∑𝐿𝑖 = −

1

𝑁
∑∑𝑦𝑖𝑐 log(𝑝𝑖𝑐)

𝑀

𝑐=1𝑖𝑖

 (8)

where, 𝑀 represents the number of categories, 𝑖 is the sample

index, 𝑐 is the category index and 𝑦𝑖𝑐 represents a sign function

where 𝑦𝑖𝑐 equal to 1 only if the predicted category of the network

is consistent with the label, other wise 𝑦𝑖𝑐 equal to 0. 𝑝𝑖𝑐

represents the predicted confidence of the sample 𝑖 belonging to

the category 𝑐.

The Adam (Adaptive Moment Estimation) optimizer with

an initial learning rate of 1 ∗ 10−3 is adopted, while the

learning rate is attenuated by 0.8 times every 15 cycles. The

epoch is set to 150, while the batch size is set to 128.

Figure 9. PFC-Net training loss curve: the vertical axis

represents the loss function value, and the horizontal axis

represents the number of training epochs

The training loss curve of PFC-Net is shown in Figure 9,

where the vertical axis represents the loss value, and the

horizontal axis represents the number of training epochs. It

shows that the training mostly fits after the 120th training

epoch.

The average accuracy curve is shown in Figure 10, where

the vertical axis represents the overall accuracy, and the

horizontal axis represents the number of training epochs. The

red curve represents the accuracy of classification on the

training set. while the blue curve represents the accuracy of

classification on the test set. It can be found that after being

well-trained, the average accuracy of point clouds

classification on the training set is as high as 99.21%, and the

average accuracy of point clouds classification on the test set

reaches 95.78%.

1602

Figure 10. PFC-Net classification average accuracy curve:

the vertical axis represents the overall accuracy, and the

horizontal axis represents the number of training cycles

3.3 Verification of two methods on KITTI

3.3.1 Verification of MSCS-Pointpillars

The performance of MSCS-Pointpillars was also verified on

the KITTI 3D Object Dataset. According to the practice by

Chen et al. [30], redividing the 7481 samples into training and

testing set samples, of which the number of training set

samples is 3712 and the number of test set samples is 3769.

In the training of MSCS-Pointpillars, the maximum number

of epoch iterations is set to 160, Adam optimizer’s initial

learning rate is set to 2 ∗ 10−4 , while the learning rate is

attenuated by 0.8 times every 15 cycles. The region of interest

is intercepted by passthrough filtering, and the values are

shown in Eq. (9).

{
0 ≤ 𝑥 ≤ 80.64

−40.32 ≤ 𝑦 ≤ 40.32
−1 ≤ 𝑧 ≤ 3

 (9)

The maximum number of pillars, denoted as 𝑃 , is set to

12000, and the maximum number of points in the pillar is set

to 100.

For better comparison, all the samples were classified into

easy, medium and hard, according to three overlap thresholds,

respectively. For cars, the easy, medium and hard overlap

thresholds are set to 0.7, 0.7, 0.7 times IoU, respectively. The

overlap thresholds are set to 0.5, 0.5, 0.5 times IoU for the

cyclist categories and the pedestrian categories. The training

loss curve is shown in Figure 11. In the legend of the figure,

“loss_cls” represents the classification loss, “loss_bbox”

represents the loss of the 3D box, and loss_dir represents the

orientation loss.

Our work uses the average precision as the criteria. The

verification results on the KITTI 3D Object data set are shown

in Table 3 where the performance is displayed according to

different difficulty degrees. It can be found that compared to

Pointpillars, MSCS-Pointpillars has been improved on almost

all categories.

Figure 11. MSCS-Pointpillars training Loss curve: the

vertical axis represents the loss value, and the horizontal axis

represents the epochs

Table 3. Comparison with Pointpillars on the KITTI 3D

object test set (%)

Categories Degree Pointpillars
MSCS-

Pointpillars

Cars

Easy 83.60 87.59

Medium 74.58 78.63

Difficult 71.55 76.47

Pedestrians

Easy 50.31 53.60

Medium 44.08 47.71

Difficult 40.97 43.36

Cyclists

Easy 79.76 81.02

Medium 59.35 62.49

Difficult 56.38 58.86

3.3.2 Verification of AF3D

For the car category, the maximum height is set to 2.5m, the

maximum length is set to 8m, and the minimum height

threshold is 1.5m. Due to the severe occlusion of some cars in

the dataset, the minimum length threshold for car size is not

specified. When the height and length of the cluster is greater

than the maximum height and length threshold of the car

category or when the height of the cluster is less than the

minimum height threshold, it can be discarded. For the cyclist

category, the maximum height threshold is set to 2m, the

maximum length threshold is 2.5m, and the minimum height

threshold is 1.25m. For the pedestrian category, the maximum

height threshold is set to 2m and the minimum height threshold

is 1.25m.

Similarly, the verification results of AF3D on the KITTI 3D

Object dataset are shown in Table 4.

The visualization results of AF3D on KITTI 3D Object

dataset are shown in Figure 12.

1603

Figure 12. The visualization results of AF3D on KITTI 3D Object dataset: the first row of images represents the extraction of

ground points (ground is shown in green, non-ground point clouds is shown in gray); the second row of images is a visualization

of the clustering effect; the third row of images is a classification of the clusters (cars is shown in red, blue for cyclists is shown

in blue, and pedestrians is shown in green); the fourth row shows the original RGB image corresponding to the point clouds,

respectively

Table 4. Detection accuracy (%) of AF3D algorithm on

KITTI 3D object dataset

Categories Degree AF3D

Cars

Easy 73.92

Medium 70.87

Difficult 62.41

Pedestrians

Easy 43.21

Medium 41.52

Difficult 38.83

Cyclists

Easy 68.32

Medium 61.76

Difficult 51.42

Training time (hours) 5.6

4. EXPERIMENT

In this section, the algorithm was run on our own vehicle to

conduct an experimental comparison between the MSCS-

Pointpillars and AF3D algorithms, then the advantages and

disadvantages of the two methods were analyzed

comprehensively.

4.1 Experiment platform

The hardware equipment on the car includes HESAI

Technology Pandar 64-line lidar, monocular, camera, RTK

GPS and a laptop, as shown in Figure 13.

4.2 Experiment data

Driver drove the experimental car along a road in our

campus. Part of the scene is shown in Figure 14. Because the

speed of the car is relatively low, point clouds data is captured

in every 2s. So that our experiment dataset includes 200 frames

of point clouds data. 3D bounding boxes are employed to label

cars, cyclists, and pedestrians.

Figure 15 shows some labeling result where red represents

cars, green represents pedestrians, and purple represents

cyclists.

After trained on KITTI dataset, the MSCS-Pointpillars and

AF3D were tested on our experiment dataset neither with

retraining nor refining, and the detection accuracy is shown in

Table 5.

Figure 13. Experiment platform

1604

Figure 14. Examples of some scenarios in our experiment:

the first column shows point clouds, and the second column

shows the corresponding RGB image

Figure 15. Point clouds data and the labels

Table 5. The detection accuracy (%) of the two algorithms

on our experiment data set

Methods Cars Pedestrians Cyclists

MSCS-Pointpillars 54.39 32.88 39.23

AF3D 69.74 41.25 54.33

Some examples of the detection results obtained by both

AF3D and MSCS-Pointpillars are shown in Figure 16. Here,

the first column shows the detection results using AF3D

network, and the second column shows the detection results

using MSCS-Pointpillars network. The third column shows

the label results. It can be found that MSCS-Pointpillars has

missed more targets than AF3D, although the MSCS-

Pointpillars outperforms AF3D on the KITTI 3D Object

Dataset. So AF3D shows more detection capability in an

unfamiliar scene like our experiment than MSCS-Pointpillars.

From the verification results on the KITTI 3D Object

dataset in Sections 3.3.1 and 3.3.2, it can be seen that both

methods have good detection capability and the detection

accuracy of cars is higher, followed by the accuracy of cyclists.

Pedestrians have obtained the lowest detection accuracy. This

is because of two reasons. Pedestrians generally produce least

number of points compared with the other two categories with

similar distance.

It can also be found that the detection accuracy of MSCS-

Pointpillars on the KITTI 3D Object dataset outperforms that

of AF3D. Because MSCS-Pointpillars can make use of the

context information of the whole point clouds, while AF3D

can only use the cluster information for recognition.

The training time and the computation cost of AF3D

algorithm are much less than those of MSCS-Pointpillars. This

is because in AF3D, only PFC-Net, which is much simpler

than MSCS-Pointpillars, needs to be trained and the DBSCAN

in AF3D is highly efficient.

Without retraining or refining, our experiment utilizes

unfamiliar scenes for both MSCS-Pointpillars and AF3D

algorithms. The detection accuracy of MSCS-Pointpillars

decreased significantly while in contrast, the detection

accuracy of AF3D algorithm only suffered a small decrease.

In our experiment, the detection accuracy of AF3D on cars,

pedestrians and cyclists is 15.35%, 8.37% and 15.1% higher

than that of MSCS-Pointpillars, respectively. This is because

AF3D employs a traditional clustering algorithm to cluster the

point cloud before recognizing it. Moreover, the clusters for

each category would only be slightly changed in different

scenes, which makes it much easier to be recognized in an

unfamiliar scenario. In contrast, MSCS-Pointpillars greatly

relied on the context information of the whole scenario for

better accuracy performance, while this context information

would be greatly changed in unfamiliar scenes.

Figure 16. Visualization of detection results of AF3D and MSCS-Pointpillars in experiment. The first column shows the

detection result of the AF3D, and the second column shows the detection result of MSCS-Pointpillars. The third column is the

label result. The red point clouds represents that the targets have been detected, while the black represents non target point clouds

1605

5. CONCLUSION

This paper has proposed two different approaches for object

detection task in 3D point clouds. MSCS-Pointpillars is a type

of Deep learning algorithm that adopts an end-to-end frame to

fully utilize context information, resulting high accuracy.

AF3D is a combination of Deep learning technology and

traditional two-step frame. By comparing the performance of

these two algorithms, results found that the traditional two-

step frame can help on reducing the computation resource

request and enhance the adaptability to unfamiliar scenes.

Meanwhile end-to-end frame can propose better detection

performance while it requires much more computational

resources and greatly relies on the universality of the training

sample set. On the other way, the accuracy of the two-step

frame algorithm greatly relies on the clustering accuracy,

while the high recognition accuracy for each cluster would be

comparatively easy to be achieved.

ACKNOWLEDGMENT

This research is funded by Xi'an Municipal Bureau of

Science and Technology (Grant No.: 23ZDCYJSGG0011-

2022; 23ZDCYJSGG0024-2022).

REFERENCES

[1] Atkins, W. (2016). Research on the impacts of connected

and autonomous vehicles (CAVs) on traffic flow. Stage

2: Traffic modelling and analysis technical report.

[2] Zamanakos, G., Tsochatzidis, L., Amanatiadis, A.,

Pratikakis, I. (2021). A comprehensive survey of

LIDAR-based 3D object detection methods with deep

learning for autonomous driving. Computers & Graphics,

99: 153-181. https://doi.org/10.1016/j.cag.2021.07.003

[3] Ghasemieh, A., Kashef, R. (2022). 3D object detection

for autonomous driving: Methods, models, sensors, data,

and challenges. Transportation Engineering, 8: 100115.

https://doi.org/10.1016/j.treng.2022.100115

[4] Gupta, A., Anpalagan, A., Guan, L., Khwaja, A.S. (2021).

Deep learning for object detection and scene perception

in self-driving cars: Survey, challenges, and open issues.

Array, 10: 100057.

https://doi.org/10.1016/j.array.2021.100057

[5] Zhou, Y., Tuzel, O. (2018). VoxelNet: End-to-end

learning for point cloud based 3D object detection. In

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, pp. 4490-4499.

https://doi.org/10.1109/CVPR.2018.00472

[6] Yan, Y., Mao, Y., Li, B. (2018). Second: Sparsely

embedded convolutional detection. Sensors, 18(10):

3337. https://doi.org/10.3390/s18103337

[7] Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J.,

Beijbom, O. (2019). Pointpillars: Fast encoders for object

detection from point clouds. In IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR),

Long Beach, California, USA, pp. 12689-12697.

https://doi.org/10.1109/CVPR.2019.01298

[8] Wang, B. (2022). Research on key technologies of

LiDAR-based 3D environment perception system for

autonomous driving. Ph.D. dissertation, Changchun

Institute of Optics, Fine Mechanics and Physics, Chinese

Academy of Sciences, China.

https://doi.org/10.27522/d.cnki.gkcgs.2022.000053

[9] Ali, W., Abdelkarim, S., Zidan, M., Zahran, M., El Sallab,

A. (2018). Yolo3d: End-to-end real-time 3d oriented

object bounding box detection from lidar point cloud. In

European Conference on Computer Vision (ECCV)

Workshops, Springer, Cham, pp. 716-728.

https://doi.org/10.1007/978-3-030-11015-4_54

[10] Simony, M., Milzy, S., Amendey, K., Gross, H.M.

(2018). Complex-yolo: An Euler-region-proposal for

real-time 3D object detection on point clouds. In

European Conference on Computer Vision (ECCV)

Workshops, Springer, Cham, pp. 197-209.

https://doi.org/10.1007/978-3-030-11009-3_11

[11] Qi, C.R., Su, H., Mo, K., Guibas, L.J. (2017). Pointnet:

Deep learning on point sets for 3D classification and

segmentation. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Honolulu, HI, USA, pp.

77-85. https://doi.org/10.1109/CVPR.2017.16

[12] Qi, C.R., Yi, L., Su, H., Guibas, L.J. (2017). Pointnet++:

Deep hierarchical feature learning on point sets in a

metric space. Advances in Neural Information

Processing Systems, 30.

[13] Yang, Z., Sun, Y., Liu, S., Jia, J. (2020). 3dssd: Point-

based 3d single stage object detector. In IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

Seattle, WA, USA, pp. 11037-11045.

https://doi.org/10.1109/CVPR42600.2020.01105

[14] Shi, W., Rajkumar, R. (2020). Point-GNN: Graph neural

network for 3D object detection in a point cloud. In

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Seattle, WA, USA, pp. 1708-1716.

https://doi.org/10.1109/CVPR42600.2020.00178

[15] Xu, Q., Zhou, Y., Wang, W., Qi, C.R., Anguelov, D.

(2021). SPG: Unsupervised domain adaptation for 3D

object detection via semantic point generation. In

IEEE/CVF International Conference on Computer

Vision, Montreal, QC, Canada, pp. 15426-15436.

https://doi.org/10.1109/ICCV48922.2021.01516

[16] Paigwar, A., Erkent, O., Wolf, C., Laugier, C. (2019).

Attentional pointnet for 3D-object detection in point

clouds. In IEEE/CVF Conference on Computer Vision

and Pattern Recognition Workshops (CVPRW), Long

Beach, CA, USA, pp. 1297-1306.

https://doi.org/10.1109/CVPRW.2019.00169

[17] Wang, Z., Li, Q., Zhang, Z., Wang, K., Yang, J. (2021).

Research progress of unmanned vehicle point cloud

clustering algorithm. World Sci-Tech R & D, 43(3): 274-

285. https://doi.org/10.16507/j.issn.1006-

6055.2020.12.025

[18] Ikotun, A.M., Almutari, M.S., Ezugwu, A.E. (2021). K-

means-based nature-inspired metaheuristic algorithms

for automatic data clustering problems: Recent advances

and future directions. Applied Sciences, 11(23): 11246.

https://doi.org/10.3390/app112311246

[19] Fan, X., Xu, G., Li, W., Wang, Q., Chang, L. (2019).

Target segmentation method for three-dimensional

LiDAR point cloud based on depth image. Chinese

Journal of Lasers, 46(7): 0710002.

https://doi.org/10.3788/CJL201946.0710002

[20] Zhang, C., Huang, W., Niu, T., Liu, Z., Li, G., Cao, D.

(2023). Review of clustering technology and its

application in coordinating vehicle subsystems.

Automotive Innovation, 6(1): 89-115.

1606

https://doi.org/10.1016/j.cag.2021.07.003
https://doi.org/10.1016/j.treng.2022.100115
https://doi.org/10.1016/j.array.2021.100057
https://doi.org/10.1109/CVPR.2018.00472
https://doi.org/10.3390/s18103337
https://doi.org/10.1109/CVPR.2019.01298.
https://doi.org/10.27522/d.cnki.gkcgs.2022.000053
https://doi.org/10.1007/978-3-030-11015-4_54
https://doi.org/10.1007/978-3-030-11009-3_11
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR42600.2020.01105
https://doi.org/10.1109/CVPR42600.2020.00178
https://doi.org/10.1109/ICCV48922.2021.01516
https://doi.org/10.1109/CVPRW.2019.00169
https://doi.org/10.16507/j.issn.1006-6055.2020.12.025
https://doi.org/10.16507/j.issn.1006-6055.2020.12.025
https://doi.org/10.3390/app112311246
https://doi.org/10.3788/CJL201946.0710002

https://doi.org/10.1007/s42154-022-00205-0

[21] Wang, X.H., Wu, L.S., Chen, H.W., Shi, H.L. (2017).

Region segmentation of point cloud data based on

improved particle swarm optimization fuzzy clustering.

Optics and Precision Engineering, 25(4): 1095-1105.

https://doi.org/10.3788/OPE.20172504.1095

[22] Tan, Y. (2020). Obstacle detection and identification of

unmanned driving based on lidar. M.S. thesis, Jilin

University, China.

https://doi.org/10.27162/d.cnki.gjlin.2020.004659

[23] Yang, H. (2021). Research on real time target clustering

and recognition of LiDAR point cloud for autonomous

driving. M.S. thesis, University of Science and

Technology of China.

https://doi.org/10.27517/d.cnki.gzkju.2021.001473

[24] Shi, S., Wang, X., Li, H. (2019). PointRCNN: 3D object

proposal generation and detection from point cloud. In

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Long Beach, CA, USA, pp. 770-

779. https://doi.org/10.1109/CVPR.2019.00086

[25] Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X.,

Li, H. (2020). PV-RCNN: Point-Voxel feature set

abstraction for 3D object detection. In IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

Seattle, WA, USA, pp. 10526-10535.

https://doi.org/10.1109/CVPR42600.2020.01054

[26] Li, Z., Wang, F., Wang, N. (2021). LiDAR R-CNN: An

efficient and universal 3D object detector. In IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), Nashville, TN, USA, pp. 7542-7551.

https://doi.org/10.1109/CVPR46437.2021.00746

[27] Zermas, D., Izzat, I., Papanikolopoulos, N. (2017). Fast

segmentation of 3D point clouds: A paradigm on LiDAR

data for autonomous vehicle applications. In IEEE

International Conference on Robotics and Automation

(ICRA), Singapore, pp. 5067-5073.

https://doi.org/10.1109/ICRA.2017.7989591

[28] Geiger, A., Lenz, P., Urtasun, R. (2012). Are we ready

for Autonomous Driving? The KITTI Vision Benchmark

Suite. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Providence, RI, USA, pp.

3354-3361.

https://doi.org/10.1109/CVPR.2012.6248074

[29] Li, B. (2019). On enhancing ground surface detection

from sparse lidar point cloud. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

Macau, China, pp. 4524-4529.

https://doi.org/10.1109/IROS40897.2019.8968135

[30] Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., Urtasun,

R. (2018). 3D object proposals using stereo imagery for

accurate object class detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 40(5): 1259-

1272. https://doi.org/10.1109/TPAMI.2017.2706685

1607

https://doi.org/10.1007/s42154-022-00205-0
https://doi.org/10.3788/OPE.20172504.1095
https://doi.org/10.27162/d.cnki.gjlin.2020.004659
https://doi.org/10.27517/d.cnki.gzkju.2021.001473
https://doi.org/10.1109/CVPR.2019.00086
https://doi.org/10.1109/CVPR42600.2020.01054
https://doi.org/10.1109/CVPR46437.2021.00746
https://doi.org/10.1109/ICRA.2017.7989591
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/IROS40897.2019.8968135
https://doi.org/10.1109/TPAMI.2017.2706685

