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Object detection in point clouds serves as an important foundation for many applications 

such as autonomous driving and roadside perception. The existing methods for this 

foundation can be roughly divided into two categories, which are one-stage methods and 

multi-stage methods. For the one-stage method, an improved Pointpillars neural network, 

called MSCS-Pointpillars, was proposed to detect objects directly from point clouds. Here, 

an attention mechanism and pillars of different scales for the Pointpillars network were 

introduced to solve the problem of information loss caused by single scale pillar partition. 

For the multi-stage method, a flexible multi-stage algorithm AF3D, where point clouds were 

first clustered into clusters which were then detected by a much simpler classifier based on 

deep learning, was proposed. The two methods on both KITTI dataset and our own dataset 

have been compared. The results show that MSCS-Pointpillars exhibits better accuracy, but 

it is difficult to maintain its good performance in unfamiliar scenes. For AF3D, the accuracy 

appears worse, but it demonstrates much better robustness to unfamiliar scenes.  

Keywords: 

autonomous vehicles, 3D object detection, 

deep learning, point clouds, MSCS-

Pointpillars 

1. INTRODUCTION

The development of Intelligent Connected Vehicle (ICV) 

and Cooperative Vehicle Infrastructure System (CVIS) is 

expected to greatly improve the safety and the efficiency of 

our traffic system [1]. Among many related technologies, 

environmental perception plays a very important and 

fundamental role for both ICV and CVIS. Benefit from its 

strong environmental adaptability and the capability to acquire 

accurate distance information, LiDAR has become one of the 

most popular sensors for the perception task [2, 3]. Quite 

different from camera, which is arguably the most popular 

sensor in this field, LiDAR provides 3D point clouds rather 

than 2D image. So, detecting objects from 3D point clouds is 

becoming an important research. 

Traditional approaches for the recognition task in 3D points 

cloud generally adopt a multi-stage frame, which clusters the 

points and then recognizes the clusters. On the other hand, 

many cutting-edge researches proposed a one-stage frame, 

which employs deep learning technology to recognize objects 

in an end-to-end manner [4]. One-stage methods are generally 

more accurate, while needing a very complex classifier. On the 

other hand, multi-stage methods generally generate proposals 

in the first stage, and then recognize objects in the second stage. 

For the proposal generation stage, they mostly generate 

proposals through methods, such as sliding window method, 

anchor-based method, etc. For the recognizing objects stage, 

pattern match technology and deep learning technology are 

widely used. 

Although one-stage methods have shown great accuracy on 

performance, they greatly rely on the quality of sample data 

and show quite different characteristics compared with the 

multi-stage methods. So in this paper, the performance of the 

two different frames using two algorithms, namely MSCS-

Pointpillars and AF3D, was compared. 

For the one-stage method, MSCS-Pointpillars (Multi-Scale 

Channel Spatial Attention Pointpillars) method was proposed, 

which reduces the information loss, based on the Pointpillars 

method. For the multi-stage methods, a flexible multi-stage 3D 

point clouds object detection method AF3D (Accurate and 

Flexible 3D Object Detection Algorithm) was proposed, 

where the points are first clustered and then detected by a 

neural network. 

The rest of the paper is organized as follows. Section 2 

briefly reviews relevant research about 3D object detection, 

which will be the basis for our later work. Section 3 introduces 

the details of our methods and the verification on the KITTI 

3D Object dataset. In section 4, the experiments on our vehicle 

were described and the character of the two frames of 

detection based on the experiment results was discussed. 

Concluding the paper and propose the future work in Section 

5. 

2. RELATED WORK

2.1 End to end frame methods 

Deep learning-based methods generally adopt end-to-end 

frames, which can be divided into two categories according to 

the input form of points. The two categories include methods 

based on structured grid and methods based on raw point 

clouds. The first category of methods generally feeds the deep 

learning network different types of grid representation while 
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the latter category feeds the raw points directly. These grid 

representations generally include voxel methods, multi-view 

projection image and higher dimensional lattices. 

The methods based on structured grid are generally efficient 

while they inevitably lose information. The detection methods 

based on raw points can retain more details, while they 

generally consume more computation resources. 

 

2.1.1 Grid-based methods 

Typical grid-based methods may first map 3D point clouds 

into voxel space, and then use 3D convolution or sparse 

convolution for feature extraction. The classical models 

include VoxelNet [5], SECOND [6], Pointpillars [7], etc. Zhou 

and Tuzel [5] proposed the VoxelNet algorithm, which divides 

the raw point clouds into several voxel grids, uses VFE (Voxel 

Feature Encoding) layer for local point clouds feature 

extraction, and 3D convolution to obtains global features while 

a RPN (Region Proposal Network) is used to detect and locate 

the objects. Y. Yan etc. [6] improved the VoxelNet and 

proposed a spatially sparse convolutional network called 

SECOND which reduced the consumption of computation 

resources and improved the training speed. Lang et al. [7] 

proposed a very efficient algorithm called Pointpillars, which 

divides the point clouds into a certain number of pillars, and 

then converts them into pseudo-images [8]. However, 

Pointpillars compresses the raw points into single scale pillar 

division, which may still cause information loss.  

Some other methods project the original point clouds into 

an aerial view or a frontal view, so that the unordered point 

clouds in 3D space would be converted into a regular image, 

which is more convenient to apply image recognition 

algorithms like Yolo, CNN etc. The classical models of this 

type include YOLO3D [9], Complex-YOLO [10], etc. 

 

2.1.2 Raw point clouds-based methods 

Classic raw point clouds-based detection methods include 

Pointnet [11], Pointnet++ [12], 3D-SSD [13], Point-GNN [14], 

SPG [15], etc. In 2017, Qi et al. [11] proposed Pointnet, which 

directly feeds a deep learning network with raw point clouds. 

Then Pointnet extracts features from point clouds through a 

number of shared MLPs, and performs maximum pooling in 

each dimension of the feature map to obtain global features. 

Paigwar et al. [16] improved Pointnet with a visual attention 

mechanism. Qi et al. [12] proposed an improved version called 

Pointnet++, which presented a hierarchical feature learning 

architecture for better abstraction of multi-scale features. Yang 

et al. [13] proposed 3D-SSD algorithm which uses a feature 

distance-based farthest point sampling method to exclude 

background points, while semantic information has also been 

considered. In 2021, Xu et al. [15] proposed a so-called SPG 

method, which generates semantic point sets and then merges 

them with the original point clouds to obtain an enhanced point 

clouds. After that, a point clouds detector is employed to 

obtain the detection results. 

 

2.2 Multistep frame methods 

 

Multistep frame methods generally include a points 

extraction or cluster step before the recognizing step. Common 

clustering methods include five categories, that are partition 

clustering, distance clustering, density clustering, hierarchical 

clustering and grid clustering [17]. K-means clustering 

algorithm may be one of the most typical partition clustering 

algorithms, which iteratively finds the centers of different 

clusters and the points nearest to the centers respectively. 

However, K-means algorithm requires too many manually-

adjusted parameters and performs poorly regarding complex 

shape objects. Recent progress of the partition clustering 

algorithm may be found in the study [18]. Euclidean clustering 

may be one of the most typical distance clustering algorithms, 

which clusters the nearest points into one class. As a very 

typical density cluster algorithm, DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise) treats the 

closely-linked points as one cluster. Some recent progress of 

this category may be found in the studies [19, 20]. In recent 

years, hybrid clustering algorithms, which combine several 

different cluster algorithms, have gradually attracted more 

attention. Wang et al. [21] proposed the SPSO-FCM algorithm 

which combines the improved particle swarm optimization 

algorithm with the fuzzy C-means algorithm to cluster the 

points. The algorithm has fast convergence speed and clear 

boundary region segmentation. For scenes with complex 

profile and large number of point clouds, it can get better 

segmentation results. There will be more hybrid clustering 

algorithms in the future. 

For detection, traditional methods have developed various 

algorithms based on the 3D geometric features of the points. 

Tan [22] has selected the outer contour and the reflection 

intensity of the cluster to build a feature vector. Using that 

feature vector, SVM (Support Vector Machine) has then been 

employed to detect the cluster. This algorithm has obtained 

good accuracy at the cost of efficiency. Yang [23] has 

clustered the point clouds based on the spatial scale, reflection 

intensity, overall distribution and other geometrical 

characteristics. Then the clusters were classified by SVM as 

well. In 2019, Shi et al. [24] migrated the image segmentation 

network RCNN to point clouds data and proposed a multi-

stage 3D object detection network called Point RCNN. The 

author has further proposed an improved version called PV-

RCNN [25] which uses efficient 3D voxel convolution and 

point clouds convolution to estimate the confidence and spatial 

location of objects. In 2021, Li et al. [26] proposed an efficient 

multi-stage detection network LiDAR-RCNN. This method 

uses a voxelization method to remove background points, and 

then builds a Pointnet-based network to extract features, 

classify the object and locate it. 

 

 

3. METHODOLOGY 
 

3.1 MSCS-Pointpillars 

 

3.1.1 Pointpillars 

As a popular 3D point clouds detection method, Pointpillars 

[6] algorithm is composed of several modules that includes: 

pillars feature extraction module, feature extraction module 

and single shot multiple frame detection module. In order, an 

improved Pointpillars called MSCS-Pointpillars, which 

employs a multi-scale pillars module and an attention 

mechanism to enhance its ability to detect objects in different 

sizes was proposed. As shown in Figure 1, the original single-

scale pillars with three different scales pillars in the pillars 

feature extraction module was replaced, and the attention 

mechanism has been applied. 
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Figure 1. Overview of MSCS-Pointpillars network 
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Figure 2. Multiscale pillar feature extraction module of MSCS-Pointpillars, there are three sizes of pillars 
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Figure 3. Attention module 

 

3.1.2 Multiscale pillars feature extraction network 

As shown in Figure 2, 3D laser point clouds data is divided 

into three pillars of different scales according to the 𝑋𝑌-plane 

where it is located (without considering the 𝑍 axis). Beside the 

basic scale (𝐻,𝑊)  proposed by Pointpillars, another two 

scales of pillars which are (𝐻 2⁄ ,𝑊 2⁄ )  and (2𝐻, 2𝑊)  in 

addition were induced. As a result, three different scales 

feature maps would be obtained respectively whose size are 

(𝐶, 2𝐻, 2𝑊), (𝐶, 𝐻,𝑊), and (𝐶, 𝐻 2⁄ ,𝑊 2⁄ ) respectively. By 

applying a convolution operation, the feature map whose size 

is (𝐶, 2𝐻, 2𝑊)  would be compressed to a smaller image 

whose size is (𝐶 2⁄ , 𝐻,𝑊). Similarly, the feature map whose 

size is (𝐶, 𝐻,𝑊)  would be transformed to a smaller size 

(𝐶 2⁄ , 𝐻,𝑊)  while the feature map whose size is 

(𝐶, 𝐻 2⁄ ,𝑊 2⁄ ) would be transformed to (𝐶 2⁄ , 𝐻,𝑊). After 

that, the three different feature maps with three scales would 
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be fused in the channel direction. So that the size of the fused 

feature map would be  (3𝐶 2⁄ , 𝐻,𝑊). After that the fused 

feature map is further convolved to a smaller feature map 𝐹, 

whose size is (𝐶, 𝐻,𝑊). 
 

3.1.3 Improved feature extraction based on attention module 

As shown in Figure 3, introduce a CBAM (Convolutional 

Block Attention Module) to improve the detection effect of the 

network. This makes the network pay more attention on the 

important information helpful for recognition task. Firstly, 

apply global max-pooling and average-pooling operations on 

the feature map 𝐹  obtained by the multi-scale pillar feature 

extraction module. The pooling results are then subjected to a 

matrix add operation after MLP to generate the channel weight 

𝑀𝐶ϵ𝑅
𝐶∗1∗1 . Then 𝑀𝐶ϵ𝑅

𝐶∗1∗1  are multiplied to the fused 

feature map 𝐹 to obtain a channel attention feature map 𝐹𝐶 . 

Secondly, 𝐹𝐶 is subjected to global max-pooling and average-

pooling operations by the channel as well. The pooling results 

are spliced and then subjected to a 7*7 convolution operation 

to generate another spatial weight 𝑀𝑆ϵ𝑅
1∗𝐻∗𝑊 . Then the 

spatial weights 𝑀𝑆ϵ𝑅
1∗𝐻∗𝑊 and 𝐹𝐶 are multiplied to obtain a 

weighted feature map 𝐹𝐶𝑆  with channel spatial weight 

information, and then 𝐹𝐶𝑆  is sent to the feature extraction 

network for higher level representations. Specifically, it 

involves feature extraction of feature maps through two-

dimensional convolution. 

 

3.1.4 Loss function 

The output of the MSCS-Pointpillars network mainly 

includes the category of the object and the parameters of the 

3D bounding box. The 3D bounding box can be represented 

by parameters (𝑥, 𝑦, 𝑧, 𝑤, 𝑙, ℎ, 𝜃) , where (𝑥, 𝑦, 𝑧)  represents 

the coordinates of the center of the 3D bounding box. (𝑤, 𝑙, ℎ) 
represents the width, length, and height of the 3D bounding 

box respectively. 𝜃 represents the rotation angle around the 𝑍- 

axis (the 𝑍-axis is the axis perpendicular to the ground). So, 

the loss function is designed as shown in Eq. (1), which 

includes 3D bounding box regression loss, classification loss, 

orientation loss. 

 

ℓ =
1

𝑁𝑝𝑜𝑠

(𝛽𝑙𝑜𝑐ℓ𝑙𝑜𝑐 + 𝛽𝑐𝑙𝑠ℓ𝑐𝑙𝑠 + 𝛽𝑑𝑖𝑟ℓ𝑑𝑖𝑟) (1) 

 

where, 𝑁𝑝𝑜𝑠  represents the number of positive samples 

generated boxes, ℓ𝑙𝑜𝑐  represents the 3D box regression loss 

function, ℓ𝑐𝑙𝑠  represents the classification loss function, and 

ℓ𝑑𝑖𝑟  represents the object orientation loss function. 𝛽𝑙𝑜𝑐, 𝛽𝑐𝑙𝑠, 
𝛽𝑑𝑖𝑟  are the corresponding weights. In this paper, use the loss 

function parameters of Pointpillars network for reference, and 

set 𝛽𝑙𝑜𝑐 = 2, 𝛽𝑐𝑙𝑠 = 2, 𝛽𝑑𝑖𝑟 = 2. 

The 3D bounding box regression loss function is shown in 

Eq. (2), which mainly includes the 3D box position regression 

loss, the size regression loss and the orientation regression loss, 

as shown in Eqs. (3), (4) and (5) respectively. 

 

ℓ𝑙𝑜𝑐 = ∑ Smooth𝐿1(∆𝑏)

𝑏ϵ(𝑥,𝑦,𝑧,𝑤,𝑙,ℎ,𝜃)

 (2) 

 

∆𝑥 =
𝑥𝑔𝑡 − 𝑥𝑝

𝑑𝑝
, ∆𝑦 =

𝑦𝑔𝑡 − 𝑦𝑝

𝑑𝑝
, ∆𝑧 =

𝑧𝑔𝑡 − 𝑧𝑝

𝑑𝑝
 (3) 

 

∆𝑤 = log
𝑤𝑔𝑡

𝑤𝑝

, ∆𝑙 = log
𝑙𝑔𝑡

𝑙𝑝
, ∆ℎ = log

ℎ𝑔𝑡

ℎ𝑝
 (4) 

 

∆𝜃 = sin(𝜃𝑔𝑡 − 𝜃𝑝) (5) 

 

𝑑𝑝 = √𝑤𝑝
2 + 𝑙𝑝

2 (6) 

 

where, 𝑥𝑔𝑡 , 𝑦𝑔𝑡 , 𝑧𝑔𝑡 , 𝑤𝑔𝑡 , 𝑙𝑔𝑡 , ℎ𝑔𝑡 , 𝜃𝑔𝑡  represent the truth 

value. The 𝑥𝑝 , 𝑦𝑝 , 𝑧𝑝 , 𝑤𝑝 , 𝑙𝑝 , ℎ𝑝 , 𝜃𝑝  represent the predicted 

value by the network. 

The classification loss ℓ𝑐𝑙𝑠 is shown in Eq. (7): 

 

ℓ𝑐𝑙𝑠 = −𝛼𝑎(1 − 𝑝𝑎)𝛾 log𝑝 𝛼 (7) 

 

where, 𝑝𝑎 represents the possibility of a certain category. Ac-

cording to reference paper Lang et al. [7], set 𝛼 to 0.25, and 𝛾 

to 2. 

Since Eq. (5) cannot distinguish the 3D box flipping 0° and 

180°, ℓ𝑑𝑖𝑟  uses the Softmax function to learn the orientation of 

the 3D bounding box in discrete directions [6]. 

 

3.2 AF3D 

 

Our work combined traditional object detection algorithms 

and built a PFC-Net network based on Pointnet, proposing a 

flexible and accurate 3D object detection algorithm AF3D. 

The AF3D algorithm framework is shown in Figure 4. The 

entire algorithm framework mainly consists of two stages. In 

the first stage, ground segmentation is performed first, and 

then the remaining point clouds are clustered to obtain point 

clouds clusters {𝐶1, 𝐶2, 𝐶3, ⋯ , 𝐶𝑘−1, 𝐶𝑘}. In the second stage, 

the point clouds classification network PFC-Net is first built. 

Secondly, clusters are inputted into the trained classification 

network PFC-Net to classify the clusters. Subsequently, obtain 

the semantic information of each cluster class, perform 

bounding box fitting on the classified objects, and obtain 

network inference results. 
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Figure 4. AF3D network overview 
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3.2.1 Stage 1: Ground point clouds segmentation and non-

ground point clouds clustering 

A segmentation fitting algorithm proposed by Zermas et al. 

[27] to extract and remove the ground points was employed. 

After that, the non-ground point clouds were segmented and 

clustered using DBSCAN algorithm. 

For the DBSCAN algorithm, the clustering neighborhood 

radius (Eps) was set to 0.45 meters, the Euclidean distance 

metric was adopted, and the minimum number of points 

required for a core point (MinPts) was set to 10. The non-

ground point clouds clustering effect obtained by using 

DBSCAN is shown in Figure 5. The first column shows the 

point clouds clustering effect, and the second shows the 

original images accordingly. It was found that all the point 

clouds are properly clustered. 

 

3.2.2 Stage 2: Point clouds Classification Network PFC-Net 

Because point clouds have been clustered, a very simple 

classification network named PFC-Net to classify each cluster 

was designed. The network structure of PFC-Net is shown in 

Figure 6. The clusters were inputted as a tensor with size (𝑁, 3), 
where 𝑁  represents the number of points inputted and 3 

represents the channel information of each point. Feature 

extraction is performed by a multiple weight-shared MLP 

modules. So that a feature map 𝐹1 represented by a tensor with 

size (𝑁, 1024) is obtained. After that, a global feature map, 

with size (1,1024), is obtained by a Max-Pooling layer. By 

concatenating both the global feature and the feature map 𝐹1, 

a feature map 𝐹2, which is represented by a tensor with size 

(𝑁, 2048), is obtained. 𝐹2 contains both the detailed features 

and the global features of the cluster. The feature map 𝐹2 is 

then passed through two weight-shared MLPs and a Max-

Pooling layer for further feature extraction to form a new 

feature map 𝐹3 represented by a tensor whose size is (1,1024). 
After that 𝐹3  is sent to three fully connected layers for 

classification result. 

 

 

 

 

 

 

 

 

Figure 5. Point clouds clustering results based on DBSCAN 

algorithm 
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Figure 6. The structure of the point clouds classification network PFC-Net: it takes N points as input, and output the 

classification scores for 4 classes, namely pedestrian, car, cyclist and other object 

 

3.2.3 PFC-Net network training 

1) KITTI 3D Object Dataset 

Here KITTI 3D Object dataset was used to train PFC-Net 

and to test its performance. As one of the most commonly used 

public dataset, KITTI 3D Object dataset [28] was chosen to 

verify the performance of PFC-Net network. KITTI 3D Object 

dataset consists of 7481 training samples and 7518 testing 

samples, mainly including various types of cars, pedestrians, 

and cyclists. The KITTI 3D Object dataset covers multiple 

scenes such as highways, suburbs, and urban roads. Each 

frame of data includes both point clouds and their 

corresponding RGB images, label files, etc. According to the 

cutoff value and the occlusion scale, the dataset samples can 

be categorized into easy, medium and difficult levels, which 

also represent the difficulty of detection as shown in Table 1. 

2) Dataset reconstruction 

The original KITTI 3D Object dataset contains point clouds 

of the whole scene rather than the clusters, which cannot be 

directly used for PFC-Net. Therefore, the KITTI 3D Object 

dataset was reconstructed. First, according to the label files, 

the point clouds data belonging to three categories, namely 

cars, cyclists, and pedestrians, is extracted. Second-ly, the data 

augmentation method to balance the number of samples in 

each category for better training effect was used. The specific 

steps are as follows: 

a) Object point clouds extraction 

For each frame of point clouds in the KITTI training set, the 

label categories of “Van”, “Car”, “Truck”, and “Tram” are 

unified into “Car”. So that only "Car", "Pedestrian", "Cyclist" 

are kept. Figure 7 (a) and (b) show an extraction example 

where a pedestrian denoted by green points has been extracted 

from the original points clouds. The visualization results of the 

extracted clusters belonging to the three categories are shown 

in Figure 8 (a), (b) and (c) respectively. In addition, due to the 

characteristics of lidar, the spatial information of objects may 

seriously be missing due to too sparse points. Therefore, three 

threshold values for the number of points belonging to the 

category of "Car", the "Pedestrian", the "Cyclist" that are 200, 
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50, 50 were stipulated respectively. 

 

Table 1. KITTI dataset object detection level division 

 
Level Easy Medium Difficult 

degree of 

occlusion 
Fully visible 

partially 

visible 

Hardly 

visible 

cutoff value  15% 15%~50%  50% 

number of pixels  40  25 

 

  
(a) Raw points cloud from 

camera view 

(b) The points cloud after 

extracting the target 

 

Figure 7. Object point clouds extraction process 

 

   

(a) Pedestrian (b) Car (c) Cyclist 

 

Figure 8. Visualization results of point clouds extraction for 

each category of KITTI dataset 

 

b) Data augmentation 

After object points extraction, the amount of "Car", 

"Pedestrian", "Cyclist" categories are 12564, 3272, 1526 

respectively. It can be found that the proportions of the three 

types in the samples are imbalanced, thus making training for 

the category insufficient due to imbalanced proportions, and 

impacting the classification accuracy.  

Therefore, apply data augmentation to the categories with 

small proportion in training set. The samples in the categories 

with small proportion were translated and randomly rotated 

angle around the 𝑍-axis of the lidar coordinate system. On the 

other hand, the Weighted Random Sampler method, which 

selects training data based on the weight of each category was 

also used, to solve the problem of imbalanced sample 

proportions. The proportion of samples after data 

augmentation and weighted random sampling is shown in 

Table 2. 

According to the study [29], only objects located within 

40m ahead, would be properly detected when the speed of the 

car reaches 80 Km/h. So only obstacles located in that range 

would be classified by the algorithms in the following 

verification. 

 

Table 2. The proportion of each category before and after 

data augmentation (%) 

 
Category Car Pedestrian Cyclist Other Objects 

Before data 

augmentation 
46.92 13.41 5.24 44.91 

After data 

augmentation 
37.45 23.67 18.33 20.55 

After weighted 

random sampling 
25.46 24.67 24.36 25.51 

 

 

3) Verification of PFC-Net 

The verification was running on a workstation equipped 

with Intel i7 10700KF and NVIDIA RTX 3080 graphics card. 

The software environment includes Ubuntu 18.04 LTS, 

CUDA 11.1, cuDNN 8.0.5, and Python 3.7. 

If the number of the inputted points is less than 1024, it will 

be augmented to 1024 using zero padding. If the number of the 

inputted points is bigger than 1024, it will be down sampled to 

1024 using farthest points sampling technique.  

The reconstructed KITTI 3D Object dataset is divided into 

training set and test set according to the ratio of 8:2. The cross-

entropy loss function shown as Eq. (8) was adopted for PFC-

Net. 

 

𝐿 =
1

𝑁
∑𝐿𝑖 = −

1

𝑁
∑∑𝑦𝑖𝑐 log(𝑝𝑖𝑐)

𝑀

𝑐=1𝑖𝑖

 (8) 

 

where, 𝑀  represents the number of categories, 𝑖  is the sample 

index, 𝑐 is the category index and 𝑦𝑖𝑐  represents a sign function 

where 𝑦𝑖𝑐 equal to 1 only if the predicted category of the network 

is consistent with the label, other wise 𝑦𝑖𝑐  equal to 0. 𝑝𝑖𝑐  

represents the predicted confidence of the sample 𝑖 belonging to 

the category  𝑐. 

The Adam (Adaptive Moment Estimation) optimizer with 

an initial learning rate of 1 ∗ 10−3  is adopted, while the 

learning rate is attenuated by 0.8 times every 15 cycles. The 

epoch is set to 150, while the batch size is set to 128. 

 

 
 

Figure 9. PFC-Net training loss curve: the vertical axis 

represents the loss function value, and the horizontal axis 

represents the number of training epochs 

 

The training loss curve of PFC-Net is shown in Figure 9, 

where the vertical axis represents the loss value, and the 

horizontal axis represents the number of training epochs. It 

shows that the training mostly fits after the 120th training 

epoch. 

The average accuracy curve is shown in Figure 10, where 

the vertical axis represents the overall accuracy, and the 

horizontal axis represents the number of training epochs. The 

red curve represents the accuracy of classification on the 

training set. while the blue curve represents the accuracy of 

classification on the test set. It can be found that after being 

well-trained, the average accuracy of point clouds 

classification on the training set is as high as 99.21%, and the 

average accuracy of point clouds classification on the test set 

reaches 95.78%. 
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Figure 10. PFC-Net classification average accuracy curve: 

the vertical axis represents the overall accuracy, and the 

horizontal axis represents the number of training cycles 

 

3.3 Verification of two methods on KITTI 

 

3.3.1 Verification of MSCS-Pointpillars 

The performance of MSCS-Pointpillars was also verified on 

the KITTI 3D Object Dataset. According to the practice by 

Chen et al. [30], redividing the 7481 samples into training and 

testing set samples, of which the number of training set 

samples is 3712 and the number of test set samples is 3769. 

In the training of MSCS-Pointpillars, the maximum number 

of epoch iterations is set to 160, Adam optimizer’s initial 

learning rate is set to 2 ∗ 10−4 , while the learning rate is 

attenuated by 0.8 times every 15 cycles. The region of interest 

is intercepted by passthrough filtering, and the values are 

shown in Eq. (9). 

 

{
0 ≤ 𝑥 ≤ 80.64

−40.32 ≤ 𝑦 ≤ 40.32
−1 ≤ 𝑧 ≤ 3

 (9) 

 

The maximum number of pillars, denoted as 𝑃 , is set to 

12000, and the maximum number of points in the pillar is set 

to 100. 

For better comparison, all the samples were classified into 

easy, medium and hard, according to three overlap thresholds, 

respectively. For cars, the easy, medium and hard overlap 

thresholds are set to 0.7, 0.7, 0.7 times IoU, respectively. The 

overlap thresholds are set to 0.5, 0.5, 0.5 times IoU for the 

cyclist categories and the pedestrian categories. The training 

loss curve is shown in Figure 11. In the legend of the figure, 

“loss_cls” represents the classification loss, “loss_bbox” 

represents the loss of the 3D box, and loss_dir represents the 

orientation loss. 

Our work uses the average precision as the criteria. The 

verification results on the KITTI 3D Object data set are shown 

in Table 3 where the performance is displayed according to 

different difficulty degrees. It can be found that compared to 

Pointpillars, MSCS-Pointpillars has been improved on almost 

all categories. 

 

 
 

Figure 11. MSCS-Pointpillars training Loss curve: the 

vertical axis represents the loss value, and the horizontal axis 

represents the epochs 

 

Table 3. Comparison with Pointpillars on the KITTI 3D 

object test set (%) 

 

Categories Degree Pointpillars 
MSCS-

Pointpillars 

Cars 

Easy 83.60 87.59 

Medium 74.58 78.63 

Difficult 71.55 76.47 

Pedestrians 

Easy 50.31 53.60 

Medium 44.08 47.71 

Difficult 40.97 43.36 

Cyclists 

Easy 79.76 81.02 

Medium 59.35 62.49 

Difficult 56.38 58.86 

 

3.3.2 Verification of AF3D 

For the car category, the maximum height is set to 2.5m, the 

maximum length is set to 8m, and the minimum height 

threshold is 1.5m. Due to the severe occlusion of some cars in 

the dataset, the minimum length threshold for car size is not 

specified. When the height and length of the cluster is greater 

than the maximum height and length threshold of the car 

category or when the height of the cluster is less than the 

minimum height threshold, it can be discarded. For the cyclist 

category, the maximum height threshold is set to 2m, the 

maximum length threshold is 2.5m, and the minimum height 

threshold is 1.25m. For the pedestrian category, the maximum 

height threshold is set to 2m and the minimum height threshold 

is 1.25m. 

Similarly, the verification results of AF3D on the KITTI 3D 

Object dataset are shown in Table 4. 

The visualization results of AF3D on KITTI 3D Object 

dataset are shown in Figure 12. 
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Figure 12. The visualization results of AF3D on KITTI 3D Object dataset: the first row of images represents the extraction of 

ground points (ground is shown in green, non-ground point clouds is shown in gray); the second row of images is a visualization 

of the clustering effect; the third row of images is a classification of the clusters (cars is shown in red, blue for cyclists is shown 

in blue, and pedestrians is shown in green); the fourth row shows the original RGB image corresponding to the point clouds, 

respectively 

 

Table 4. Detection accuracy (%) of AF3D algorithm on 

KITTI 3D object dataset 

 
Categories Degree AF3D 

Cars 

Easy 73.92 

Medium 70.87 

Difficult 62.41 

Pedestrians 

Easy 43.21 

Medium 41.52 

Difficult 38.83 

Cyclists 

Easy 68.32 

Medium 61.76 

Difficult 51.42 

Training time (hours) 5.6 

 

 

4. EXPERIMENT 

 

In this section, the algorithm was run on our own vehicle to 

conduct an experimental comparison between the MSCS-

Pointpillars and AF3D algorithms, then the advantages and 

disadvantages of the two methods were analyzed 

comprehensively. 

 

4.1 Experiment platform 

 

The hardware equipment on the car includes HESAI 

Technology Pandar 64-line lidar, monocular, camera, RTK 

GPS and a laptop, as shown in Figure 13. 

 

4.2 Experiment data 

 

Driver drove the experimental car along a road in our 

campus. Part of the scene is shown in Figure 14. Because the 

speed of the car is relatively low, point clouds data is captured 

in every 2s. So that our experiment dataset includes 200 frames 

of point clouds data. 3D bounding boxes are employed to label 

cars, cyclists, and pedestrians. 

Figure 15 shows some labeling result where red represents 

cars, green represents pedestrians, and purple represents 

cyclists. 

After trained on KITTI dataset, the MSCS-Pointpillars and 

AF3D were tested on our experiment dataset neither with 

retraining nor refining, and the detection accuracy is shown in 

Table 5. 

 

 
 

Figure 13. Experiment platform 
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Figure 14. Examples of some scenarios in our experiment: 

the first column shows point clouds, and the second column 

shows the corresponding RGB image 

 

  

  
 

Figure 15. Point clouds data and the labels 

 

Table 5. The detection accuracy (%) of the two algorithms 

on our experiment data set 

 
Methods Cars Pedestrians Cyclists 

MSCS-Pointpillars 54.39 32.88 39.23 

AF3D 69.74 41.25 54.33 

 

Some examples of the detection results obtained by both 

AF3D and MSCS-Pointpillars are shown in Figure 16. Here, 

the first column shows the detection results using AF3D 

network, and the second column shows the detection results 

using MSCS-Pointpillars network. The third column shows 

the label results. It can be found that MSCS-Pointpillars has 

missed more targets than AF3D, although the MSCS-

Pointpillars outperforms AF3D on the KITTI 3D Object 

Dataset. So AF3D shows more detection capability in an 

unfamiliar scene like our experiment than MSCS-Pointpillars. 

From the verification results on the KITTI 3D Object 

dataset in Sections 3.3.1 and 3.3.2, it can be seen that both 

methods have good detection capability and the detection 

accuracy of cars is higher, followed by the accuracy of cyclists. 

Pedestrians have obtained the lowest detection accuracy. This 

is because of two reasons. Pedestrians generally produce least 

number of points compared with the other two categories with 

similar distance. 

It can also be found that the detection accuracy of MSCS-

Pointpillars on the KITTI 3D Object dataset outperforms that 

of AF3D. Because MSCS-Pointpillars can make use of the 

context information of the whole point clouds, while AF3D 

can only use the cluster information for recognition. 

The training time and the computation cost of AF3D 

algorithm are much less than those of MSCS-Pointpillars. This 

is because in AF3D, only PFC-Net, which is much simpler 

than MSCS-Pointpillars, needs to be trained and the DBSCAN 

in AF3D is highly efficient. 

Without retraining or refining, our experiment utilizes 

unfamiliar scenes for both MSCS-Pointpillars and AF3D 

algorithms. The detection accuracy of MSCS-Pointpillars 

decreased significantly while in contrast, the detection 

accuracy of AF3D algorithm only suffered a small decrease. 

In our experiment, the detection accuracy of AF3D on cars, 

pedestrians and cyclists is 15.35%, 8.37% and 15.1% higher 

than that of MSCS-Pointpillars, respectively. This is because 

AF3D employs a traditional clustering algorithm to cluster the 

point cloud before recognizing it. Moreover, the clusters for 

each category would only be slightly changed in different 

scenes, which makes it much easier to be recognized in an 

unfamiliar scenario. In contrast, MSCS-Pointpillars greatly 

relied on the context information of the whole scenario for 

better accuracy performance, while this context information 

would be greatly changed in unfamiliar scenes. 

 

   

   

   
 

Figure 16. Visualization of detection results of AF3D and MSCS-Pointpillars in experiment. The first column shows the 

detection result of the AF3D, and the second column shows the detection result of MSCS-Pointpillars. The third column is the 

label result. The red point clouds represents that the targets have been detected, while the black represents non target point clouds 
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5. CONCLUSION 

 

This paper has proposed two different approaches for object 

detection task in 3D point clouds. MSCS-Pointpillars is a type 

of Deep learning algorithm that adopts an end-to-end frame to 

fully utilize context information, resulting high accuracy. 

AF3D is a combination of Deep learning technology and 

traditional two-step frame. By comparing the performance of 

these two algorithms, results found that the traditional two-

step frame can help on reducing the computation resource 

request and enhance the adaptability to unfamiliar scenes. 

Meanwhile end-to-end frame can propose better detection 

performance while it requires much more computational 

resources and greatly relies on the universality of the training 

sample set. On the other way, the accuracy of the two-step 

frame algorithm greatly relies on the clustering accuracy, 

while the high recognition accuracy for each cluster would be 

comparatively easy to be achieved. 
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