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Vehicle-type detection tool has many applications in transportation, traffic control, guiding 

and controlling unmanned vehicles, tolls and road taxes, traffic violations, smuggling 

detection, etc. In the proposed version, the MobileNet neural network and the YOLO V5 

algorithm are integrated. In this integration, the YOLO V5 algorithm replaces the 

convolutional layers of the neural network and the neural network be used for the 

classification of vehicles. The Kivy library is employed to transform the developed 

algorithm into an Android application. The data used in this study consists of two datasets: 

The ImageNet database and a constructed database. The proposed method results show 

improvement in increasing the accuracy of vehicle detection, reducing the computational 

load, detection accuracy in different weather conditions, separating overlapping cars. 

Various methods are presented for better neural network training and reducing neural 

network size. The reason for these capabilities is the use of developed algorithms and the 

use of techniques such as data augmentation, spatial filtering, and distillation. 
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1. INTRODUCTION

Today, vehicle-type detection is used in various fields. Its 

application in transportation, providing traffic permits and 

road taxes, detecting smuggling, registering traffic violations, 

controlling unmanned vehicles, and managing smart cities are 

some of the things that show the importance of vehicle-type 

detection. 

There are limitations to detect vehicles in the image, which 

are: 

• The image processing system needs very detailed images

from specific angles of the car. 

• Variety in cars, for example, car rides, buses, etc.

• The pictures are taken in different weather conditions and

light changes. 

In this article, the proposed method is based on the 

integration of the Mobilenet neural network and YOLO V5 

algorithm. For this purpose, the proposed method has been 

compared with the RFCN method. In the proposed method, the 

results obtained from simulation are about 98.5%, and the 

results obtained practically from different environments are 

about 98%, which are more accurate and efficient than other 

methods. From another point of view, the hardware 

implementation of algorithms and solutions is of special 

importance because there are bottlenecks in the 

implementation of the scenario in the form of simulation and 

converting it into hardware. The implementation of the 

proposed method using the database shows a good 

performance. The features of the proposed method are: 

reducing the calculation load, high efficiency, higher detection 

accuracy, and applicability in different weather conditions. 

The next chapters of the paper are organized as follows. 

Chapter 2 presents related works, Chapter 3 introduces the 

proposed method and explains the implementation method, 

Chapter 4 reviews the implementation results, and Chapter 5, 

concludes the paper. 

2. RELATED WORKS

Vehicle-type detection methods are generally divided into 

three categories: 

2.1 Simple visual operators 

In traditional methods, techniques such as determining the 

threshold value on traffic images [1], detecting the edges of 

traffic images [2], etc. Traditional methods have been used for 

years in many cases due to their simple design, but challenges 

such as low quality in working in different weather conditions 

and day-night changes that cause of light changes are small 

obstacles. Against the desired object and the sticking of the 

pixels of an image, traditional methods were used less. These 

methods were used until around 2006, but due to many 

challenges, they are almost obsolete now [3-7]. 

2.2  Image feature extraction and intelligent classification 

system 

In these methods, we have image feature extraction 
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following an intelligent classification system [8]. Analysis of 

a sequence of images [7], use of Haar-like feature [9]. Feature 

extraction-based methods were used till 2015 and had an 

accuracy of approximately 70%. The main challenges of the 

methods were the objects multiplicity in the input images, the 

changes of light during the day and night, the error in detecting 

moving targets, and the low ability to separate image 

components [10-12]. 

 

2.3 Convolutional neural network (CNN) 

 

In these methods, there are various techniques such as R-

FCN network-based vehicle type identification and CNN 

based vehicle type classification [13]. In this method, the 

object recognition accuracy reaches more than 90% and the 

challenges of the past methods have been solved to some 

extent, but the computational load has not been reduced, which 

slows down the target object recognition speed [7]. The use of 

the convolutional neural network method for vehicle 

identification is considered, but the improvement of 

computing processing performance should be considered [14-

19]. 

 

 

3. PROPOSED METHOD 

 

A combination of the MobileNet neural network with the 

YOLO V5 algorithm used in the proposed method is an 

acceptable solution that can increase the processing speed and 

overcome challenges such as weather conditions and a variety 

of vehicles. Figure 1 shows steps for the detection and 

classification of vehicles. In this method, using of multiple 

images taken from different angles of the vehicle increases the 

accuracy of object recognition. At the same time, speeding up 

the process of vehicle recognition on highways and 

checkpoints can also be counted among the capabilities of this 

system. The different steps used in this method are as follows: 

Image Registration, Image Processing, Object Detection and 

Vehicle Classification. 

 

 

 
 

Figure 1. Steps for detection and classification of vehicles 

 

3.1 Images registration 

 

In the image registration section of the proposed method, 

images are prepared from different databases. We use two 

databases. The first one is ImageNet, and the second one is a 

database we created ourselves. The created database is made 

of images at different weather conditions. The database 

created is 7404 images, and these images are prepared from 

video frames in such a way that one frame is extracted from a 

video every second. The images resolution of each image is 
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512×512. 

These images are divided into four classes: cars, SUVs, 

trucks, and buses. 

Then, for annotation, using four colors, we teach the 

labeling of two database images on each pixel, 60% of these 

images are used for training and 40% for testing. 

 

3.2 Image augmentation 

 

Increasing the accuracy in various conditions requires a data 

augmentation method. Data augmentation helps obtain new 

images for training by artificially producing new images from 

the original images. The use of acceptable new images to 

increase the collection size is the goal of the data augmentation. 

As a modern deep-learning algorithm, convolutional neural 

networks (CNN) are capable of learning location-independent 

features. Nonetheless, what helps more to learn independent 

features in the image is to enhance and add data by rotation, 

changing light and color. All cases eventually lead to the fact 

that if the object in the image is rotated in any direction, or we 

face a decrease in light and transparency, etc., the network 

learns well to recognize correctly. 

The following is Table 1 with information from the 

database. 

 

Table 1. Information about databases 

 

Database 

Type 

Number of 

Vehicles Before 

Applying Data 

Augmentation 

The Number of 

Vehicles After 

Applying Data 

Augmentation 

Images in 

Adverse and 

Noisy 

Weather 

Conditions 

Database 

Created 
7404 73200 7200 

Database 

ImageNet  
6300 45040 4700 

Total 13704 118240 11900 

 

3.3 Image processing 

 

Convolutional masks are used in the proposed method. 

When different convolution or spatial masks are applied to the 

same image, it produces different results. In the proposed 

method, a high-pass filter is used. These filters are those 

spatial filters that maintain or improve high-frequency 

components including fine details, points, lines, and edges 

with possible effects of increasing noisy pixels. In other words, 

it highlights the changes in brightness of the image. By using 

this filter in our method, the issue of separating objects has 

been solved. Applying the convolution mask on the images 

makes the image smaller and the network does not appear in 

the image in general. In the proposed method, because the 

Yolo algorithm is used when all the details of an image are 

clear and prominent, this algorithm can separate the 

components of an image from each other in the image, and the 

detection speed is also higher (reducing the calculation load). 

 

3.4 Object detection 

 

It is necessary to  create an algorithm that can recognize 

objects by implementing itself in these networks. SSD, YOLO, 

small face, and small sample segmentation techniques, 

including R-CNN, and U-Net are several algorithms that are 

used to identify the type of vehicles.  Among these, an 

algorithm like YOLO has been attractive due to its high power 

of object detection the completeness of the deep learning 

system, and the speed of solving the problem. The function of 

this algorithm is that it first separates and decomposes the 

image into different parts, and by marking each part and 

simultaneously running the detection algorithm, it categorizes 

the parts and draws the final result. After the object detection 

process is done completely, it connects them such that the two 

parts of each main object are a box. As all these actions are 

performed simultaneously and in parallel, it is possible to 

continuously process up to 40 images per second. 

Here, version 5 of the Yolo algorithm is used. YOLO V5 is 

different from all previous versions. In YOLO V5, the 

backbone part (in the network architecture) is of CSP type and 

the neck part is of PA-NET type [20]. The major 

improvements of this version include mosaic data 

augmentation and automatic learning of bounding boxes. 

YOLO V5 is small. Specifically, the size of a weights file 

(with the extension) for YOLO V5 is 27MB. YOLO V5 is 

almost 90% smaller than other versions. It is very fast and light 

compared to other versions, while its accuracy is equal to the 

standard of other versions [20]. 

 

3.5 Vehicle classification 

 

The proposed algorithm for labeling each vehicle in four 

levels (rider, SUV, truck, and van) must be implemented on a 

neural network. A convolution neural network is used to 

implement this operation. The commonly used convolutional 

neural networks for this purpose are Imagenet, Li-net, Alexnet, 

ZFnet, VGGnet, Googlenet, and Rosenet. 

The need for small-sized and high-speed networks with the 

ability to be used in robotics, minicomputer boards, and of 

course mobile phones exists in all systems. 

MobileNet neural network is one of the most prominent 

small-size networks. A new type of convolution called depth-

wise separable convolution is introduced in the MobileNet 

neural network. The main element in the MobileNet network 

is this convolution layer. Depth-wise separable convolution is 

the heart of the MobileNet network. The standard convolution 

in Qaleb neural networks included two stages of filtering and 

integration. Depth-wise separable convolution also includes 

two stages of filtering and integration. However, each step has 

small differences from standard convolution steps. One 

difference is that in depth-wise convolution, there is separable 

in both stages of convolution. While in standard convolution, 

there is convolution only in the filter stage. The integration 

step is a simple addition. The two stages of depth-wise 

separable convolution are like this: 

The first stage is filtering, and depth-wise convolution, and 

the second stage is integration and point-wise convolution. 

 

3.5.1 Depth-wise convolution 

Depth-wise convolution is equivalent to standard 

convolution filtering. But with an important difference. We 

had a k×k kernel in the standard M convolution. But in depth-

wise separable convolution, we have a k×k kernel. 

First, by performing the filtering operation, each page of the 

kernel is channelized into one page of the F input feature 

champ. This stage is called deep convolution. Because we 

have done convolution on each page in line with the depth or 

pages and did not add the output pages together. 

 

3.5.2 Point-wise convolution 

This step is equivalent to the integration step in standard 
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convolution. But there is still a fundamental difference 

between the integration stage in standard convolution and 

depth-wise separable convolution. In the standard M 

convolution, we had k×k kernels. But in this convolution, we 

have only one k×k kernel. 

MobileNet neural network has 4.2 million parameters. 

When we compare the number of parameters of this network 

with the popular ResNet-18 network with 11 million 

parameters, the amount of parameters is much less than the 

other neural network. 

In the MobileNet neural network, 94.86% of the calculation 

volume is in the same 1×1 Convolution layer. The important 

thing is that with an interesting idea, most numbers of the 

calculations and the number of parameters have been reduced 

in 3×3 Convolution layers. 

An overview of a depth-resolvable torsion block is shown 

in Figure 2. 

 

 
 

Figure 2. Overview of a depth-wise separable convolution 

block 

 

Considering the mentioned advantages and the important 

problem of reducing the calculation load (processing speed), 

we use this neural network. 

 

3.6 Proposed neural network coefficients compression 

 

We will see better performance when the number of 

parameters increases. Of course, this case leads to an increase 

in computing costs, which subsequently affects the cost 

imposed on the server and the increase in the duration of 

training. For this reason, cost improvement and management 

is achieved by compressing the neural networks  that it is 

necessary. 

• Weight pruning 

One of the oldest methods in neural network compression is 

weight pruning, which refers to the removal of certain 

connections between neurons. This deletion in practice means 

that the deleted weight is replaced by zero. 

• Quantization 

The essence of a neural network is a combination of linear 

algebra and some other operations. By default, most systems 

use a variety of float32 formats to represent variables and 

weights. 

However, the calculation speed with other formats such as 

int8 is generally higher than float32 formats and occupies less 

space in memory. 

Neural network quantization refers to methods that take 

advantage of this. Changing the longer format to a shorter one 

(e,g, from float32 to int8). 

• Distillation 

Among the three neural network compression methods, the 

distillation method has been used because of its capabilities, 

which has more advantages than the two methods of pruning 

and quantization. Despite the effectiveness of quantization and 

pruning methods in implementation, their possible damages 

such as loss of weights and neurons of neural network may 

lead to a decrease in network accuracy. 

The simple approach of the distillation method is training a 

large model (teacher) to achieve the best performance and 

using its forecast  to teach a smaller network (student) which is 

easily implementable. With this method, deep neural network 

helps the smaller network to estimate the main function. 

The calculation diagram of the distillation method is shown 

in Figure 3. 

The diagram of the distillation method is shown in Figure 4. 

 

 
 

Figure 3. Graph of distillation method calculations 

 

Figure 4. Distillation method implementation diagram 

 

The probabilities obtained from the hefty model, which are 

soft targets for the training of the small model, provide the 

generalization of transferring the heavy model to the smaller 

model. Therefore, this training kit or a "transfer kit" for hefty 

model training can be used in the transfer phase. Since simpler 

models are a subset of heavy models, we can use each of those 

simple models as soft targets by estimating arithmetic or 

geometric averages. Due to the high entropy of soft targets and 

the provision of more information for training and their less 

diversity compared to hard targets, it is possible to train a small 

model without the need for heavy model data and only with 

appropriate data while achieving an increase in the learning 

rate. Although the training time cannot be improved much in 

the distillation method, the conclusion time of the distilled 

models has been improved. This is one of the major 

differences between this method and the previous methods. 

 

3.7 Implementing the proposed method 

 

Using Python, the proposed method composed of (YOLO 

V5 algorithm and MobileNet neural network) is implemented. 

The proper design of this program has been very effective for 

quick sampling of complex programs. In the proposed method, 

the Keras library is used for implementation. This library is 

open source in Python and can be implemented on Tensor 

Flow, Microsoft Cognitive Toolkit, R Theano, or PlaidML. 

Defining and training neural network models using a few 
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lines of code during implementation is one of the capabilities 

of this library. Finally, the MobilNet neural network and the 

YOLO V5 algorithm can be installed by existing libraries. 

In the design of the neural network, the MobileNet neural 

network is first implemented, then to increase the processing 

speed (reduce the calculation load) and recognize the desired 

object, the YOLO algorithm is used in the convolution layers. 

This integration reduces parameters and operations, which 

increases both accuracy (due to the use of MobileNet neural 

network) and processing speed (YOLO algorithm). 

The shape of the network redesign and new layering is 

shown in Figure 5. 

To improve the performance of the designed network, the 

computationally expensive layers at the beginning and end of 

the network have been redesigned. To increase the speed of 

detection, the Yolo algorithm has been used instead of the 

convolutional layer. 

A new non-linear function, h-swish, is used instead of the 

linear ReLU, which has a great effect on improving the 

performance of the network. 

In addition to the initial layers, there are a number of final 

layers in this version that require a lot of computation and slow 

down the network even more. To reduce the amount of 

computation and to increase the speed of the network, the 

average pooling layer of the last block is moved and placed 

before the expansion layer of the last block. This greatly 

reduces the amount of computation by using the average 

pooling layer. Also, the depth and point convolution layers in 

the last block are unused and we remove them from the mesh. 

The resulting image is in Figure 5: 

 

 
 

Figure 5. The shape of the network redesign 

 

This redesign reduces the latency to 7 milliseconds or 11% 

of the execution time. On the other hand, these changes reduce 

the total number of additions and multiplications in the 

network by 30 million, without any loss of accuracy. 

One of the non-linear functions whose use improves the 

accuracy of neural networks is the swish function, which is 

calculated by the following relationship: 

 

𝑆𝑤𝑖𝑠ℎ 𝑥 = 𝑥 ∙ 𝛿(𝑥) (1) 

 

Instead of using the swish function, the h-swish function is 

used, which has almost the same behavior as the swish 

function and is calculated using the following relationship. 

 

ℎ − 𝑆𝑤𝑖𝑠ℎ = 𝑥
𝑅𝑒𝑙𝑢(𝑥 + 3)

6
 (2) 

 

3.8 Converting the proposed neural network to Android 

application 

 

Python does not have built-in development capabilities for 

the Android operating system, but some packages can be used 

to create Android applications. Different types of methods to 

convert Python to Android are: 

(1) Kivy 

This tool can be run on Android and to some extent on any 

device with OpenGL ES version 2 (and at least Android 2.2). 

Kiwi Android software is common and Android software that 

can be distributed on platforms like PlayStore and other 

software of this operating system. 

(2) BeeWare 

Android support in Beeware is possible through the use of 

VOC (a tool for compiling Python codes to Java files). This 

process enables Python code to run on the JVM just like Java 

code. 

(3) Chaquopy 

It is a plugin for Android Studio. 

(4) Pyqtdeploy 

It is a tool for loading PyQt programs and supports loading 

operations on PC (Linux, Windows, and OS X) and mobile 

platforms (iOS and Android). 

(5) QPython 

It is an installable scripting engine and a programming 

environment. 

(6) SL4A 

The Android Scripting Layer or SL4A, formerly called the 

ASE (Android Scripting Environment), is a set of "facades" 

that are a highly simplified subset of the API. 

(7) PySide 

It is a Python connector package for Qt that also supports 

Android at basic levels. 

(8) Termux 

Termux is an example of an Android terminal and a Linux 

environment that can be used directly without the need for 

installation and configuration. 

According to the above definitions, we use the powerful 

Kivy framework to build an Android application. Kivy is a 

Python module that allows the creation of compatible 

programs using Python. It is very easy to reuse the same code 

on IOS, Android, Mac, Windows, Linux, and almost all other 

operating systems with this module. 

The main advantage of Kivy are: 

•It is based on Python, which is very powerful given the rich 

nature of the library. 

•Use a fixed code on all devices 

•Easy tools with multi-touch support . 

•Better performance than cross-platform HTML5 

alternatives. 

The architecture is divided into two levels: high level and 

low level. The top level contains the tools and features 

available to GUI developers, such as widgets, the Kivy 

language, and other high-level features visible to the developer. 

In contrast, the low level contains the tools that make up the 

Kivy infrastructure. 

High Level: This section contains the tools and features 

available to GUI developers, such as widgets, the Kv language, 

and other high-level features visible to the programmer. 

Low Level: In contrast, this section contains tools that show 

what the Kivy infrastructure is and what it contains. 

The architecture of the Kivy framework is as follows. 

"Input Provider" and "Core Provider": First, we want to 

know what the concept of "abstraction" is in the Kivy 

architecture. Therefore, we need to know that it is one of the 

main concepts of the Kivy framework and it means to hide 

technical details and present a view is simpler than that. The 

1381



 

concept of abstraction allows developers to work with high-

level features without having to understand the low-level 

details of the system. In the "core provider" section, the Kivy 

framework abstractly provides basic tasks such as opening a 

window, displaying images and text, playing audio, receiving 

images from the camera, spell spell-checking. This allows 

programmers to develop their applications quickly and easily 

without having to understand the technical details and inner 

workings of these tasks. Operating systems use different 

software programming interfaces to perform basic tasks. 

A kernel provider is a piece of code that uses APIs specific 

to operating systems such as MacOS, Linux, BSD, Unix and 

Windows to act as an intermediate communication layer 

between the Kivy framework and the operating system. This 

module is responsible for performing key system-related tasks 

based on the operating system's specific API and for passing 

information between Kivy and the operating system. In a 

similar concept, "Input Providers" are pieces of code that 

support a specific input device, such as Apple trackpad and 

mouse emulator, and if you need to add support for a new input 

device, you can simply create a new class that reads the data 

from the target device and converts it into "Basic Events" of 

this framework. 

"Graphics API" of the Kivy framework is an abstraction of 

OpenGL. In other words, this framework has provided a level 

of abstraction that allows programmers to create various 

geometric shapes without directly using complex OpenGL 

code, using the tools and facilities provided in Kivy. One of 

the advantages of using this graphical interface is the ability to 

automatically optimize drawing commands, helping to 

improve the performance of programs. 

The core: The core of the Kivy framework provides the 

following features: 

Clock: This feature is used to schedule timer events. In other 

words, developers can easily manage time-based operations 

and decide which parts to run periodically and which parts to 

run once and at a specific time. 

Cache: If data is used frequently, it is easy to use the Cache 

class provided in the Kivy framework for time-management 

purposes-without the programmer having to write a lot of code 

for this purpose. 

Gesture recognition: The gesture recognition module 

analyses the user's movements on the input device to detect 

certain patterns. These patterns-such as circles and rectangles-

can be used to control a device or perform a specific action. 

Kivy language: The Kivy design language is designed to 

describe graphical interfaces easily and efficiently. 

Properties: Properties in Kivy are classes used to 

communicate between widget code and the structure of GUI 

elements defined by the developer, and are different from the 

usual Python properties. 

UIX: The UIX module provides a set of widgets and layouts 

to quickly and easily create user interfaces within this 

framework. 

Modules: Module classes in Kivy add new functionality to 

applications, like plug-ins in web browsers. 

Input events: In the Kivy framework, different types of 

input sources such as touch, mouse, TUIO, etc. are managed 

using the abstraction concept. Input events in this framework 

are defined by instances of the Touch class, which are in one 

of three states: "up", "down" and "in motion". 

Widgets and event dispatching: In the previous parts we 

learned what a widget is in Kivy. We should mention again 

that widgets are the basic elements to describe the part of the 

application that receives "input events" from the user. For 

example, when the user taps a button, the button widget detects 

that a touch event has occurred and triggers the appropriate 

response. It is a fact that widgets have a tree structure and a 

widget can have zero or a number of children. Therefore, in 

the widget tree there is only one main widget or "root" for 

which no parent is defined, and other widgets are directly or 

indirectly children of this root. When a new event occurs, for 

example "touch", an event is sent for each touch, which is first 

received by the main widget or root of the widget tree. Then, 

depending on the type of widget, this event is directed to the 

appropriate widget-we call this operation "event dispatching"-

to respond correctly to the desired event. In general, the widget 

tree represents the hierarchical structure of these graphical 

elements, and the input events are correctly distributed and 

processed by this tree. 

 

3.9 Speed tracking 

 

In order to detect the speed of the vehicle, the speed can be 

obtained by calculating the displacement of the pixels in the 

frames. 

How to track the speed is shown in Figure 6. 

 

 
 

Figure 6. How to track speed 

 

 

4. IMPLEMENTATION RESULTS 

 

IDLE software is used to implement the proposed method. 

All execution steps are performed on a Window10 operating 

system, Intel Core i7 processor, 12GB DDR3 memory running 

at 799.5 MHz16 and NVIDIA GeForce GTX 750 Ti graphics 

card. 

To prove the efficiency of this device, 130,000 car images 

have been used. These images are from films made by the 

researcher in different weather conditions, including 

mountainous, desert and rainy. In the previous methods, 

problems such as geographic conditions were not given 

importance, which caused challenges such as decreasing 

accuracy in atmospheric conditions, mountains and intense 

light radiation in desert areas. 

Apart from the database that is prepared, the ImageNet 

database is also used. A data augmentation technique has been 

used to increase the accuracy and better train the neural 

network. 

To check the performance, the proposed method is 

performed with two RFCN neural network methods and the 

combination of YOLO algorithm with VGG neural network. 

In the proposed method, despite the continuous working 

hours of the device, less than 2% losses were obtained, while 

in the RFCNN method, this loss coefficient is almost 9%. The 

corresponding function displays the error coefficient during 

the execution of the neural network and in the combination of 
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YOLO algorithm with VGG neural network method, this loss 

coefficient is almost 2.5%. As follows: 

 

Loss =
1

N
∑(yP − yt)

2

N

i=1

 (3) 

 

In addition to the continuous and adequate performance in 

this device, the error rate of non-diagnosis of the device in this 

method has been reduced and the effectiveness has been close 

to 98%. What increases the accuracy of detection to almost 

98% in the implementation of this method is the use of 

MobileNet convolution with the YOLO V5 algorithm and the 

use of a spatial filter with high processing speed. While the 

RFCNN method has an efficiency of 91%. In another 

implementation we use the YOLO algorithm with the VGG 

neural network method has an efficiency of 97%. 

 

Accuracy =
TR

TR

 (4) 

 

The Precision is the percentage of the correct detection of 

the vehicle compared to the total number of vehicles and is 

calculated through formula (3). 

In our method, about 98 out of 100 images are correctly 

recognized, and the precision is roughly 98%, while in the RF-

CN neural network method, about 90 out of 100 images are 

correctly recognized, abd thus the precision is about 90%. In 

another implementation we use the combination of YOLO 

algorithm with VGG neural network about 96images out of 

100 images are correctly recognised. 

 

Precision =
TR

TR
+ 𝐹𝑅 (5) 

 

In our proposed method, by using several techniques 

(spatial filters, data augmentation), the execution time has 

been reduced to approximately 0.1 seconds, while in the 

RFCN neural network method, the execution time is 

approximately 0.25 seconds. In the proposed method, the 

learning rate is divided by 10 once every 50 rounds becoming 

smaller over time. The learning rate is often represented by the 

symbol α and sometimes by the symbol η and represents the 

weights updating speed, which can be a fixed value or changes 

to an adaptive one. In this method, learning is performed in 

batches, that is, instead of all the training data being applied to 

the network at once, they are entered into the neural network 

in batches and in turn. In the proposed method, the processing 

speed of vehicle detection has been improved, and the reason 

for that is the use of the Yolo algorithm. This algorithm is 

executed in parallel for all sections to see which category each 

section belongs to. After the complete identification of objects, 

it connects them together and detects the type of vehicle. This 

algorithm is real-time and is able to identify 40 objects in one 

image and solves the problem of multiple images. At the same 

time, this algorithm has reduced the learning rate in the 

training process, the training time, and improved the 

processing speed, which, as a result, reduces the calculation 

load and increases the object recognition accuracy compared 

to the RFCN method. 

In addition, compared to the method of combining YOLO 

algorithm with VGG neural network, although both algorithms 

are similar, in the proposed method, since the presented neural 

network has a smaller volume, the computational load is 

reduced. 

Mean Squared Error (MSE)-MSE is a network performance 

function. It measures the network's performance according to 

the mean of squared errors. The mean squared error is the 

squared error averaged over the M*N array. 

 

MSE =
1

𝑀𝑁
∑ ∑(𝐹1(𝑖. 𝑗) − 𝐹2(𝑖. 𝑗))

2

𝑗=𝑁

𝑗=1

𝑖=𝑀

𝑖=1

 (6) 

 

The neural network's validation RMSE (root mean square 

error) recorded every 104 backpropagation iterations during its 

training. 

 

RMSE = √𝑀𝑆𝐸 (7) 

 

Peak signal-to-noise ratio (PSNR)-The PSNR is an 

expression for the ratio between the maximum possible power 

level of a signal and the power of distorting noise that affects 

the quality of its representation. 

 

PSNR = 10Log (
2552

MSE
) (8) 

 

Coefficient of Correlation (COC)-gives the correlation 

coefficient between the simulated values and the actual values. 

The value of the correlation coefficient varies between zero 

and one. The value of the correlation coefficient is 0 where 

there is no correspondence between the values. The correlation 

coefficient will rise as the relationship between the simulated 

values and the implemented values increases. A perfect match 

will have a factor of one. COC is calculated using Eq. (9): 

 

Correlation(r)

=
 N ∑ XY − (∑ X)(∑ Y)

sqrt([N ∑ X2 − (∑ X)2][N ∑ Y2 − (∑ Y)2])
 

(9) 

 

where, 

N= number of pixels of the image, 

X= input image, Y= output. 

The results of PSNR, RMSE and COC calculations for the 

proposed method and the RFCN method are shown in Table 2. 

One of the advantages of this system is its correct 

performance in different weather conditions and geographical 

positions, so 11,900 images of passing cars on different roads 

and in different weather conditions were tested around the 

clock to check the performance of this system. 

 

Table 2. Calculation results 

 

Methods PSNR RMSE COC 

Propose method 40.0135 8.7362 0.0729 

RFCN method 34.4664 23.4339 
-

0.0521 

the combination of YOLO 

algorithm with VGG neural 

network 

38.0135 10.3545 0.0956 

 

Table 3. Calculation results of the proposed method 

 
Vehicle Type Loss Accuracy Rate Learning 

Riding 0.214 98.73% 0.0010 

Truck 0.278 98.47% 0.0010 

Long Undercarriage 0.268 98.55% 0.0010 

Bus 0.254 98.63% 0.0010 
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The calculation results of the proposed method, the RFCN 

method and the combination of the YOLO algorithm with the 

VGG neural network method are given in Tables 2-8. 
 

Table 4. Calculation results of the RFCN method 
 

Vehicle Type Loss Accuracy Rate Learning 

Riding 0.7736 87.48% 0.02 

Truck 0.7841 86.79% 0.02 

Long Undercarriage 0.7753 88.13% 0.02 

Bus 0.7743  %87.48  0.02 

 

Table 5. Calculation results of the combination of YOLO 

algorithm with VGG neural network method 
 

Vehicle Type Loss Accuracy Rate Learning 

Riding 0.3749 97.97% 0.010 

Truck 0.3641 97.22% 0.010 

Long Undercarriage 0.3689 97.55% 0.010 

Bus 0.3678 96.63% 0.010 

 

Table 6. Calculation results of the proposed method 
 

Epoch Iteration Time Elapsed(s) RMSE 

1 1 4 

0.017 

1 200 1.3 

2 400 2.56 

3 600 4.20 

3 800 5.30 

4 1000 7.07 0.11 

5 1200 8.30 
0.12 

5 1400 9.50 

6 1600 11.10 0.13 

7 1800 12.30 

0.17 7 2000 13.50 

7 2065 14.15 

 

Table 7. Calculation resultsof the RFCN method 
 

Epoch Iteration Time Elapsed(s) RMSE 

1 1 3 

0.088 

1 200 1.32 

2 400 2.48 

3 600 4.27 

3 800 5.47 

4 1000 7.33 0.25 

5 1200 8.23 
0.22 

5 9.53 1400 

6 1600 11.16 0.27 

7 1800 12.37 

0.26 7 2000 13.51 

7 2065 14.17 

 

Table 8. Calculation resultsof the combination of YOLO 

algorithm with VGG neural network method 

 
Epoch Iteration Time Elapsed(s) RMSE 

1 1 3.5 

0.028 

1 200 1.31 

2 400 2.47 

3 600 4.26 

3 800 5.45 

4 1000 7.31 0.19 

5 1200 8.21 
0.18 

5 1400 9.51 

6 1600 11.14 0.21 

7 1800 12.34 

0.21 7 2000 13.51 

7 2065 14.17 

The proposed method can correctly recognize 98 out of 100 

images, and in the RFCN method this number is 91, and in the 

combination of YOLO algorithm with VGG neural network 

this number is 96. Another important point is the execution 

time of this proposed method due to the use of the distillation 

technique and the YOLO V5 algorithm and the Mobilenet 

neural network, which, as mentioned above, is around 0.1 

seconds, which is significantly different from 0.25 seconds in 

other methods. As you can see in the Figure 7, image 7(a) was 

recorded by the camera when the car passed, and Figure 7(b) 

is the reconstructed image under the same conditions, with the 

improvement of the image quality by the detection device. 

This method has been implemented using 7737 images 

recorded at night and 3614 images of separated frames from 

videos based on database images. Achieving image 

recognition accuracy with a factor of 96% in conditions where 

the images are separated from the video or recorded at night 

shows the proper performance of this method. While accuracy 

in the RFCN method in the same conditions is almost 81%. Of 

course, some mistakes of the neural network in the diagnosis 

due to the similarity of the types of cars are also undeniable. 

but in the combination of YOLO algorithm with VGG neural 

network accuracy in the same conditions is almost 89%. 

The impossibility of recording the image of all the 

components of the vehicle is one of the reasons for not 

correctly identifying the vehicle. Taking a picture of a part of 

the car cannot help in this case, and it requires extensive 

imaging to separate the vehicles from each other and identify 

them better. With this method, the level of sensitivity is 

reduced to see the image better and separate vehicles from 

each other more accurately. 

Vehicles in bad weather conditions (snow), adverse weather 

conditions, implementation device, separation of vehicles are 

given in Figures 7-11. 

 

 
 

Figure 7. Vehicles in low light conditions 

 

 
 

Figure 8. Vehicles in bad weather conditions (snow) 

 

 
 

Figure 9. Adverse weather conditions 
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Figure 10. Implementation device 
 

 
 

Figure 11. Separation of vehicles 
 

Based on statistical analysis, we compare the proposed 

method with the vehicle network detection method using the 

R-FCN neural network and combining the YOLO algorithm 

with the VGG neural network, which has the following 

innovations compared to these methods. 

a) Vehicle detection accuracy: 

The results show that in different environmental conditions 

and the simultaneous presence of several types of vehicles in 

the image, the proposed method can perform a more accurate 

classification than the R-FCN method. The total efficiency of 

four classes in the proposed method is about 98% and in the 

R-FCN method, it is about 91% and the combination of the 

YOLO algorithm with the VGG neural network method has an 

efficiency of 97%. 

Since the MobileNet convolution neural network and 

YOLO algorithm along with spatial filter are used, the 

processing speed of calculations is increased and as a result, 

the performance of accuracy has increased compared to those 

of the other methods (object detection) compared to the R-

FCN method. In the proposed method, due to the use of a 

spatial filter, the objects in the frame of an image are more 

prominent, which causes a better recognition of the object in 

the image in the before-processing part, further, the use of the 

MobileNet neural network along with the Yolo algorithm has 

a significant effect on increasing the accuracy of vehicle 

detection. 

b) Processing speed: 

In the proposed method, the processing speed is 

approximately 0.001 seconds, and in the R-FCN method, it is 

0.02 seconds, and the combination of the YOLO algorithm 

with the VGG neural network, it is 0.01 seconds. 

In the proposed method, the processing speed of vehicle 

detection has been improved, and the reason for that is the use 

of the Yolo algorithm. This algorithm is applied to all sections 

in parallel, regardless of which category each section falls into. 

After the complete identification of the objects, it connects 

them, and detects the type of vehicle. This algorithm is real-

time and can identify 40 objects in one image and solves the 

problem of multiple images. This algorithm has reduced the 

learning rate in the training process, and the training time and 

improved the processing speed. 

Another reason the proposed method improves the 

performance of the processing speed and that is the use of a 

spatial filter. By highlighting the objects of an image, the 

spatial filter improves the performance of the processing speed 

in the proposed method. 

c) Accuracy criteria: 

In the proposed method of the YOLO algorithm, it has 

correctly recognized about 98 images out of every 100 images 

the accuracy is about 98%. Therefore, the detection of the 

desired object in the proposed method has increased compared 

to the R-FCN method and the YOLO algorithm with the VGG 

neural network. 

The reason for the high accuracy standard in the proposed 

method is the use of the image registration method before pre-

processing. First, in image registration, images are collected 

and prepared from different databases. It is worth mentioning 

that the researcher has also collected pictures of different 

environmental conditions in the country. First, noise removal 

is done before preprocessing, and it is done with image quality 

improvement processes. The process of improving image 

quality results in more suitable images for display or image 

processing. 

d) Detection accuracy in different atmospheric conditions 

and noisy images: 

In our method, in the image registration section, images are 

first collected and prepared from different databases. It is 

worth mentioning that the researcher has also collected images 

from different environmental conditions of the country, these 

images were prepared from different weather conditions of the 

country. Then, using spatial filter and data augmentation 

techniques, the image is prepared for processing. This has 

increased the accuracy in different atmospheric conditions and 

noisy images, and the vehicle detection accuracy is about 96%. 

e) Multiplicity of images: 

The proposed method, using the Yolo algorithm, will be 

able to identify 40 objects in the image at the same time. 

f) Separation of vehicles that overlap each other: 

Depending on the selection of different weights, a wide 

range of image processing operations can be performed 

through convolution. 

The utilization of the Yolo algorithm has made it possible 

to separate the components of an image from each other when 

all details are clear. 

 

Practical applications of the proposed method 

The ability to charge intelligent tolls 

Thanks to the registration of all traffic, the system can be 

used to collect tolls. 

In addition, if it is necessary to apply restrictions and 

obstacles based on the type of vehicles or their number plates, 

this can easily be done, for example. 

- Prohibiting heavy vehicles during the day. 

- Prohibiting heavy vehicles from using a particular road on 

public holidays. 

- Scope of the traffic plan. 

- Prohibiting public vehicles on suburban roads. 

- Traffic of government vehicles in the desired area. 

- Traffic of special vehicles (ambulances, disabled vehicles, 

buses, etc.) on emergency lanes. 

 

Limitations of the proposed method 

Considering that the efficiency is around 98%, but there are 

still limitations such as blurred images, we need a more 

powerful processor. 

It is suggested that due to limitations such as the processing 

speed of objects in the images, the trained neural network in 

the proposed method was compressed, resulting in the loss of 

a small amount of trained data, thus requiring hardware with 
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high processing power, such as FPGA implementation. In 

FPGA, there is no need to compress the network as it has 

powerful processors for data processing. 

 

 

5. CONCLUSIONS 

 

It can be concluded that the combined method of the YOLO 

V5 algorithm and the Mobilenet neural network has an 

acceptable performance in detecting the type and speed of 

vehicles, and the possibility of implementing and exploiting it 

as an Android application is one of the other features of this 

method. Also, based on the results obtained, the 

implementation of this method shows its better performance 

compared to other methods. In this method, features such as: 

increasing the accuracy of vehicle detection, reducing the 

calculation load, increasing the accuracy criterion, detection 

accuracy in different atmospheric conditions, solving the 

problem of multiple images, separating vehicles that have 

overlaps, using different databases for better training as well 

as size reduction of the neural network. 
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