
Vehicle Type and Speed Detection on Android Devices Using YOLO V5 and MobileNet

Mojtaba Nasehi1 , Mohsen Ashourian2* , Hossein Emami2

1 Department of Electrical Engineering Majlesi Branch, Islamic Azad University, Isfahan 819, Iran
2 Department of Skill Development and Entrepreneurship, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 819,

Iran

Corresponding Author Email: ashourian@khuisf.ac.ir

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410326 ABSTRACT

Received: 23 October 2023

Revised: 26 February 2024

Accepted: 29 March 2024

Available online: 26 June 2024

Vehicle-type detection tool has many applications in transportation, traffic control, guiding

and controlling unmanned vehicles, tolls and road taxes, traffic violations, smuggling

detection, etc. In the proposed version, the MobileNet neural network and the YOLO V5

algorithm are integrated. In this integration, the YOLO V5 algorithm replaces the

convolutional layers of the neural network and the neural network be used for the

classification of vehicles. The Kivy library is employed to transform the developed

algorithm into an Android application. The data used in this study consists of two datasets:

The ImageNet database and a constructed database. The proposed method results show

improvement in increasing the accuracy of vehicle detection, reducing the computational

load, detection accuracy in different weather conditions, separating overlapping cars.

Various methods are presented for better neural network training and reducing neural

network size. The reason for these capabilities is the use of developed algorithms and the

use of techniques such as data augmentation, spatial filtering, and distillation.

Keywords:

vehicle type detection, object recognition,

MobileNet, neural network, YOLO V5

1. INTRODUCTION

Today, vehicle-type detection is used in various fields. Its

application in transportation, providing traffic permits and

road taxes, detecting smuggling, registering traffic violations,

controlling unmanned vehicles, and managing smart cities are

some of the things that show the importance of vehicle-type

detection.

There are limitations to detect vehicles in the image, which

are:

• The image processing system needs very detailed images

from specific angles of the car.

• Variety in cars, for example, car rides, buses, etc.

• The pictures are taken in different weather conditions and

light changes.

In this article, the proposed method is based on the

integration of the Mobilenet neural network and YOLO V5

algorithm. For this purpose, the proposed method has been

compared with the RFCN method. In the proposed method, the

results obtained from simulation are about 98.5%, and the

results obtained practically from different environments are

about 98%, which are more accurate and efficient than other

methods. From another point of view, the hardware

implementation of algorithms and solutions is of special

importance because there are bottlenecks in the

implementation of the scenario in the form of simulation and

converting it into hardware. The implementation of the

proposed method using the database shows a good

performance. The features of the proposed method are:

reducing the calculation load, high efficiency, higher detection

accuracy, and applicability in different weather conditions.

The next chapters of the paper are organized as follows.

Chapter 2 presents related works, Chapter 3 introduces the

proposed method and explains the implementation method,

Chapter 4 reviews the implementation results, and Chapter 5,

concludes the paper.

2. RELATED WORKS

Vehicle-type detection methods are generally divided into

three categories:

2.1 Simple visual operators

In traditional methods, techniques such as determining the

threshold value on traffic images [1], detecting the edges of

traffic images [2], etc. Traditional methods have been used for

years in many cases due to their simple design, but challenges

such as low quality in working in different weather conditions

and day-night changes that cause of light changes are small

obstacles. Against the desired object and the sticking of the

pixels of an image, traditional methods were used less. These

methods were used until around 2006, but due to many

challenges, they are almost obsolete now [3-7].

2.2 Image feature extraction and intelligent classification

system

In these methods, we have image feature extraction

Traitement du Signal
Vol. 41, No. 3, June, 2024, pp. 1377-1386

Journal homepage: http://iieta.org/journals/ts

1377

mailto:ashourian@khuisf.ac.ir
https://orcid.org/0009-0008-4493-8523
https://orcid.org/0000-0003-2492-7831
https://orcid.org/0000-0003-3272-7223
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410326&domain=pdf

following an intelligent classification system [8]. Analysis of

a sequence of images [7], use of Haar-like feature [9]. Feature

extraction-based methods were used till 2015 and had an

accuracy of approximately 70%. The main challenges of the

methods were the objects multiplicity in the input images, the

changes of light during the day and night, the error in detecting

moving targets, and the low ability to separate image

components [10-12].

2.3 Convolutional neural network (CNN)

In these methods, there are various techniques such as R-

FCN network-based vehicle type identification and CNN

based vehicle type classification [13]. In this method, the

object recognition accuracy reaches more than 90% and the

challenges of the past methods have been solved to some

extent, but the computational load has not been reduced, which

slows down the target object recognition speed [7]. The use of

the convolutional neural network method for vehicle

identification is considered, but the improvement of

computing processing performance should be considered [14-

19].

3. PROPOSED METHOD

A combination of the MobileNet neural network with the

YOLO V5 algorithm used in the proposed method is an

acceptable solution that can increase the processing speed and

overcome challenges such as weather conditions and a variety

of vehicles. Figure 1 shows steps for the detection and

classification of vehicles. In this method, using of multiple

images taken from different angles of the vehicle increases the

accuracy of object recognition. At the same time, speeding up

the process of vehicle recognition on highways and

checkpoints can also be counted among the capabilities of this

system. The different steps used in this method are as follows:

Image Registration, Image Processing, Object Detection and

Vehicle Classification.

Figure 1. Steps for detection and classification of vehicles

3.1 Images registration

In the image registration section of the proposed method,

images are prepared from different databases. We use two

databases. The first one is ImageNet, and the second one is a

database we created ourselves. The created database is made

of images at different weather conditions. The database

created is 7404 images, and these images are prepared from

video frames in such a way that one frame is extracted from a

video every second. The images resolution of each image is

1378

512×512.

These images are divided into four classes: cars, SUVs,

trucks, and buses.

Then, for annotation, using four colors, we teach the

labeling of two database images on each pixel, 60% of these

images are used for training and 40% for testing.

3.2 Image augmentation

Increasing the accuracy in various conditions requires a data

augmentation method. Data augmentation helps obtain new

images for training by artificially producing new images from

the original images. The use of acceptable new images to

increase the collection size is the goal of the data augmentation.

As a modern deep-learning algorithm, convolutional neural

networks (CNN) are capable of learning location-independent

features. Nonetheless, what helps more to learn independent

features in the image is to enhance and add data by rotation,

changing light and color. All cases eventually lead to the fact

that if the object in the image is rotated in any direction, or we

face a decrease in light and transparency, etc., the network

learns well to recognize correctly.

The following is Table 1 with information from the

database.

Table 1. Information about databases

Database

Type

Number of

Vehicles Before

Applying Data

Augmentation

The Number of

Vehicles After

Applying Data

Augmentation

Images in

Adverse and

Noisy

Weather

Conditions

Database

Created
7404 73200 7200

Database

ImageNet
6300 45040 4700

Total 13704 118240 11900

3.3 Image processing

Convolutional masks are used in the proposed method.

When different convolution or spatial masks are applied to the

same image, it produces different results. In the proposed

method, a high-pass filter is used. These filters are those

spatial filters that maintain or improve high-frequency

components including fine details, points, lines, and edges

with possible effects of increasing noisy pixels. In other words,

it highlights the changes in brightness of the image. By using

this filter in our method, the issue of separating objects has

been solved. Applying the convolution mask on the images

makes the image smaller and the network does not appear in

the image in general. In the proposed method, because the

Yolo algorithm is used when all the details of an image are

clear and prominent, this algorithm can separate the

components of an image from each other in the image, and the

detection speed is also higher (reducing the calculation load).

3.4 Object detection

It is necessary to create an algorithm that can recognize

objects by implementing itself in these networks. SSD, YOLO,

small face, and small sample segmentation techniques,

including R-CNN, and U-Net are several algorithms that are

used to identify the type of vehicles. Among these, an

algorithm like YOLO has been attractive due to its high power

of object detection the completeness of the deep learning

system, and the speed of solving the problem. The function of

this algorithm is that it first separates and decomposes the

image into different parts, and by marking each part and

simultaneously running the detection algorithm, it categorizes

the parts and draws the final result. After the object detection

process is done completely, it connects them such that the two

parts of each main object are a box. As all these actions are

performed simultaneously and in parallel, it is possible to

continuously process up to 40 images per second.

Here, version 5 of the Yolo algorithm is used. YOLO V5 is

different from all previous versions. In YOLO V5, the

backbone part (in the network architecture) is of CSP type and

the neck part is of PA-NET type [20]. The major

improvements of this version include mosaic data

augmentation and automatic learning of bounding boxes.

YOLO V5 is small. Specifically, the size of a weights file

(with the extension) for YOLO V5 is 27MB. YOLO V5 is

almost 90% smaller than other versions. It is very fast and light

compared to other versions, while its accuracy is equal to the

standard of other versions [20].

3.5 Vehicle classification

The proposed algorithm for labeling each vehicle in four

levels (rider, SUV, truck, and van) must be implemented on a

neural network. A convolution neural network is used to

implement this operation. The commonly used convolutional

neural networks for this purpose are Imagenet, Li-net, Alexnet,

ZFnet, VGGnet, Googlenet, and Rosenet.

The need for small-sized and high-speed networks with the

ability to be used in robotics, minicomputer boards, and of

course mobile phones exists in all systems.

MobileNet neural network is one of the most prominent

small-size networks. A new type of convolution called depth-

wise separable convolution is introduced in the MobileNet

neural network. The main element in the MobileNet network

is this convolution layer. Depth-wise separable convolution is

the heart of the MobileNet network. The standard convolution

in Qaleb neural networks included two stages of filtering and

integration. Depth-wise separable convolution also includes

two stages of filtering and integration. However, each step has

small differences from standard convolution steps. One

difference is that in depth-wise convolution, there is separable

in both stages of convolution. While in standard convolution,

there is convolution only in the filter stage. The integration

step is a simple addition. The two stages of depth-wise

separable convolution are like this:

The first stage is filtering, and depth-wise convolution, and

the second stage is integration and point-wise convolution.

3.5.1 Depth-wise convolution

Depth-wise convolution is equivalent to standard

convolution filtering. But with an important difference. We

had a k×k kernel in the standard M convolution. But in depth-

wise separable convolution, we have a k×k kernel.

First, by performing the filtering operation, each page of the

kernel is channelized into one page of the F input feature

champ. This stage is called deep convolution. Because we

have done convolution on each page in line with the depth or

pages and did not add the output pages together.

3.5.2 Point-wise convolution

This step is equivalent to the integration step in standard

1379

convolution. But there is still a fundamental difference

between the integration stage in standard convolution and

depth-wise separable convolution. In the standard M

convolution, we had k×k kernels. But in this convolution, we

have only one k×k kernel.

MobileNet neural network has 4.2 million parameters.

When we compare the number of parameters of this network

with the popular ResNet-18 network with 11 million

parameters, the amount of parameters is much less than the

other neural network.

In the MobileNet neural network, 94.86% of the calculation

volume is in the same 1×1 Convolution layer. The important

thing is that with an interesting idea, most numbers of the

calculations and the number of parameters have been reduced

in 3×3 Convolution layers.

An overview of a depth-resolvable torsion block is shown

in Figure 2.

Figure 2. Overview of a depth-wise separable convolution

block

Considering the mentioned advantages and the important

problem of reducing the calculation load (processing speed),

we use this neural network.

3.6 Proposed neural network coefficients compression

We will see better performance when the number of

parameters increases. Of course, this case leads to an increase

in computing costs, which subsequently affects the cost

imposed on the server and the increase in the duration of

training. For this reason, cost improvement and management

is achieved by compressing the neural networks that it is

necessary.

• Weight pruning

One of the oldest methods in neural network compression is

weight pruning, which refers to the removal of certain

connections between neurons. This deletion in practice means

that the deleted weight is replaced by zero.

• Quantization

The essence of a neural network is a combination of linear

algebra and some other operations. By default, most systems

use a variety of float32 formats to represent variables and

weights.

However, the calculation speed with other formats such as

int8 is generally higher than float32 formats and occupies less

space in memory.

Neural network quantization refers to methods that take

advantage of this. Changing the longer format to a shorter one

(e,g, from float32 to int8).

• Distillation

Among the three neural network compression methods, the

distillation method has been used because of its capabilities,

which has more advantages than the two methods of pruning

and quantization. Despite the effectiveness of quantization and

pruning methods in implementation, their possible damages

such as loss of weights and neurons of neural network may

lead to a decrease in network accuracy.

The simple approach of the distillation method is training a

large model (teacher) to achieve the best performance and

using its forecast to teach a smaller network (student) which is

easily implementable. With this method, deep neural network

helps the smaller network to estimate the main function.

The calculation diagram of the distillation method is shown

in Figure 3.

The diagram of the distillation method is shown in Figure 4.

Figure 3. Graph of distillation method calculations

Figure 4. Distillation method implementation diagram

The probabilities obtained from the hefty model, which are

soft targets for the training of the small model, provide the

generalization of transferring the heavy model to the smaller

model. Therefore, this training kit or a "transfer kit" for hefty

model training can be used in the transfer phase. Since simpler

models are a subset of heavy models, we can use each of those

simple models as soft targets by estimating arithmetic or

geometric averages. Due to the high entropy of soft targets and

the provision of more information for training and their less

diversity compared to hard targets, it is possible to train a small

model without the need for heavy model data and only with

appropriate data while achieving an increase in the learning

rate. Although the training time cannot be improved much in

the distillation method, the conclusion time of the distilled

models has been improved. This is one of the major

differences between this method and the previous methods.

3.7 Implementing the proposed method

Using Python, the proposed method composed of (YOLO

V5 algorithm and MobileNet neural network) is implemented.

The proper design of this program has been very effective for

quick sampling of complex programs. In the proposed method,

the Keras library is used for implementation. This library is

open source in Python and can be implemented on Tensor

Flow, Microsoft Cognitive Toolkit, R Theano, or PlaidML.

Defining and training neural network models using a few

1380

lines of code during implementation is one of the capabilities

of this library. Finally, the MobilNet neural network and the

YOLO V5 algorithm can be installed by existing libraries.

In the design of the neural network, the MobileNet neural

network is first implemented, then to increase the processing

speed (reduce the calculation load) and recognize the desired

object, the YOLO algorithm is used in the convolution layers.

This integration reduces parameters and operations, which

increases both accuracy (due to the use of MobileNet neural

network) and processing speed (YOLO algorithm).

The shape of the network redesign and new layering is

shown in Figure 5.

To improve the performance of the designed network, the

computationally expensive layers at the beginning and end of

the network have been redesigned. To increase the speed of

detection, the Yolo algorithm has been used instead of the

convolutional layer.

A new non-linear function, h-swish, is used instead of the

linear ReLU, which has a great effect on improving the

performance of the network.

In addition to the initial layers, there are a number of final

layers in this version that require a lot of computation and slow

down the network even more. To reduce the amount of

computation and to increase the speed of the network, the

average pooling layer of the last block is moved and placed

before the expansion layer of the last block. This greatly

reduces the amount of computation by using the average

pooling layer. Also, the depth and point convolution layers in

the last block are unused and we remove them from the mesh.

The resulting image is in Figure 5:

Figure 5. The shape of the network redesign

This redesign reduces the latency to 7 milliseconds or 11%

of the execution time. On the other hand, these changes reduce

the total number of additions and multiplications in the

network by 30 million, without any loss of accuracy.

One of the non-linear functions whose use improves the

accuracy of neural networks is the swish function, which is

calculated by the following relationship:

𝑆𝑤𝑖𝑠ℎ 𝑥 = 𝑥 ∙ 𝛿(𝑥) (1)

Instead of using the swish function, the h-swish function is

used, which has almost the same behavior as the swish

function and is calculated using the following relationship.

ℎ − 𝑆𝑤𝑖𝑠ℎ = 𝑥
𝑅𝑒𝑙𝑢(𝑥 + 3)

6
 (2)

3.8 Converting the proposed neural network to Android

application

Python does not have built-in development capabilities for

the Android operating system, but some packages can be used

to create Android applications. Different types of methods to

convert Python to Android are:

(1) Kivy

This tool can be run on Android and to some extent on any

device with OpenGL ES version 2 (and at least Android 2.2).

Kiwi Android software is common and Android software that

can be distributed on platforms like PlayStore and other

software of this operating system.

(2) BeeWare

Android support in Beeware is possible through the use of

VOC (a tool for compiling Python codes to Java files). This

process enables Python code to run on the JVM just like Java

code.

(3) Chaquopy

It is a plugin for Android Studio.

(4) Pyqtdeploy

It is a tool for loading PyQt programs and supports loading

operations on PC (Linux, Windows, and OS X) and mobile

platforms (iOS and Android).

(5) QPython

It is an installable scripting engine and a programming

environment.

(6) SL4A

The Android Scripting Layer or SL4A, formerly called the

ASE (Android Scripting Environment), is a set of "facades"

that are a highly simplified subset of the API.

(7) PySide

It is a Python connector package for Qt that also supports

Android at basic levels.

(8) Termux

Termux is an example of an Android terminal and a Linux

environment that can be used directly without the need for

installation and configuration.

According to the above definitions, we use the powerful

Kivy framework to build an Android application. Kivy is a

Python module that allows the creation of compatible

programs using Python. It is very easy to reuse the same code

on IOS, Android, Mac, Windows, Linux, and almost all other

operating systems with this module.

The main advantage of Kivy are:

•It is based on Python, which is very powerful given the rich

nature of the library.

•Use a fixed code on all devices

•Easy tools with multi-touch support .

•Better performance than cross-platform HTML5

alternatives.

The architecture is divided into two levels: high level and

low level. The top level contains the tools and features

available to GUI developers, such as widgets, the Kivy

language, and other high-level features visible to the developer.

In contrast, the low level contains the tools that make up the

Kivy infrastructure.

High Level: This section contains the tools and features

available to GUI developers, such as widgets, the Kv language,

and other high-level features visible to the programmer.

Low Level: In contrast, this section contains tools that show

what the Kivy infrastructure is and what it contains.

The architecture of the Kivy framework is as follows.

"Input Provider" and "Core Provider": First, we want to

know what the concept of "abstraction" is in the Kivy

architecture. Therefore, we need to know that it is one of the

main concepts of the Kivy framework and it means to hide

technical details and present a view is simpler than that. The

1381

concept of abstraction allows developers to work with high-

level features without having to understand the low-level

details of the system. In the "core provider" section, the Kivy

framework abstractly provides basic tasks such as opening a

window, displaying images and text, playing audio, receiving

images from the camera, spell spell-checking. This allows

programmers to develop their applications quickly and easily

without having to understand the technical details and inner

workings of these tasks. Operating systems use different

software programming interfaces to perform basic tasks.

A kernel provider is a piece of code that uses APIs specific

to operating systems such as MacOS, Linux, BSD, Unix and

Windows to act as an intermediate communication layer

between the Kivy framework and the operating system. This

module is responsible for performing key system-related tasks

based on the operating system's specific API and for passing

information between Kivy and the operating system. In a

similar concept, "Input Providers" are pieces of code that

support a specific input device, such as Apple trackpad and

mouse emulator, and if you need to add support for a new input

device, you can simply create a new class that reads the data

from the target device and converts it into "Basic Events" of

this framework.

"Graphics API" of the Kivy framework is an abstraction of

OpenGL. In other words, this framework has provided a level

of abstraction that allows programmers to create various

geometric shapes without directly using complex OpenGL

code, using the tools and facilities provided in Kivy. One of

the advantages of using this graphical interface is the ability to

automatically optimize drawing commands, helping to

improve the performance of programs.

The core: The core of the Kivy framework provides the

following features:

Clock: This feature is used to schedule timer events. In other

words, developers can easily manage time-based operations

and decide which parts to run periodically and which parts to

run once and at a specific time.

Cache: If data is used frequently, it is easy to use the Cache

class provided in the Kivy framework for time-management

purposes-without the programmer having to write a lot of code

for this purpose.

Gesture recognition: The gesture recognition module

analyses the user's movements on the input device to detect

certain patterns. These patterns-such as circles and rectangles-

can be used to control a device or perform a specific action.

Kivy language: The Kivy design language is designed to

describe graphical interfaces easily and efficiently.

Properties: Properties in Kivy are classes used to

communicate between widget code and the structure of GUI

elements defined by the developer, and are different from the

usual Python properties.

UIX: The UIX module provides a set of widgets and layouts

to quickly and easily create user interfaces within this

framework.

Modules: Module classes in Kivy add new functionality to

applications, like plug-ins in web browsers.

Input events: In the Kivy framework, different types of

input sources such as touch, mouse, TUIO, etc. are managed

using the abstraction concept. Input events in this framework

are defined by instances of the Touch class, which are in one

of three states: "up", "down" and "in motion".

Widgets and event dispatching: In the previous parts we

learned what a widget is in Kivy. We should mention again

that widgets are the basic elements to describe the part of the

application that receives "input events" from the user. For

example, when the user taps a button, the button widget detects

that a touch event has occurred and triggers the appropriate

response. It is a fact that widgets have a tree structure and a

widget can have zero or a number of children. Therefore, in

the widget tree there is only one main widget or "root" for

which no parent is defined, and other widgets are directly or

indirectly children of this root. When a new event occurs, for

example "touch", an event is sent for each touch, which is first

received by the main widget or root of the widget tree. Then,

depending on the type of widget, this event is directed to the

appropriate widget-we call this operation "event dispatching"-

to respond correctly to the desired event. In general, the widget

tree represents the hierarchical structure of these graphical

elements, and the input events are correctly distributed and

processed by this tree.

3.9 Speed tracking

In order to detect the speed of the vehicle, the speed can be

obtained by calculating the displacement of the pixels in the

frames.

How to track the speed is shown in Figure 6.

Figure 6. How to track speed

4. IMPLEMENTATION RESULTS

IDLE software is used to implement the proposed method.

All execution steps are performed on a Window10 operating

system, Intel Core i7 processor, 12GB DDR3 memory running

at 799.5 MHz16 and NVIDIA GeForce GTX 750 Ti graphics

card.

To prove the efficiency of this device, 130,000 car images

have been used. These images are from films made by the

researcher in different weather conditions, including

mountainous, desert and rainy. In the previous methods,

problems such as geographic conditions were not given

importance, which caused challenges such as decreasing

accuracy in atmospheric conditions, mountains and intense

light radiation in desert areas.

Apart from the database that is prepared, the ImageNet

database is also used. A data augmentation technique has been

used to increase the accuracy and better train the neural

network.

To check the performance, the proposed method is

performed with two RFCN neural network methods and the

combination of YOLO algorithm with VGG neural network.

In the proposed method, despite the continuous working

hours of the device, less than 2% losses were obtained, while

in the RFCNN method, this loss coefficient is almost 9%. The

corresponding function displays the error coefficient during

the execution of the neural network and in the combination of

1382

YOLO algorithm with VGG neural network method, this loss

coefficient is almost 2.5%. As follows:

Loss =
1

N
∑(yP − yt)

2

N

i=1

 (3)

In addition to the continuous and adequate performance in

this device, the error rate of non-diagnosis of the device in this

method has been reduced and the effectiveness has been close

to 98%. What increases the accuracy of detection to almost

98% in the implementation of this method is the use of

MobileNet convolution with the YOLO V5 algorithm and the

use of a spatial filter with high processing speed. While the

RFCNN method has an efficiency of 91%. In another

implementation we use the YOLO algorithm with the VGG

neural network method has an efficiency of 97%.

Accuracy =
TR

TR

 (4)

The Precision is the percentage of the correct detection of

the vehicle compared to the total number of vehicles and is

calculated through formula (3).

In our method, about 98 out of 100 images are correctly

recognized, and the precision is roughly 98%, while in the RF-

CN neural network method, about 90 out of 100 images are

correctly recognized, abd thus the precision is about 90%. In

another implementation we use the combination of YOLO

algorithm with VGG neural network about 96images out of

100 images are correctly recognised.

Precision =
TR

TR
+ 𝐹𝑅 (5)

In our proposed method, by using several techniques

(spatial filters, data augmentation), the execution time has

been reduced to approximately 0.1 seconds, while in the

RFCN neural network method, the execution time is

approximately 0.25 seconds. In the proposed method, the

learning rate is divided by 10 once every 50 rounds becoming

smaller over time. The learning rate is often represented by the

symbol α and sometimes by the symbol η and represents the

weights updating speed, which can be a fixed value or changes

to an adaptive one. In this method, learning is performed in

batches, that is, instead of all the training data being applied to

the network at once, they are entered into the neural network

in batches and in turn. In the proposed method, the processing

speed of vehicle detection has been improved, and the reason

for that is the use of the Yolo algorithm. This algorithm is

executed in parallel for all sections to see which category each

section belongs to. After the complete identification of objects,

it connects them together and detects the type of vehicle. This

algorithm is real-time and is able to identify 40 objects in one

image and solves the problem of multiple images. At the same

time, this algorithm has reduced the learning rate in the

training process, the training time, and improved the

processing speed, which, as a result, reduces the calculation

load and increases the object recognition accuracy compared

to the RFCN method.

In addition, compared to the method of combining YOLO

algorithm with VGG neural network, although both algorithms

are similar, in the proposed method, since the presented neural

network has a smaller volume, the computational load is

reduced.

Mean Squared Error (MSE)-MSE is a network performance

function. It measures the network's performance according to

the mean of squared errors. The mean squared error is the

squared error averaged over the M*N array.

MSE =
1

𝑀𝑁
∑ ∑(𝐹1(𝑖. 𝑗) − 𝐹2(𝑖. 𝑗))

2

𝑗=𝑁

𝑗=1

𝑖=𝑀

𝑖=1

 (6)

The neural network's validation RMSE (root mean square

error) recorded every 104 backpropagation iterations during its

training.

RMSE = √𝑀𝑆𝐸 (7)

Peak signal-to-noise ratio (PSNR)-The PSNR is an

expression for the ratio between the maximum possible power

level of a signal and the power of distorting noise that affects

the quality of its representation.

PSNR = 10Log (
2552

MSE
) (8)

Coefficient of Correlation (COC)-gives the correlation

coefficient between the simulated values and the actual values.

The value of the correlation coefficient varies between zero

and one. The value of the correlation coefficient is 0 where

there is no correspondence between the values. The correlation

coefficient will rise as the relationship between the simulated

values and the implemented values increases. A perfect match

will have a factor of one. COC is calculated using Eq. (9):

Correlation(r)

=
 N ∑ XY − (∑ X)(∑ Y)

sqrt([N ∑ X2 − (∑ X)2][N ∑ Y2 − (∑ Y)2])

(9)

where,

N= number of pixels of the image,

X= input image, Y= output.

The results of PSNR, RMSE and COC calculations for the

proposed method and the RFCN method are shown in Table 2.

One of the advantages of this system is its correct

performance in different weather conditions and geographical

positions, so 11,900 images of passing cars on different roads

and in different weather conditions were tested around the

clock to check the performance of this system.

Table 2. Calculation results

Methods PSNR RMSE COC

Propose method 40.0135 8.7362 0.0729

RFCN method 34.4664 23.4339
-

0.0521

the combination of YOLO

algorithm with VGG neural

network

38.0135 10.3545 0.0956

Table 3. Calculation results of the proposed method

Vehicle Type Loss Accuracy Rate Learning

Riding 0.214 98.73% 0.0010

Truck 0.278 98.47% 0.0010

Long Undercarriage 0.268 98.55% 0.0010

Bus 0.254 98.63% 0.0010

1383

The calculation results of the proposed method, the RFCN

method and the combination of the YOLO algorithm with the

VGG neural network method are given in Tables 2-8.

Table 4. Calculation results of the RFCN method

Vehicle Type Loss Accuracy Rate Learning

Riding 0.7736 87.48% 0.02

Truck 0.7841 86.79% 0.02

Long Undercarriage 0.7753 88.13% 0.02

Bus 0.7743 %87.48 0.02

Table 5. Calculation results of the combination of YOLO

algorithm with VGG neural network method

Vehicle Type Loss Accuracy Rate Learning

Riding 0.3749 97.97% 0.010

Truck 0.3641 97.22% 0.010

Long Undercarriage 0.3689 97.55% 0.010

Bus 0.3678 96.63% 0.010

Table 6. Calculation results of the proposed method

Epoch Iteration Time Elapsed(s) RMSE

1 1 4

0.017

1 200 1.3

2 400 2.56

3 600 4.20

3 800 5.30

4 1000 7.07 0.11

5 1200 8.30
0.12

5 1400 9.50

6 1600 11.10 0.13

7 1800 12.30

0.17 7 2000 13.50

7 2065 14.15

Table 7. Calculation resultsof the RFCN method

Epoch Iteration Time Elapsed(s) RMSE

1 1 3

0.088

1 200 1.32

2 400 2.48

3 600 4.27

3 800 5.47

4 1000 7.33 0.25

5 1200 8.23
0.22

5 9.53 1400

6 1600 11.16 0.27

7 1800 12.37

0.26 7 2000 13.51

7 2065 14.17

Table 8. Calculation resultsof the combination of YOLO

algorithm with VGG neural network method

Epoch Iteration Time Elapsed(s) RMSE

1 1 3.5

0.028

1 200 1.31

2 400 2.47

3 600 4.26

3 800 5.45

4 1000 7.31 0.19

5 1200 8.21
0.18

5 1400 9.51

6 1600 11.14 0.21

7 1800 12.34

0.21 7 2000 13.51

7 2065 14.17

The proposed method can correctly recognize 98 out of 100

images, and in the RFCN method this number is 91, and in the

combination of YOLO algorithm with VGG neural network

this number is 96. Another important point is the execution

time of this proposed method due to the use of the distillation

technique and the YOLO V5 algorithm and the Mobilenet

neural network, which, as mentioned above, is around 0.1

seconds, which is significantly different from 0.25 seconds in

other methods. As you can see in the Figure 7, image 7(a) was

recorded by the camera when the car passed, and Figure 7(b)

is the reconstructed image under the same conditions, with the

improvement of the image quality by the detection device.

This method has been implemented using 7737 images

recorded at night and 3614 images of separated frames from

videos based on database images. Achieving image

recognition accuracy with a factor of 96% in conditions where

the images are separated from the video or recorded at night

shows the proper performance of this method. While accuracy

in the RFCN method in the same conditions is almost 81%. Of

course, some mistakes of the neural network in the diagnosis

due to the similarity of the types of cars are also undeniable.

but in the combination of YOLO algorithm with VGG neural

network accuracy in the same conditions is almost 89%.

The impossibility of recording the image of all the

components of the vehicle is one of the reasons for not

correctly identifying the vehicle. Taking a picture of a part of

the car cannot help in this case, and it requires extensive

imaging to separate the vehicles from each other and identify

them better. With this method, the level of sensitivity is

reduced to see the image better and separate vehicles from

each other more accurately.

Vehicles in bad weather conditions (snow), adverse weather

conditions, implementation device, separation of vehicles are

given in Figures 7-11.

Figure 7. Vehicles in low light conditions

Figure 8. Vehicles in bad weather conditions (snow)

Figure 9. Adverse weather conditions

1384

Figure 10. Implementation device

Figure 11. Separation of vehicles

Based on statistical analysis, we compare the proposed

method with the vehicle network detection method using the

R-FCN neural network and combining the YOLO algorithm

with the VGG neural network, which has the following

innovations compared to these methods.

a) Vehicle detection accuracy:

The results show that in different environmental conditions

and the simultaneous presence of several types of vehicles in

the image, the proposed method can perform a more accurate

classification than the R-FCN method. The total efficiency of

four classes in the proposed method is about 98% and in the

R-FCN method, it is about 91% and the combination of the

YOLO algorithm with the VGG neural network method has an

efficiency of 97%.

Since the MobileNet convolution neural network and

YOLO algorithm along with spatial filter are used, the

processing speed of calculations is increased and as a result,

the performance of accuracy has increased compared to those

of the other methods (object detection) compared to the R-

FCN method. In the proposed method, due to the use of a

spatial filter, the objects in the frame of an image are more

prominent, which causes a better recognition of the object in

the image in the before-processing part, further, the use of the

MobileNet neural network along with the Yolo algorithm has

a significant effect on increasing the accuracy of vehicle

detection.

b) Processing speed:

In the proposed method, the processing speed is

approximately 0.001 seconds, and in the R-FCN method, it is

0.02 seconds, and the combination of the YOLO algorithm

with the VGG neural network, it is 0.01 seconds.

In the proposed method, the processing speed of vehicle

detection has been improved, and the reason for that is the use

of the Yolo algorithm. This algorithm is applied to all sections

in parallel, regardless of which category each section falls into.

After the complete identification of the objects, it connects

them, and detects the type of vehicle. This algorithm is real-

time and can identify 40 objects in one image and solves the

problem of multiple images. This algorithm has reduced the

learning rate in the training process, and the training time and

improved the processing speed.

Another reason the proposed method improves the

performance of the processing speed and that is the use of a

spatial filter. By highlighting the objects of an image, the

spatial filter improves the performance of the processing speed

in the proposed method.

c) Accuracy criteria:

In the proposed method of the YOLO algorithm, it has

correctly recognized about 98 images out of every 100 images

the accuracy is about 98%. Therefore, the detection of the

desired object in the proposed method has increased compared

to the R-FCN method and the YOLO algorithm with the VGG

neural network.

The reason for the high accuracy standard in the proposed

method is the use of the image registration method before pre-

processing. First, in image registration, images are collected

and prepared from different databases. It is worth mentioning

that the researcher has also collected pictures of different

environmental conditions in the country. First, noise removal

is done before preprocessing, and it is done with image quality

improvement processes. The process of improving image

quality results in more suitable images for display or image

processing.

d) Detection accuracy in different atmospheric conditions

and noisy images:

In our method, in the image registration section, images are

first collected and prepared from different databases. It is

worth mentioning that the researcher has also collected images

from different environmental conditions of the country, these

images were prepared from different weather conditions of the

country. Then, using spatial filter and data augmentation

techniques, the image is prepared for processing. This has

increased the accuracy in different atmospheric conditions and

noisy images, and the vehicle detection accuracy is about 96%.

e) Multiplicity of images:

The proposed method, using the Yolo algorithm, will be

able to identify 40 objects in the image at the same time.

f) Separation of vehicles that overlap each other:

Depending on the selection of different weights, a wide

range of image processing operations can be performed

through convolution.

The utilization of the Yolo algorithm has made it possible

to separate the components of an image from each other when

all details are clear.

Practical applications of the proposed method

The ability to charge intelligent tolls

Thanks to the registration of all traffic, the system can be

used to collect tolls.

In addition, if it is necessary to apply restrictions and

obstacles based on the type of vehicles or their number plates,

this can easily be done, for example.

- Prohibiting heavy vehicles during the day.

- Prohibiting heavy vehicles from using a particular road on

public holidays.

- Scope of the traffic plan.

- Prohibiting public vehicles on suburban roads.

- Traffic of government vehicles in the desired area.

- Traffic of special vehicles (ambulances, disabled vehicles,

buses, etc.) on emergency lanes.

Limitations of the proposed method

Considering that the efficiency is around 98%, but there are

still limitations such as blurred images, we need a more

powerful processor.

It is suggested that due to limitations such as the processing

speed of objects in the images, the trained neural network in

the proposed method was compressed, resulting in the loss of

a small amount of trained data, thus requiring hardware with

1385

high processing power, such as FPGA implementation. In

FPGA, there is no need to compress the network as it has

powerful processors for data processing.

5. CONCLUSIONS

It can be concluded that the combined method of the YOLO

V5 algorithm and the Mobilenet neural network has an

acceptable performance in detecting the type and speed of

vehicles, and the possibility of implementing and exploiting it

as an Android application is one of the other features of this

method. Also, based on the results obtained, the

implementation of this method shows its better performance

compared to other methods. In this method, features such as:

increasing the accuracy of vehicle detection, reducing the

calculation load, increasing the accuracy criterion, detection

accuracy in different atmospheric conditions, solving the

problem of multiple images, separating vehicles that have

overlaps, using different databases for better training as well

as size reduction of the neural network.

REFERENCES

[1] Stewart, B.D., Reading, I., Thomson, M.S., Binnie, T.D.,

Dickinson, K.W., Wan, C.L. (1994). Adaptive lane

finding in road traffic image analysis. In Seventh

International Conference on Road Traffic Monitoring

and Control, 1994. London, UK, pp. 133-136.

https://doi.org/10.1049/cp:19940441

[2] Zhigang, Z., Huan, L., Pengcheng, D., Guangbing, Z.,

Nan, W., Wei-Kun, Z. (2018). Vehicle target detection

based on R-FCN. In 2018 Chinese Control And Decision

Conference (CCDC), Shenyang, China, pp. 5739-5743.

https://doi.org/10.1109/CCDC.2018.8408133

[3] Hadi, R.A., Sulong, G., George, L.E. (2014). Vehicle

detection and tracking techniques: A concise review.

arXiv Preprint arXiv: 1410.5894.

https://doi.org/10.5121/sipij.2013.5101

[4] Kim, J.B., Park, H.S., Park, M.H., Kim, H.J. (2001). A

real-time region-based motion segmentation using

adaptive thresholding and K-means clustering. In AI

2001: Advances in Artificial Intelligence: 14th

Australian Joint Conference on Artificial Intelligence

Adelaide, Australia, Springer Berlin Heidelberg, 14:

213-224. https://doi.org/10.1007/3-540-45656-2_19

[5] Enkelmann, W. (1991). Obstacle detection by evaluation

of optical flow fields from image sequences. Image and

Vision Computing, 9(3): 160-168.

https://doi.org/10.1016/0262-8856(91)90010-M

[6] Won, Y., Nam, J., Lee, B.H. (2000). Image pattern

recognition in natural environment using morphological

feature extraction. In Advances in Pattern Recognition:

Joint IAPR International Workshops SSPR 2000 and

SPR 2000 Alicante, Spain, Springer Berlin Heidelberg,

pp. 806-815. https://doi.org/10.1007/3-540-44522-6_83

[7] Nasehi, M., Ashourian, M., Moalem, P. (2020). An

overview of the type of vehicle detection techniques.

Majlesi Journal of Telecommunication Devices, 9(3):

133-137.

https://doi.org/10.30486/mjtd.2023.1990441.1040

[8] Li, J., Liu, Y., Tageldin, A., Zaki, M.H., Mori, G., Sayed,

T. (2015). Automated region-based vehicle conflict

detection using computer vision techniques.

Transportation Research Record, 2528(1): 49-59.

https://doi.org/10.3141/2528-06

[9] Tang, T., Zhou, S., Deng, Z., Zou, H., Lei, L. (2017).

Vehicle detection in aerial images based on region

convolutional neural networks and hard negative

example mining. Sensors, 17(2): 336.

https://doi.org/10.3390/s17020336

[10] Dubuisson, M.P., Jain, A.K. (1995). Contour extraction

of moving objects in complex outdoor scenes.

International Journal of Computer Vision, 14(1): 83-105.

https://doi.org/10.1007/BF01421490

[11] Oliveira, M., Santos, V. (2008). Automatic detection of

cars in real roads using haar-like features. Department of

Mechanical Engineering, University of Aveiro, 3810.

https://www.researchgate.net/publication/267863282_A

utomatic_Detection_of_Cars_in_Real_Roads_using_Ha

ar-like_Features.

[12] Huang, R., Pedoeem, J., Chen, C. (2018). YOLO-LITE:

A real-time object detection algorithm optimized for

non-GPU computers. In 2018 IEEE International

Conference on Big Data (Big Data), Seattle, WA, USA,

pp. 2503-2510.

https://doi.org/10.1109/BigData.2018.8621865

[13] Li, Y., Song, B., Kang, X., Du, X., Guizani, M. (2018).

Vehicle-type detection based on compressed sensing and

deep learning in vehicular networks. Sensors, 18(12):

4500. https://doi.org/10.3390/s18124500

[14] Hicham, B., Ahmed, A., Mohammed, M. (2018). Vehicle

type classification using convolutional neural network.

In 2018 IEEE 5th International Congress on Information

Science and Technology (CiSt), Marrakech, Morocco, pp.

313-316. https://doi.org/10.1109/CIST.2018.8596500

[15] Sheng, M., Liu, C., Zhang, Q., Lou, L., Zheng, Y. (2018).

Vehicle detection and classification using convolutional

neural networks. In 2018 IEEE 7th Data Driven Control

and Learning Systems Conference (DDCLS), Enshi,

China, pp. 581-587.

https://doi.org/10.1109/DDCLS.2018.8516099

[16] Wang, X., Zhang, W., Wu, X., Xiao, L., Qian, Y., Fang,

Z. (2019). Real-time vehicle type classification with deep

convolutional neural networks. Journal of Real-Time

Image Processing, 16: 5-14.

https://doi.org/10.1007/s11554-017-0712-5

[17] Nasehi, M., Ashourian, M., Emami, H. (2022). Fast

detection of vehicle type and position in images based on

deep neural network. Scientific Journal of Electronical &

Cyber Defence, 10(2).

[18] Nasehi, M., Ashourian, M., Emami, H. (2022). Vehicle

type, color and speed detection implementation by

integrating VGG neural network and YOLO algorithm

utilizing raspberry Pi hardware. Journal of AI and Data

Mining, 10(4): 579-588.

https://doi.org/10.22044/jadm.2022.11915.2338

[19] Hicham, B., Ahmed, A., Mohammed, M. (2018). Vehicle

type classification using convolutional neural network.

In 2018 IEEE 5th International Congress on Information

Science and Technology (CiSt), Marrakech, Morocco, pp.

313-316. https://doi.org/10.1109/CIST.2018.8596500

[20] Nelson, J., Solawetz, J. (2020). Responding to the

Controversy about YOLOv5. Roboflow: Roboflow

News.

1386

https://doi.org/10.5121/sipij.2013.5101
https://doi.org/10.1007/3-540-45656-2_19
https://doi.org/10.1016/0262-8856(91)90010-M
https://doi.org/10.1007/3-540-44522-6_83
https://doi.org/10.3141/2528-06
https://doi.org/10.3390/s17020336
https://doi.org/10.1007/BF01421490
https://www.researchgate.net/publication/267863282_Automatic_Detection_of_Cars_in_Real_Roads_using_Haar-like_Features
https://www.researchgate.net/publication/267863282_Automatic_Detection_of_Cars_in_Real_Roads_using_Haar-like_Features
https://www.researchgate.net/publication/267863282_Automatic_Detection_of_Cars_in_Real_Roads_using_Haar-like_Features
https://doi.org/10.3390/s18124500
https://doi.org/10.1007/s11554-017-0712-5

