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At this stage, the 3D graph convolution algorithm has the following problems: (1) Neighbor 

space selection problem; (2) Feature extraction and fusion problem of different depth map 

convolution algorithms; (3) Multi-view parallel feature fusion problem. Based on this, 

"Multi-domain adaptive graph convolution algorithm based on visual computing theory and 

its scene segmentation application" is proposed. First, inspired by the 3D vision of primates, 

a 3D visual computing theory is proposed; and propose an adaptive graph convolution 

algorithm based on the 3D visual selectivity theory. It solves the problem of neighbor space 

selection for 3D graph convolution; secondly, inspired by the single-link serial processing 

mode of primate visual information, a single-link depth adaptive graph convolution 

algorithm based on 3D visual selectivity is constructed to learn and refuse the different depth 

visual features of the same sub-space of 3D point cloud; Finally, inspired by the multi-link 

parallel processing model of primate visual information, we improved the single-link 

algorithm and constructed a multi-link depth adaptive graph convolution algorithm based 

on 3D visual selectivity to learn and integrate global visual features of different link; and 

using the MLP algorithm with shared weights to achieve object segmentation.On 

ShapeNetPart and custom Mortise_and_Tenon_DB, Compare with PointNet, PointNet++, 

KPConv deform, 3D GCN and other algorithms. Verify the segmentation performance and 

geometric invariance of this algorithm. The experimental results: The segmentation 

performance of the algorithm of this article is good, and the segmentation success rate 

reaches 90.9%; the algorithm of this article has strong geometric invariance, Rotation and 

translation transformations are geometrically invariant, and Scaling transformation has finite 

geometric invariance in the interval [-0.15,0.15]. 
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1. INTRODUCTION

Breakthroughs in 3D sensor technology [1] that overcome 

the precision bottleneck of point cloud collection can capture 

accurate point cloud datasets, providing a data foundation for 

the rapid advancement of 3D point cloud data processing 

algorithms. These advancements have achieved good research 

and application results in fields such as drone control [2], 

autonomous driving [3], augmented reality [4], and medical 

image processing [5]. 

Conventional convolution algorithms based on 2D 

structured spaces cannot be directly applied to semi-structured 

3D point cloud spaces. Based on this, researchers have 

proposed point cloud space structuring algorithms, direct point 

cloud processing algorithms, and direct structuring algorithms 

to address the issue of spatial feature extraction in semi-

structured spaces. 

Point cloud space structuring algorithms essentially solve 

the problem of structuring 3D point cloud data by structuring 

3D point cloud space, facilitating the direct or expanded 

application of two-dimensional convolution methods to this 

3D structured space. The main methods include: voxel-based 

approaches [6-8] and multi-view methods [9-11]. However, 

the structuring algorithms for 3D point cloud data have the 

following shortcomings: (1) Structuring of 3D space results in 

overlap of some data, compromising the purity and 

completeness of the original data points. (2) The process of 

structuring 3D space increases the complexity of the 

algorithms and reduces their performance. (3) Polarized 

structuring (such as the view method) loses three-dimensional 

topological structure information, affecting the recognition 

performance of the algorithms. 

Therefore, direct point cloud processing algorithms have 

been proposed, which do not require structuring of 3D point 

cloud datasets and perform feature learning directly on the 

original datasets, attempting to address the aforementioned 

shortcomings. These include: PointNet [12], PointNet++ [13], 

and subsequent improvements to these algorithms [14-16]. 

Practice has shown that structured information expressed by 

spatial topological structure is an essential feature of 3D point 

clouds, and neither spatial structuring algorithms nor direct 

point cloud processing methods can effectively solve the 
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learning and representation of 3D point cloud spatial 

structuring information. Graph structure is an excellent way to 

learn and represent spatial structuring information. Thus, the 

graph convolution method has become a direction for 3D point 

cloud research [17-20], achieving certain research and 

application progress. 

The Dynamic Graph Convolutional Neural Network 

(DGCNN) algorithm [21] constructs local graph structures by 

identifying the nearest neighbors of 3D points in feature space 

and then performing edge convolution operations to extract 

features. Shen et al. [22] extended this idea and further learned 

spatial topological information during the feature aggregation 

process. Relation-Shape Convolutional Neural Network (RS-

CNN) [23] applies the weighted sum of neighboring node 

features, where each weight is learned using an MLP based on 

the geometric relationship between the two points. These 

efforts aim to learn the local topological features of three-

dimensional point clouds. 3D-GCN [24] uses a deformable 3D 

kernel to learn information from 3D point clouds and 

addresses the disorder and unstructured nature of point cloud 

data through graph-based max pooling methods, proposing a 

universal model concept. The GCN algorithm based on visual 

selectivity [25] proposes a method that combines point cloud 

information with point cloud topological structure features, 

establishing a graph convolution computation method. It 

effectively solves the problem of learning and integrating 

global and local features. The multi-view depth-adaptive GCN 

[26] method, integrating visual computing techniques with 

GCN algorithms, addresses the inability of existing GCNs to 

effectively learn the correlation between different scale visual 

features under multi-view (multi-domain) conditions. Point 

cloud transformer [27] presents a novel framework named 

Point Cloud Transformer (PCT) for point cloud learning. PCT 

is based on Transformer, which achieves huge success in 

natural language processing and displays great potential in 

image processing. TransNet [28] proposes a novel 

downsampling model based on the transformer-based point 

cloud sampling network (TransNet) to efficiently perform 

downsampling tasks. The proposed TransNet utilizes self-

attention and fully connected layers to extract meaningful 

features from input sequences and perform downsampling. 

Despite the theoretical and practical research achievements 

in 3D point cloud processing through GCN methods, there are 

still shortcomings: (1) The selection of neighboring space for 

graph convolution and spatial selection for information 

aggregation lacks theoretical support. (2) How to integrate 

features at different scales in deep graph convolution 

algorithms. (3) The algorithms do not utilize multi-view 

information for parallel fusion models, achieving parallel 

extraction and fusion of visual features, which results in single 

visual feature structures, weak correlations, and low 

classification accuracy. 

Based on this, this study proposes an adaptive GCN 

algorithm based on visual computing theory and discusses its 

application in scene segmentation. The paper expands the 

theory of 2D visual selectivity to form a theory of 3D visual 

selectivity and proposes an adaptive graph convolution 

algorithm based on 3D visual selectivity (abbreviated as 

AGCNTDVS). Combining this algorithm with deep learning 

theory, we form a single-linkage depth-adaptive GCN 

algorithm based on 3D visual selectivity (abbreviated as SD-

AGCNTDVS), which extracts visual features at different 

depths and effectively integrates them. Inspired by the parallel 

visual information processing pattern of primates, building on 

the single-linkage algorithm, we construct a multi-linkage 

deep adaptive GCN algorithm based on 3D visual selectivity 

(abbreviated as MD-AGCNTDVS), extracting and optimizing 

visual features from different linkages. 

Therefore, the innovations of this paper include:  

(1) Theoretically, inspired by the 3D vision of primates [29], 

we propose a theory of 3D visual computation. Based on 3D 

spatial visual selectivity, we propose the AGCNTDVS 

algorithm, which addresses the issues of spatial partitioning 

and information aggregation in graph convolution, and 

adaptively learns the global and local features of 3D point 

clouds.  

(2) Inspired by the serial visual information processing 

pattern of primates, we integrate the AGCNTDVS algorithm 

with deep graph convolution learning theory to construct a SD-

AGCNTDVS algorithm, which learns deep abstract features 

of 3D point clouds at various depths and achieves feature 

integration.  

(3) Inspired by the parallel visual information processing 

pattern of primates [30], and using viewpoints as a standard, 

we expand the SD-AGCNTDVS algorithm to construct the 

MD-AGCNTDVS algorithm to learn multi-linkage features, 

forming a feature fusion matrix, and representing the optimal 

visual area.  

(4) We apply this algorithm to the custom 

𝑀𝑜𝑟𝑡𝑖𝑠𝑒_𝑎𝑛𝑑_𝑇𝑒𝑛𝑜𝑛_𝐷𝐵  dataset for the digital 

reconstruction of the joint structure, achieving adaptive 

segmentation of mortise and tenon structures. This validates 

the correctness of the structural segmentation and provides 

effective support for the intelligent design of ancient Chinese 

buildings. 

 

 

2. MULTI-LINK VISUAL COMPUTATION THEORY 

 

2.1 Theory of visual selectivity in 3D space 

 

The visual selectivity of primates indicates that the function 

of visual cells is characterized by "like attracts like, differences 

repel", expressed through the receptive fields of visual neurons. 

Based on this, the theory of 3D visual selectivity is proposed: 

(1) In 3D space, the visual selectivity of visual cells also 

follows the characteristic of "like attracts like, differences 

repel"; (2) It is represented through the 3D receptive field 

(spatial topological structure) of points, i.e., the intrinsic 

characteristics of a point and its spatial structure with 

neighboring points, which is invariant. (3) Based on the above 

points (1) and (2), by dividing according to the function of the 

receptive field, 3D visual space can be partitioned, and this 

partitioning has a reasonable basis in visual physiology theory. 

 

2.2 Theory of 3D graph convolution and its computational 

methods  

 

Research on GCN based on spatial maps describes graph 

convolution as a method of aggregating features from 

neighbors, including three steps: classification, aggregation, 

and activation. 

Spatial Classification: Inspired by the theory of 3D visual 

selectivity, a clustering segmentation algorithm is used to 

perform spatial division of the 3D GCN algorithm, dividing 

the 3D point cloud space, Ω, into K subspaces, i.e., 𝛺 =
⋃ 𝛺𝑘(𝑜𝑘 , 𝑅𝑘), and ⋂ 𝛺𝑘(𝑜𝑘1, 𝑅𝑘1)

𝐾
𝑘1=1 = 𝛷,while 𝑘1 ≠𝐾

𝑘=1
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𝑘 . Each subspace 𝛺𝑘(𝑜𝑘1, 𝑅𝑘1) contains points with similar 

receptive fields. 

Therefore, the receptive field in 3D visual space is defined 

as: When 𝑞 ∈ Ω𝑘(𝑜𝑘 , 𝑅𝑘) , the receptive field of point q 

includes two parts of information: the information of point q 

and the spatial structural relationship between q and 

neighboring nodes in Ω𝑘(𝑜𝑘 , 𝑅𝑘), expressed as: 

 

{
 
 

 
 

𝑇𝐷𝑅𝐹𝑞(𝑜𝑘 , 𝑅𝑘) = {(𝑖𝑛𝑓𝑜𝑟𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑞), 𝑡𝑜𝑝𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑞))| ∀𝑞 ∈ Ω𝑘}

𝑖𝑛𝑓𝑜𝑟𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑞, 𝑡) = (𝑥, 𝑦, 𝑧, 𝜑, 𝑜𝑡ℎ𝑒𝑟_𝑔𝑙𝑜𝑏𝑎𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒), 𝑞 ∈ Ω𝑘  and  dist(p, q) < ε

𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑞) =   Φ((𝛼, 𝛽, 𝛾, 𝜌, Δ, 𝑤𝑖
𝑗𝑘
)
𝑚𝑛
)

Ω𝑘(𝑜𝑘 , 𝑅𝑘) = 𝑀𝑃(𝑅) = 𝑀𝑖
𝑗
(𝑅) = {𝑃𝑗  |  ||𝑃𝑗 − 𝑃𝑖|| ≤ 𝑅, 𝑖, 𝑗 = 1,2,3, . . . }

 (1) 

 

Here, Ω𝑘(𝑜𝑘 , 𝑅𝑘) represents a hypersphere in visual space 

with center 𝑜𝑘 and radius 𝑅𝑘. In Ω𝑘, visual cells have the same 

or similar functions and stable spatial structures. 

In the visual space Ω𝑘, the information (global attributes) 

features of observation point ∀𝑝𝑖 ∈ Ω𝑘  are represented as: 

(𝑥, 𝑦, 𝑧, 𝜑, 𝑜𝑡ℎ𝑒𝑟_𝑔𝑙𝑜𝑏𝑎𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒), where x, y, z denote the 

global spatial location of point 𝑝𝑖 , parameter φ represents the 

number of topological divisions in the global visual space; 

𝑜𝑡ℎ𝑒𝑟_𝑔𝑙𝑜𝑏𝑎𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 indicates other global spatial features 

of the point, such as curvature and normal vectors. 

In the visual space Ω𝑘(𝑜𝑘 , 𝑅𝑘) , the spatial topological 

information of observation point 𝑝𝑗  is represented as 

(𝛼, 𝛽, 𝛾, 𝑅, 𝑤𝑖
𝑗𝑘
), where parameters α, β, γ, R describe the local 

visual topological structure of the observation point 𝑝𝑗, where 

azimuth angles α, β, γ respectively represent the local 

topological structure parameters of the visual space of vector 

𝑃𝑖𝑃𝑗⃗⃗ ⃗⃗ ⃗⃗  ; R is the magnitude of vector 𝑃𝑖𝑃𝑗⃗⃗ ⃗⃗ ⃗⃗  , representing the spatial 

distribution range of this vector. Parameter 𝑤𝑖
𝑗𝑘

 represents the 

minimum or sub-minimum number of points forming a stable 

local visual structure in the visual space Ω(𝑅, 𝑃𝑖), referred to 

as the richness of the receptive field; matrix 

(𝛼, 𝛽, 𝛾, 𝜌, Δ, 𝑤𝑖
𝑗𝑘
)
𝑚𝑛

 represents the local spatial topological 

set of observation point 𝑝𝑗, which learns the essential features 

of the set through mapping Φ, with these features being stable. 

In this paper, 𝛷 = 𝑀𝐿𝑃. 

Therefore, the spatial receptive field 𝑇𝐷𝑅𝐹𝑞(𝑜𝑘 , 𝑅𝑘) is an 

integration of local and global features, which better learns and 

expresses the visual information of 3D point clouds; here, 

when lim (
 
‖𝑃𝑖𝑃𝑗⃗⃗ ⃗⃗ ⃗⃗  ‖/𝑅) → 𝑜(0), the points in the visual space 

Ω(𝑜𝑘 , 𝑅𝑘) have stable and similar receptive fields, forming a 

smaller receptive field space through clustering. 

Thus, according to the above definitions, the 3D point cloud 

space receptive field and the graph convolution algorithm are 

described as Figure 1. 

 

  
(a) Global Ω space of the point cloud (b) K-nearest neighbor subspace Ω𝑘(𝑜𝑘 , 𝑅𝑘) division based 

on visual selectivity 

  
(c) K-nearest neighbor relationships of point p in 𝛺𝑘(𝑜𝑘 , 𝑅𝑘) (d) Spatial structure 𝑇𝐷𝑅𝐹(𝑝, 𝑅) of the subspace 𝛺𝑘(𝑜𝑘 , 𝑅𝑘) 

 

Figure 1. Space of three-dimensional point clouds and their graph convolution 

 

2.3 Theory of 3D visual information processing links 

 

The visual information processing of primates includes both 

serial and parallel modes, which are deeply integrated to form 

optimal visual information features. Based on this, a single-

linkage hierarchical serial visual information processing mode 

and a multi-linkage parallel processing mode based on a single 

link are formed in the theory of visual computation. The 

single-linkage hierarchical serial visual information 

processing mode can complete the extraction and integration 

of the same visual information at different depths, and it has a 

strong capability for deep feature abstraction learning for deep 

learning of visual information [27-29], but it lacks dependency 

learning of visual information. The multi-linkage parallel 

processing mode, created based on the single-linkage 

hierarchical serial visual information processing mode, 

achieves deep integration of multiple single-linkage visual 

information, implements inter-linkage feature dependency 

learning, and extracts the integrated features of information 

from different visual links. This solves the dependency of 
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visual features and enhances the expressive power of visual 

features. 

 

 

3. DESIGN OF THE PROPOSED ALGORITHMS 

 

Based on the theoretical analysis mentioned above, this 

paper proposes and implements three algorithms: 

AGCNTDVS, SD-AGCNTDVS, and MD-AGCNTDVS. 

 

3.1 The AGCNTDVS 

 

Inspired by the theory of 3D visual space selectivity, this 

algorithm integrates 3D visual selectivity with graph 

convolution algorithms, proposing the AGCNTDVS. The 

main steps of AGCNTDVS include spatial selection, 

information aggregation, and activation, detailed as follows. 

 

 
(a) K-nearest neighbor clustering space division diagram 

 
(b) Graph convolution information aggregation diagram 

 

Figure 2. Information aggregation method of graph 

convolution based on visual selectivity 

 

(1) Spatial Selection 

Inspired by the theory of 3D visual selectivity, the selection 

process mainly targets the global visual space Ω, utilizing the 

K-means clustering method to achieve the subdivision of the 

global space into subspaces, denoted as Ω = ⋃ Ω𝑘(𝑜𝑘 , 𝑅𝑘)
𝑘=𝐾
𝑘=1 . 

Elements within Ω𝑘  have the same or similar functions 

(receptive fields). 

(2) Information Aggregation 

In the visual subspace Ω𝑘(𝑜𝑘 , 𝑅𝑘), for ∀𝑞 ∈ Ω𝑘, the spatial 

topological information of observation point q and its L-

nearest neighborhood Ω𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑅𝐿 , 𝑞), 𝐿 = 0,1,2, …, , K is 

represented as vector 𝜇 = (𝛼, 𝛽, 𝛾, 𝑅, 𝑤𝑖
𝑗𝑘
)
 
. In this paper, the 

function Φ = MLP, meaning a MLP is used to learn the spatial 

topological structure between neighbors (Figure 2). Therefore, 

the information aggregation of observation point q and its 

neighborhood Ω𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑅𝐿 , 𝑞) are represented as: 

 

𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑅𝑖, 𝑞) =

𝑀𝐿𝑃 (𝐶𝑂𝑁𝐶𝐴𝑇 ((𝑀𝐴𝑃(𝑅𝑖 , 𝑁0
𝑗
), 𝑗 =

1,2,3… , 𝑛𝑒𝑚𝑏𝑒𝑟 (Ω𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑅𝐿 , 𝑞)) , )))    

(2) 

 

𝑀𝐴𝑃(𝑅𝑖, 𝑁𝑖
𝑗
) =

𝑀𝐿𝑃 (𝐶𝑂𝑁𝐶𝐴𝑇 ((𝑀𝐴𝑃(𝑅𝑖−1, 𝑁𝑖−1
𝑗
), 𝑗 =

1,2,3… , 𝑛𝑒𝑚𝑏𝑒𝑟 (Ω𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑅𝐿 , 𝑞)))))   

(3) 

 

Inspired by visual selectivity theory, 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒 

has a stable number of points and stable spatial structure, and 

for ∀q ∈ Ω𝑘(𝑜𝑘 , 𝑅𝑘), point q has a stable number of points and 

structure, which is independent of the input point order. 

(3) Activation 

To increase the non-linearity of the features, the algorithm 

uses the ReLU(R) activation function, with different pooling 

radii used for different visual areas. 

The pseudocode for the AGCNTDVS algorithm is shown in 

Table 1. 

 

Table 1. Pseudocode for the AGCNTDVS algorithm 

 
Input: point cloud data (Ω); hyperparameter 𝑅; observation point 

𝑝 

Produce: 

S1: Selection and k-nearest neighbor initialization. On the global 

point cloud visual space Ω, execute the K-means clustering 

algorithm, ⋃ Ω𝑘(𝑅, 𝑝)
𝑘=𝐾
𝑘=1 = 𝑅𝐹𝐾𝑁𝑁(Ω), and ⋂ Ω𝑘(𝑅, 𝑝) =

𝑘=𝐾
𝑘=1

Φ，∀𝑞 ∈ Ω𝑘(𝑅, 𝑝) , initialize the k-th order neighbor space 

Ω𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑞, 𝑘)  and its virtual edge structure (for specifying 

neighbor relationships) based on "closest distance most similar 

function". 𝑡1 = 1, 𝑘 = 1.  

S2: Feature selection and aggregation. On the neighborhood 

Ω(𝑅𝐿, 𝑞)  of point q, perform feature selection and aggregation 

through iterations of features corresponding to neighborhoods 

from 𝑅0 to 𝑅𝐾 using Formulas (2) and (3).  

S3: Activation. Perform RELU(R) activation on aggregated 

features to increase the non-linearity of the features.  

S4: If 𝑡1 ≤ ||Ω𝑘(𝑅, 𝑝)|| , the algorithm goes back to step S2; 

otherwise, after completing 3D graph convolution calculations for 

Ω𝑘(𝑅, 𝑝), proceed to step S5.  

S5: If k ≤ K, the algorithm returns to step S2; otherwise, after 

completing 3D graph convolution calculations for the global point 

cloud visual space Ω, the algorithm ends.  

Output: Graph convolution 𝑙𝑜𝑐𝑎𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑝) of point p in the 

neighborhood Ω𝑘(𝑅, 𝑝) and the set of clustering radii {r}. 
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3.2 The SD-AGCNTDVS 

 

Table 2. Pseudocode for the SD-AGCNTDVS algorithm 

 

Input: point cloud data (Ω); hyperparameter R; observation point 

𝑃𝑖; Network depth parameter L. 

Produce: 

S1: Parameter Initialization. Initialize the network depth 

parameter 𝑁𝑒𝑡_𝐷𝑒𝑒𝑝_𝐿𝑒𝑛 = 1 ; select observation set 

Ω𝑘(𝑅, 𝑝𝑖) ⊂ Ω.  

S2: 3D Visual Depth Calculation. In the 3D visual set Ω𝑘(𝑅, 𝑃𝑖), 
sequentially execute the AGCNTDVS. The process involves: 

𝐴𝐺𝐶𝑁𝑇𝐷𝑉𝑆𝑁𝑒𝑡_𝐷𝑒𝑒𝑝_𝐿𝑒𝑛+1 =
𝐴𝐺𝐶𝑁𝑇𝐷𝑉𝑆Net_Deep_Len(Ω𝑘(𝑅, 𝑃𝑖)) , incrementing 

Net_Deep_ Len  by 1, and linking the generated features of 

different layers in sequence.  

S3: If Net_Deep_ Len ≤ L, the algorithm loops back to step S2. 

Otherwise, the SD- AGCNTDVS algorithm ends, and deep feature 

extraction is complete.  

Output: Output features formed by linking visual features at 

different depths. 

 

Inspired by the serial processing mode of 3D visual 

information, this paper integrates the AGCNTDVS algorithm 

with deep learning theory to construct the SD-AGCNTDVS. 

The AGCNTDVS algorithm extracts abstract visual features 

of the 3D point cloud from different depths and merges these 

features to form complex visual features, enhancing the 

capability of the algorithm to extract visual features and 

enriching the expression of visual features. Thus, the 

pseudocode for the SD-AGCNTDVS is shown in Table 2. 

 

3.3 Semantic segmentation algorithm based on SD-

AGCNTDVS 

 

Use the SD-AGCNTDVS algorithm for semantic 

segmentation of three-dimensional point cloud data, achieving 

multi-scale feature aggregation of the 3D point cloud 

collection and using a per-point classification shared MLP 

algorithm. Since the algorithm uses a pooling mechanism, the 

feature lengths of three-dimensional point cloud data between 

different layers do not match. Based on this, the following 

feature filling operation, the 𝐹𝑖𝑙𝑙_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, is defined:  

 

𝐹𝑖𝑙𝑙𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 𝑇𝐷𝐸𝐹𝑞(𝑝, 𝑅) =

 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑇𝐷𝐸𝐹�̅�,𝑟(𝑝, 𝑅)) , 𝑎𝑛𝑑 �̅� ∈ �̇�(𝑞, 𝑟)  
(4) 

 

Here, q is the point to be filled, and �̇�(𝑞, 𝑟) represents the 

punctured r-neighborhood of point q.  

Thus, the model for the semantic segmentation algorithm 

based on the SD-AGCNTDVS (abbreviated as SSM-

AGCNTDVS) is given below (Figure 3). 

(1) Traditional segmentation algorithms 

 

 
 

Figure 3. The 3D SSM-AGCNTDVS model based on the AGCNTDVS algorithm 

 

3.4 The MD-AGCNTDVS 

 

The AGCNTDVS extracts deep visual features of the 3D 

point cloud; it has not studied the breadth visual features of the 

3D point cloud and the correlation of its breadth features. The 

clustering radius r of the AGCNTDVS algorithm determines 

the learning of breadth features and the analysis and 

application of feature correlations, with a microscopic analysis 

as shown in Figure 4. 

The above figure shows that different visual neighborhoods 

R correspond to different neighborhoods of point p; on 

different neighborhoods, the features of point p aggregated by 

the AGCNTDVS algorithm vary; when R is too small, the 

visual region Ω𝑞(𝑅, 𝑝)  of point p is too small, leading to 

insufficient expressive regions for the graph convolution, 

resulting in poor completeness; when R is too large, the visual 

region Ω𝑞(𝑅, 𝑝) is too large, containing different functional 

cells, and the visual information within the region does not 

satisfy visual selectivity, resulting in poor purity of visual 

features extracted from the Ω𝑘(𝑅, 𝑃𝑖) collection; therefore, the 

hyperparameter R is set during the experimental process. 

Based on this, this paper proposes the MD-AGCNTDVS, 

which adaptively extracts features within several consecutive 

visual regions corresponding to different R values, to learn the 

optimal or suboptimal global and local spatial features, 

addressing the shortcomings of the SD-AGCNTDVS 

algorithm. The pseudocode for the MD-AGCNTDVS is 

shown in Table 3. 
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a) 𝑅𝑖−1order visual region b) 𝑅𝑖  order visual region c) 𝑅𝑖+1 order visual region 

 

Figure 4. Microscopic relationship between visual regions and feature extraction by the 3D GCN algorithm 

 

Table 3. Pseudocode for the MD-AGCNTDVS algorithm 

 

Input: point cloud data (Ω(𝑅, 𝑝); hyperparameter set R; observation point 𝑝(set 𝑝 is the triplet of continuous natural number); 

Network depth parameter L. 

Produce: 

S1: Algorithm Initialization: Based on the hyperparameter R, generate neighborhoods Ω(𝑅1, 𝑝), Ω(𝑅2, 𝑝),…, Ω(𝑅𝑁0, 𝑝), where 

𝑅1 ≤ 𝑅2 ≤ ⋯ ≤ 𝑅𝑁0.  

S2: Multi-feature learning: Start multiple GPUs or threads to parallelly learn visual features from different visual 

regionsΩ(𝑅𝑖, 𝑝): 

𝑇𝐷𝐸𝐹(𝑝, 𝑅𝑖) = 𝑆𝑖𝑛𝑔𝑙𝑒 𝑙𝑖𝑛𝑘 𝑑𝑒𝑒𝑝 𝐴𝐺𝐶𝑁𝑇𝐷𝑉𝑆(Ω(𝑅𝑖 , 𝑝)) 

S3: Multi-domain feature fusion learning: 𝐻(𝑇𝐷𝐸𝐹(𝑝, 𝑅_𝑖 )), where H(·) is a feature fusion function.  

Output: Output different depth visual features and their fusion features. 

 

3.5 Application model of MD-AGCNTDVS for 3D point 

cloud segmentation 

 

The function H(·) fuses the segmentation results of the 

multi-domain adaptive GCN algorithm based on visual 

computing theory. In this paper's experiments, it can be 

implemented using an MLP algorithm, or through algorithms 

like MaxPool.  

 

𝐻(. ) = 𝑀𝐿𝑃(MDDVSA3DGCN(R𝑖)) 

or 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑀𝐷𝐷𝑉𝑆𝐴3𝐷𝐺𝐶𝑁(𝑅𝑖))  
(5) 

 

Here, the MaxPool algorithm learns the global maximum of 

different visual region features, representing global features 

and ignoring the details of features, with a lower time 

complexity. Meanwhile, the MLP algorithm learns the fused 

features of different visual regions, including the correlation 

between various features, hence, the features are more 

representative, but the feature fusion has higher time 

complexity. 

 

3.6 Algorithm invariance 

 

Existing works such as [14, 21, 23, 26, 31-34] have reported 

good geometric invariance performance, but they typically 

consider global coordinates or require point cloud 

normalization to mitigate this data variation, which could limit 

their invariance. The algorithm in this paper learns directional 

information and its directional selectivity within local 

receptive fields through 3D convolution kernels, and these 

features are formed independently of specific positions and 

distances, further enhanced by pooling mechanisms to 

improve the algorithm’s geometric invariance. Therefore, the 

algorithm exhibits good translational, scale, and rotational 

invariance. 

 

 

4. 3D MODEL SEGMENTATION ALGORITHM 

 

4.1 Dataset 

 

To verify the 3D object segmentation capability of the 

algorithm in this paper, the ShapeNetPart dataset [35] was 

used as the validation database, consisting of 16,881 CAD 

models of 16 object types, with each point in an object 

corresponding to a part label. There are a total of 50 categories, 

with each object type having 2 to 6 part categories available. 

For comparison with traditional algorithms, this experiment 

extracted 1024 points from each 3D model for training and 

testing. 

 

4.2 Evaluation method 

 

This paper uses the mean Intersection over Union (mIoU) 

to assess segmentation performance, which is the average IoU 

for each part type within the object category.  

IoU is a concept used in object detection. IoU calculates the 

overlap rate between the "predicted bounding box" and the 

"actual bounding box"—that is, the ratio of their intersection 

to their union. The ideal situation is complete overlap, i.e., the 

ratio is 1.  
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𝐼𝑜𝑈(𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 , 𝑆𝑇𝑟𝑢𝑒) =
𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡⋂𝑆𝑇𝑟𝑢𝑒
𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡⋃𝑆𝑇𝑟𝑢𝑒

 (6) 

 

Meanwhile, the mIoU is the average of the IoUs for all 

shape instances within that object category, expressed as:  

 

𝑚𝐼𝑜𝑈 =
1

𝑁
∑𝐼𝑜𝑈(𝑖)

𝑁

𝑖=1

 (7) 

 

Here, N represents the number of instances in the object, 

and in this experiment, N = 16.  

 

4.3 Network configuration  

 

The model architecture is shown in Figure 5. The feature 

extraction part consists of 5 layers, with kernel numbers (2, 3, 

5, 7, 9) at relevant layers, and two 3D Graph Max pooling 

layers deployed with a fixed sampling rate r=6. Features for 

segmentation are formed by connecting features from layer 

outputs at different scales; an additional one-hot vector 

indicates the object type connected to the aforementioned 

features; followed by an MLP layer that fuses multi-link visual 

features based on the generated fusion feature. A shared-

weight MLP layer is used to classify each point's segmentation 

label. We trained our algorithm using the ADAM optimizer 

with a learning rate of 0.001, decaying by half every 10 epochs.  

 

4.4 Comparative experiment of algorithms  

 

On the ShapeNetPart dataset, using mIOU as the evaluation 

standard and employing the network parameters set in Section 

4.3, a comparative experiment between the MD-AGCNTDVS 

algorithm and traditional algorithms was conducted, and the 

results are shown in Figure 6. 

 

 
 

Figure 5. Semantic segmentation network for 3D point cloud based on MD-AGCNTDVS 

 

  
(a) MIOU curves of different algorithms (b) MIOU curves of different algorithms for the same object 
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(c) MIOU of the different object (d) Relationship curves between objects, algorithms and MIOU value 

 

Figure 6. Relationship curves between objects, algorithms and MIOU value on the ShapeNetPart dataset 

 

Experimental results show that on the ShapeNetPart dataset, 

when compared with algorithms such as Kd-Net [32], 

MRTNet [33], PointNet [12], KCNet [34], RS-Net [23], SO-

Net [35], PointNet++ [13], DGCNN [21], KPConv deform 

[36], Relation shape CNN [37], PCT [27] ,3D-Unet [28] and 

myalgorithm and, our algorithm achieved segmentation results 

that are comparable to or better than the most recent methods, 

this proves that our algorithm is correct and feasible, and it 

possesses significant algorithmic advantages. 

 

4.5 Validation of geometric invariance 

 

On the ShapeNetPart dataset, and using mIOU as the 

evaluation standard, the geometric invariance of the MD-

AGCNTDVS algorithm was validated with the network 

parameters set in Section 4.3 (Table 4). 

 

Table 4. Geometric invariance performance comparison table 

 
Object GT KPConv [25] Shift Scaling PointNet++ [13] Shift Scaling 

Airplan 

       

chair 

  
     

Motorbike 

       

Lamp 

       
Object GT 3D GCN [24] shift scaling My paper shift scaling 

Airplan 

       
chair 

       
Motorbike 

       
Lamp 
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Experiments demonstrate that on the ShapeNetPart dataset 

for part segmentation visualization, the segmentation outputs 

of our algorithm were compared with those from KPConv [34], 

PointNet++ [23], and 3D GCN [24]. It showed that our 

algorithm possesses good geometric invariance. Here, GT 

(Ground Truth) represents the true part labels on the ground. 

 

4.6 Experiments on traditional Chinese architectural 

mortise and tenon structure object segmentation 

 
Mortise and tenon structures are fundamental elements of 

traditional Chinese architecture. According to the functional 

needs of the building, traditional Chinese architectural support 

structures are optimized combinations of several mortise and 

tenons and Dougong structures, forming a perfect mechanical 

support structure. Thus, the mortise and tenon structure and its 

application research are important research areas in traditional 

Chinese architecture and play a significant role in the 

development of Chinese architecture. To verify the capability 

of our algorithm in segmenting traditional Chinese 

architectural mortise and tenon structures, traditional Chinese 

architecture includes 32 common types of mortise and tenon 

structures. This project selected 16 types of mortise and tenon 

structures to form the 3D point cloud database 

𝑀𝑜𝑟𝑡𝑖𝑠𝑒_𝑎𝑛𝑑_𝑇𝑒𝑛𝑜𝑛_𝐷𝐵 , which serves as the validation 

database. This dataset consists of 15,330 CAD models of 16 

object types, with each point in an object corresponding to a 

part label. For comparison with traditional algorithms, this 

experiment extracted 1024 points from each 3D model for 

training and testing. 

On the 𝑀𝑜𝑟𝑡𝑖𝑠𝑒_𝑎𝑛𝑑_𝑇𝑒𝑛𝑜𝑛_𝐷𝐵 dataset, using mIOU as 

the evaluation standard, and employing the network 

parameters set in Section 4.3, a comparative experiment was 

conducted between the MD-AGCNTDVS algorithm and 

traditional algorithms, and the comparative experiment results 

are shown in Figure 7. 

 

  
  

(a) MIOU curves of different algorithms (b) MIOU curves of different algorithms for the same object 

  
(c) MIOU of the different object (d) Relationship curves between objects, algorithms and MIOU value 

 

Figure 7. Relationship curves between objects, algorithms and MIOU value on Mortise_and_Tenon_DB 

 

The results demonstrate that on the 

Mortise_and_Tenon_DB dataset, when compared with 

algorithms such as Kd-Net [34], MRTNet [34], PointNet [12], 

KCNet [22], RS-Net [23], SO-Net [26], PointNet++ [13], 

DGCNN [36], KPConv deform [25], 3D GCN [24], PCT 

[27] ,3D-Unet [28] and myalgorithm, our algorithm achieved 

segmentation results that are comparable to or better than 

traditional methods. This confirms that our algorithm is correct 

and feasible, and it has considerable algorithmic advantages.  

In this experiment, 10 classes were randomly selected from 

the 𝑀𝑜𝑟𝑡𝑖𝑠𝑒_𝑎𝑛𝑑_𝑇𝑒𝑛𝑜𝑛_𝐷𝐵  database to verify the 

geometric invariance of the proposed algorithm, where the 

scaling transformation was defined as isotropic scaling 

transformation along three axes; the parameter ϑ represents the 

scaling size of the point cloud set, expressed as a percentage 

relative to the GT model. To truly reflect the impact of the 3D 

model's own changes during geometric transformations on the 

algorithm's segmentation performance, we define a geometric 

transformation evaluation coefficient: 

 

𝜌 =
𝑚𝐼𝑂𝑈(𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛_𝑜𝑏𝑗𝑒𝑐𝑡)

𝑚𝐼𝑂𝑈(𝑚𝑎𝑡𝑒_𝑜𝑏𝑗𝑒𝑐𝑡)
  (8) 

 

Here, 𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛_𝑜𝑏𝑗𝑒𝑐𝑡  represents the 

mIOU value of a transformed set, and 𝑚𝐼𝑂𝑈(𝑚𝑎𝑡𝑒_𝑜𝑏𝑗𝑒𝑐𝑡) 
represents the mIOU value without geometric transformations; 

the evaluation coefficient 𝜌  indicates the extent to which 
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geometric transformations affect the algorithm, with the 

mIOU calculation method referred to in Formula (X). The 

results of the geometric invariance experiments are shown in 

Table 5 and Figures 8 and 9. 

 

Table 5. Results of the geometric invariance experiments 

 

Object 

Name 

PointNet PointNet++ KPConv deform 

Translation  Rotation Scaling Translation  Rotation Scaling Translation  Rotation Scaling 

CST 0.99  1.00  0.96  0.99  1.00  0.96  0.99  1.00  0.96  

IST 0.99  1.00  0.97  0.99  1.00  0.97  0.99  1.00  0.97  

HHT 0.99  1.00  0.95  0.99  1.00  0.95  0.97  1.00  0.95  

WLT 0.99  1.00  0.96  0.94  1.00  0.96  0.99  1.00  0.96  

MST 0.99  1.00  0.93  0.99  1.00  0.93  0.99  1.00  0.93  

TST 0.99  1.00  0.96  0.99  1.00  0.96  0.99  1.00  0.96  

BPT 0.99  1.00  0.94  0.95  1.00  0.94  0.98  1.00  0.94  

SIT 0.99  1.00  0.96  0.99  1.00  0.96  0.99  1.00  0.96  

RAT 0.99  1.00  0.99  0.99  1.00  0.99  0.99  1.00  0.99  

PST 0.99  1.00  0.98  0.99  1.00  0.98  0.99  1.00  0.98  

Object 

Name 

3D GCN My algorithm My algorithm 

Translation  Rotation Scaling Translation  Rotation Scaling Translation  Rotation Scaling 

CST 0.99  1.00  0.96  0.99  1.00  0.96  0.99  1.00  0.96  

IST 0.99  1.00  0.97  0.99  1.00  0.97  0.99  1.00  0.97  

HHT 0.96  1.00  0.95  0.94  1.00  0.95  0.99  1.00  0.95  

WLT 0.99  1.00  0.96  0.99  1.00  0.96  0.99  1.00  0.96  

MST 0.99  1.00  0.93  0.99  1.00  0.93  0.99  1.00  0.93  

TST 0.99  1.00  0.96  0.97  1.00  0.96  0.99  1.00  0.96  

BPT 0.96  1.00  0.94  0.99  1.00  0.94  0.99  1.00  0.94  

SIT 0.99  1.00  0.96  0.99  1.00  0.96  0.99  1.00  0.96  

RAT 0.99  1.00  0.99  0.99  1.00  0.99  0.99  1.00  0.99  

PST 0.99  1.00  0.98  0.99  1.00  0.98  0.99  1.00  0.98  

 

 
(a) Rotation invariant analysis 

 
(b) Translation invariant analysis 

 
(c) Scala invariant analysis 

 

Figure 8. Geometric invariant analysis on 

Mortise_and_Tenon_DB 

 

In this experiment, the results show that under limited set 

transformation conditions, for the 10 models randomly 

selected from the 𝑀𝑜𝑟𝑡𝑖𝑠𝑒_𝑎𝑛𝑑_𝑇𝑒𝑛𝑜𝑛_𝐷𝐵  database, the 

value of the algorithm parameter ρ approaches 1 in the 

translation and rotation transformation tests, indicating strong 

geometric invariance of our algorithm. In the scaling 

transformation tests, due to overlapping of some points within 

the visual space leading to point loss, the value of the 

algorithm parameter ρ did not stabilize near 1, indicating 

weaker geometric invariance of our algorithm. Furthermore, 

as the compression rate increases, more points are lost during 

scaling transformations, the spatial structure is disrupted, and 

the scalability and invariance of the algorithm decrease. 
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(a) Rotation invariant analysis 

  
(b) Translation invariant analysis 

 
(c) Scala invariant analysis 

 

Figure 9. Geometric invariant analysis on the ShapeNetPart 

dataset  

 

 

5. CONCLUSION  

 

This paper proposes "Multi-domain adaptive graph 

convolution algorithm based on visual computing theory and 

its scene segmentation application". Inspired by the 3D vision 

of primates, a 3D vision computing theory is proposed; based 

on this, the algorithm of nearest neighbor space range of graph 

convolution is definition, and an adaptive graph convolution 

algorithm based on 3D vision selectivity is proposed. Inspired 

by the serial/parallel processing model of primate visual 

information, a single-link/multi-link depth adaptive graph 

convolution algorithm based on 3D visual selectivity is 

constructed to learn and integrate the depth and breadth visual 

features of point clouds. and global and local visual features; 

the MLP algorithm with shared weights is used to achieve 

object segmentation. On ShapeNetPart and custom 

Mortise_and_Tenon_DB, compare with algorithms such as 

PointNet, PointNet++, KPConv deform, 3D GCN and My 

algorithm to verify the segmentation performance and 

geometric invariance of this algorithm. The experimental 

results show that the algorithm of this paper has good 

segmentation performance, and the segmentation success rate 

reaches 90.9%; the algorithm in this paper has strong 

geometric invariance, rotation and translation transformations 

have geometric invariance, and in the interval [-0.15,0.15], the 

telescopic transformation has limited geometric invariance. 

transsexual. 

Future optimizations of the algorithm will focus on two 

main aspects to improve performance: 

(1) Verify the feasibility and advantages of this algorithm 

on more data sets (especially large scene data sets), and prove 

the universality of the algorithm. 

(2) The multi-link parallel depth vision algorithm involves 

many parameters, the parameter settings are more complex, 

and parameter optimization and algorithm problems are 

prominent. Parameter optimization and adaptive setting are 

important follow-up research directions. 

(3) The algorithm parameter setting determines the 

computational complexity of the algorithm, and determines 

the time and space complexity of the algorithm. With the 

improvement of algorithm optimization methods, the time and 

space complexity of the algorithm under optimization 

conditions will be further explored. 
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