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In communication systems as public switched telephone networks and tele-and-vision-

conferencing system, addressing the challenge of sparse acoustic echo is of paramount 

importance. The sparse impulse response identification is very essential in acoustic echo 

cancellation systems (AEC) exactly in sparse acoustic environments. This paper introduces 

an enhanced improved proportionate normalized-least-mean-square (IP-NLMS) algorithm, 

utilizing efficient variable step-size parameters and adapting only the active coefficients 

based on selection bloc for reducing the computational complexity. The proposed Variable 

Selection Coefficients IP-NLMS algorithm (VSC-IP-NLMS) focuses on adapting the 

selected active coefficients of the sparse impulse response (SIR), in order to both accuracy 

and convergence speed. Extensive simulations conducted under various sparse 

environments confirm the efficacy of the proposed algorithm. As important characteristic of 

this proposed VSC-IP-NLMS, it achieves these remarkable results with significantly 

reduced computational complexity compared to sparse and variable adaptive filtering 

algorithms, offering a promising avenue for improving the quality of communication 

systems. 
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1. INTRODUCTION

Recently, the rise of telecommunications has facilitated the 

adoption of digital communication tools, enabling people to 

make phone calls virtually from any location around the world. 

However, the conversation is sometimes not clear in non-quiet 

places, this disturbance is called noise, which generates a weak 

communication between correspondents. Recently, several 

research papers have been published based on adaptive 

filtering algorithms, which have been implemented on several 

telecommunication fields, such as acoustic echo and noise 

reduction to accelerate the convergence adaptation and 

enhancing the quality of conversations [1-3]. Adaptive 

filtering algorithms are largely used in acoustic echo 

cancellation [4-6]. Several researches have been conducted to 

address the identification problem in the time domain and in 

the frequency domain [7, 8]. We cite for example, the basic 

Least Mean Square (LMS) and normalized LMS version 

which are extensively used especially for their simplicity of 

implementations. Other filtering algorithms have been 

proposed for AEC applications [9-11]. The problem of echo 

becomes more complex in situations where the excitation 

signal is strongly non-stationary and the echo path is variable. 

To give the solution for all these problems, an echo canceller 

can be employed, where the Impulse Response (IR) 

identification is done by using digital Finite IR filter (FIR) [12-

14].  

Generally, in an adaptive filtering algorithm, the increase in 

the adaptation step-size, results to very fast convergence speed 

with important fluctuations around the average trajectory. 

Recently, several algorithms based on variable step-sizes are 

proposed to solve the problems mentioned above, using 

several criteria [15-17]. All these variable step-size adaptive 

filtering versions can theoretically be used to eliminate the 

fluctuations but exactly when the echo channel is 

characterized by a dispersive IR. In some applications, the 

acoustic environment is characterized by SIR. In this case, the 

adaptive filtering algorithms presented previously give a poor 

performance in terms of convergence speed and final steady-

state regime. To resolve this problem in sparse environment 

case, several versions of adaptive filtering algorithms have 

been developed such as the proportionate NLMS algorithm 

(PNLMS) [18]. Another algorithm called the IP-NLMS has 

been also proposed to find the solution with dispersive or 

sparse environments [19]. These algorithms update a large part 

of adaptive filter coefficients to reach acceptable performances. 

Complexity reduction of the adaptive algorithms is an 

essential solution for the real-time implementation of AEC 
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systems [18-20].  

Noting that the non-sparse NLMS algorithm presents a poor 

performance exactly in acoustical sparse impulse responses 

system. While the IP-NLMS algorithm performs better in 

these situations, but it requires a high computational 

complexity. To resolve these problems, we introduce an 

improved version called the Variable Selection Coefficients 

IP-NLMS algorithm (VSC-IP-NLMS). This new algorithm 

reduces computational complexity by focusing only on active 

coefficients adaptation for resolving the problem of IP-NLMS. 

As we propose to use an efficient variable step-sizes to 

accelerate the convergence rate and minimize the final steady-

state error. This new approach balances efficiency 

performance with very low computational complexity exactly 

in sparse impulse responses systems. 

The remaining parts of this paper are divided into the 

following sections: in the second section, the description of 

AEC system adapted by non-proportionate NLMS and 

improved proportionate algorithms is given; then, the 

proposed IP-NLMS algorithm is developed in the third section. 

The fourth section is dedicated to experimental results of the 

proposed algorithm compared to the sparsity-aware NLMS 

versions. Finally, a conclusion is done in the last section. 

 

 

2. ACOUSTIC ECHO CANCELLATION SYSTEM 

 

A teleconferencing system consists of two conference 

rooms in both of which microphones and loudspeakers are 

installed. The loudspeaker and microphone are related with 

acoustic channel formed by large reflections at the boundaries 

of the closed environments. The far-end speech played in the 

loudspeakers that is captured by the microphone signal is 

transmitted back to the far-end. The loudspeaker signal (signal 

of second room B, 𝑠𝑏(𝑛)) in both cases is convoluted by the 

locale room IR, ℎ𝑎(𝑛) . However, the first signal 𝑠𝑎(𝑛)  is 

filtered by the impulse response ℎ𝑏(𝑛). 

 

𝑦𝑏(𝑛) = 𝑠𝑏(𝑛) ∗ ℎ𝑎(𝑛) (1) 

 

𝑦𝑎(𝑛) = 𝑠𝑎(𝑛) ∗ ℎ𝑏(𝑛) (2) 

 

where, (*) is the convolution operation. The two echo paths 

ℎ𝑎(𝑛) and ℎ𝑏(𝑛) represent the result of the reflection and the 

attenuation of the sound by the walls and the objects in the two 

rooms. In any teleconferencing system, it is very important to 

eliminate the two acoustic echoes 𝑦𝑎(𝑛) and 𝑦𝑏(𝑛) added in 

the two microphones installed in two rooms using two acoustic 

echo cancellation systems. In the AEC system, the adaptive 

filter is employed to identify the room IR. The filter needs to 

be updated continuously, because the characteristics of the 

room vary in time with the movement of people and objects [4, 

5]. In Figure 1, 𝑠𝑏(𝑛) is convoluted by IR ℎ𝑎(𝑛) of room, and 

then captured, simultaneously, by a microphone with the 

𝑠𝑎(𝑛). In other hand, 𝑠𝑏(𝑛) is convoluted by an updating filter 

𝑤𝑎(𝑛) that is used to estimate the IR ℎ𝑎(𝑛), and subtracted 

from the output microphone 𝑑(𝑛) . Noting that, the output 

signal of 𝑤𝑎(𝑛) represents the acoustic echo estimation. 

To update the adaptive filter 𝑤𝑎(𝑛), we use the error signal 

during silent periods of 𝑠𝑎(𝑛). This error is given by: 

 

𝑒(𝑛) = 𝑑(𝑛) − �̂�(𝑛) (3) 

 

𝑑(𝑛) = 𝑠𝑎(𝑛) + 𝑠𝑏(𝑛) ∗ ℎ𝑎(𝑛) (4) 

�̂�(𝑛) = 𝑠𝑏(𝑛) ∗ 𝑤𝑎(𝑛) (5) 

 

Inserting Eq. (4) and Eq. (5) in Eq. (3), we obtain 

 

𝑒(𝑛) = 𝑠𝑎(𝑛) + 𝑠𝑏(𝑛) ∗ ℎ𝑎(𝑛) − 𝑠𝑏(𝑛) ∗ 𝑤𝑎(𝑛) (6) 

 

𝑒(𝑛) = 𝑠𝑎(𝑛) + 𝑠𝑏(𝑛) ∗ [ℎ𝑎(𝑛) ∗ 𝑤𝑎(𝑛)] (7) 

 

In the steady-state regime, the filter 𝑤𝑎(𝑛) converges to the 

room IR (i.e., ℎ𝑎(𝑛) = 𝑤𝑎,𝑜𝑝𝑡(𝑛)), and the calculated error 

becomes:  

 

𝑒(𝑛) = 𝑠𝑎(𝑛) (8) 

 

 
 

Figure 1. Basic AEC system 

 

2.1 Classical adaptive filtering algorithms 

 

According to Eq. (8), we note that the resulting error 𝑒(𝑛) 

is used to approximate the near-end speaker 𝑠𝑎(𝑛). This result 

is obtained after convergence of optimal coefficients 

𝑤𝑎,𝑜𝑝𝑡(𝑛)  to the coefficients of the real impulse response 

ℎ𝑎(𝑛). The LMS algorithm is the most commonly used due to 

its simplicity of implementation, its reduced complexity and 

its numerical stability, but this latter has some drawbacks such 

as: its poor performances against long and time varying echo 

paths; its very sensitivity against non-stationarity input signals. 

To make the convergence behavior independent of input 

energy of adaptive filter, the NLMS algorithm derived from 

the LMS has been proposed. This normalized version is one of 

the most used adaptive algorithms in AEC applications. The 

NLMS reduces the MSE values between desired-response 

signal and filter output [1-3]. Eq. (9) presents the update 

recursive formula produced by this algorithm: 

 

𝒘𝒂(𝑛 + 1) = 𝒘𝒂(𝑛) +
µ𝒔𝒃(𝑛)𝑒(𝑛)

𝒔𝒃
𝑻(𝑛)𝒔𝒃(𝑛)

 (9) 

 

A very small parameter 𝜉𝑛𝑙𝑚𝑠  must be added in the 

denominator to overcome the problem of division by zero 

when the quantity [𝐬𝒃
𝐓(𝑛) 𝐬𝒃(𝑛)] takes small values or a zero 

value. Therefore, the finale equation is given by: 

 

𝒘𝒂(𝑛 + 1) = 𝒘𝒂(𝑛) +
µ𝒔𝒃(𝑛)𝑒(𝑛)

𝒔𝒃
𝑻(𝑛)𝒔𝒃(𝑛) + 𝜉𝑛𝑙𝑚𝑠

 (10) 

 

where, µ takes its values between 0 and 2 [1-3]. 

 

2.2 Sparse adaptive filtering algorithms 

 

Practically in teleconferencing AEC systems, the length of 

the acoustic IR ℎ(𝑛)  can reach 2048 filter taps which is 
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equivalent to a duration of about 256 ms. The acoustic sparse 

system is characterized by impulse responses that have the 

great part of its taps are absent or close to zero (i.e. inactive 

coefficients) and only a few coefficients have large 

magnitudes (active coefficients) [18-20].  

Several sparsity-aware adaptive algorithms have been 

developed to identify the sparse IR exactly to improve the 

NLMS algorithm’s poor performances in teleconferencing 

systems. Duttweiler propose the Proportionate NLMS 

algorithm [20], in order to increase the initial convergence 

speed, by giving a large adaptation gain to large coefficients, 

in the other hand, it provides a minimal gain of adaptation for 

small coefficients, which results to a poor convergence rate 

after the initial phase.  

It is crucial to highlight that PNLMS algorithm can be 

deteriorated when the echo path is a dispersive type. Benesty 

and Gay [19] proposed the IP-NLMS algorithm. This 

algorithm is a combination between non-proportionate and 

proportionate NLMS adaptation. The update formula of the IP-

NLMS is described by: 

 

𝒘𝒂(𝑛 + 1)=𝒘𝒂(𝑛) +
µ𝑄(𝑛)𝒔𝒃(𝑛) 𝑒(𝑛)

𝒔𝒃
𝑻(𝑛)𝑄(𝑛)𝒔𝒃(𝑛) + 𝜉𝐼𝑃

 (11) 

 

The diagonal control matrix 𝑄(𝑛)  is used to determine 

exact step-size value of each coefficient. This matrix is defined 

as follows:  

 

𝑄(𝑛) = [

𝑞1(𝑛) 0 ⋯ 0

0 𝑞2(𝑛) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞𝑀(𝑛)

] (12) 

 

where, 𝐷𝑖𝑎𝑔{𝑄(𝑛)} = [𝑞1(𝑛), 𝑞2(𝑛),...,𝑞𝑀(𝑛)] and M is the 

SIR length. The diagonal elements of 𝑄(𝑛)  is denoted by 

𝑞𝑚(𝑛) which are estimated as 

 

𝑞𝑚(𝑛) =
(1 − 𝛼)

2𝑀
+

(1 + 𝛼)|𝒘𝑎,𝑚(𝑛)|

2‖𝒘𝑎(𝑛)‖1 + 𝜑
 (13) 

 

|𝐰𝑎,𝑚(𝑛)|
1
 is defined as the 𝑙1-norm 

 

‖𝒘𝑎(𝑛)‖1 = ∑ 𝒘𝑎,𝑖(𝑛)

𝑀

𝑖 = 1

 (14) 

 

where, 𝜉𝐼𝑃 = ((1 − 𝛼) 2𝑀⁄ )𝜉𝑛𝑙𝑚𝑠  and α is a control 

parameter must be fixed between -1 and 1. Exactly at the initial 

convergence of adapting filter, we use the small number that 

introduced to prevent numerator from the division by zero. 

The IP-NLMS algorithm becomes identical to the basic NLMS 

when α=-1, also, if this scalar equals to 1, the two algorithms 

IP-NLMS and P-NLMS become similar. In AEC applications, 

the suitable choices of α are α = 0, -0.5 or -0.75 [20]. 
 

 

3. PROPOSED VSC-IP-NLMS ALGORITHM 
 

3.1 Proposition methodology 
 

For a long adaptive filter application in AEC system, the 

complexity load of IP-NLMS version is very important 

compared with the basic-NLMS. In long SIR, large inactive 

coefficients (very small, equal or close to zero) are present, 

and only a few active coefficients that have large magnitudes. 

The active coefficients number of adaptive filter for Sparse IR 

identification is an important parameter. 

 

 
 

Figure 2. Active coefficient selection procedure 

 

We note that 𝐶𝑖 are the coefficients of the sparse impulse 

response. For example, in Figure 2, the all coefficients greater 

than a threshold value 𝑞𝑇ℎ  are considered as active 

coefficients (𝐶1, 𝐶2, 𝐶3, 𝐶4 and 𝐶5) and all others coefficients 

are inactive or not important. It is very important to adapt only 

the active coefficients to minimize the computational 

complexity. For this objective, we suggest a modified adaptive 

filtering NLMS with very low complexity by adapting only the 

active coefficients by using an active coefficients selection 

bloc based on averaging constant detection approach.  

The new AEC system in SIR based on the selection of active 

coefficients and variable step-sizes parameters with low 

complexity is illustrated in Figure 3. 

 

 
 

Figure 3. AEC system based on proposed algorithm with 

ACS is active coefficient selection 

 

In new AEC system, we proposed to implement new bloc 

used to select the active coefficient of adaptive filter. After this 

step, we proposed to adapt only these active coefficients 

(presented by new adaptive filter 𝐰𝒂,𝑺(𝑛) ) to decrease the 

complexity load. In the proposed structure presented in Figure 

3, we propose to adapt only the new active coefficients vector 

combined with the new variable step-sizes parameters that are 

updated recursively. The new adaptation formula is written as: 

 

𝒘𝒂,𝑺(𝑛 + 1) = 

𝒘𝒂,𝑺(𝑛) +
µ𝑠(𝑛)𝑄𝑆(𝑛)𝒔𝑏,𝑆(𝑛)𝑒(𝑛)

𝒔𝑏,𝑆
𝑇 (𝑛)𝑄𝑆(𝑛)𝒔𝑏,𝑆(𝑛) + 𝜉𝐼𝑃,𝑆

 
(15) 

 

where, 𝒘𝒂,𝑺(𝑛) represents the new vector contains only active 

coefficients of original adaptive filter without the small and 

inactive coefficients one. 
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3.2 Diagonal control matrix 𝑸𝑺(𝒏) 

 

In this proposed version, we use new diagonal control 

matrix 𝑄𝑆(𝑛) that is introduced to determine and adapt only 

the active filter coefficients. This matrix is written as:  

 

𝑄𝑆(𝑛) =

[
 
 
 
𝑞𝑆,1(𝑛) 0 ⋯ 0

0 𝑞𝑆,2(𝑛) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑞𝑆,𝑀(𝑛)]

 
 
 

 (16) 

 

where, 𝑑𝑖𝑎𝑔{𝑄𝑆(𝑛)} = [𝑞𝑆,1(𝑛), 𝑞𝑆,2(𝑛),...,𝑞𝑆,𝑀(𝑛)] . The 

modified diagonal coefficients of 𝑄𝑆(𝑛) is denoted by 𝑞𝑆,𝑗(𝑛) 

with 0 ≤ 𝑗 ≤ 𝑀 − 1 which are estimated as: 

 

𝑞𝑆,𝑗(𝑛) =
(1 − 𝛼)

2𝑀
+

(1 + 𝛼)|𝒘𝑎,𝑆,𝑗(𝑛)|

2‖𝒘𝑎,𝑆(𝑛)‖
1
+ 𝜑

 (17) 

 

To select exactly the active coefficients of 𝒘𝒂,𝑺(𝑛) , we 

propose as a first step to calculate the threshold using the mean 

value of the matrix diagonal elements that is given by: 

 

𝑞𝑇ℎ = 𝛾 ∑ 𝑞𝑆,𝑗(𝑛)

𝑀

𝑗=1

 (18) 

 

As a second step, we find the S active filter coefficients by 

comparing each element of step-size control matrix with the 

calculated threshold value. 

 

{
𝑖𝑓 𝑞𝑗(𝑛) ≥ 𝑞𝑇ℎ → 𝑤𝑗(𝑛) is an active coefficient   

𝑖𝑓 𝑞𝑗(𝑛) < 𝑞𝑇ℎ → 𝑤𝑗(𝑛) is an inactive coefficient
 

 

{
Active coefficient → 𝑤𝑗(𝑛) is adapt in Algorithm

Inactive coefficient → 𝑤𝑗(𝑛) is non − adapt          
 

 

Finally, we extract all 𝑗 positions of active coefficients that 

is used to identify the new vector of active coefficients of 

Sparse IR. This latter apply that we adapt only efficient S 

coefficients, and 𝜉𝐼𝑃,𝑆  is a scalar regularization parameter 

defined as, 𝜉𝐼𝑃,𝑆 = ((1 − 𝛼) 2𝑆⁄ ) 𝜉𝑛𝑙𝑚𝑠 . The detailed steps of 

active coefficients selection are presented in Figure 4. 

 

 
 

Figure 4. Detailed steps of active coefficients selection with 

variable step-size parameter 

3.3 Optimal step-size estimation 

 

Employing variable step-sizes is a crucial technique that 

enhances convergence and adaptability. Instead of using a 

fixed step-size, which may lead to slow progress or 

overshooting, variable step-sizes allow the algorithm to adjust 

its steps dynamically. By decreasing the step-size in regions 

where the function is in decreasing and increasing it in flatter 

areas, the algorithm can efficiently navigate complex, irregular, 

or non-conditioned optimization problems. The role of the 

weight-error vectors 𝛜(𝑛) becomes apparent in the adaptation 

process, where they serve as a means to quantify the disparity 

between the desired optimum tap-weight vector 𝒉𝑎(𝑛) and the 

estimated coefficients filter 𝒘𝒂,𝑺(𝑛).  

 

𝝐(𝑛) = 𝒉𝑎(𝑛) − 𝒘𝒂,𝑺(𝑛) (19) 

 

The mean-square deviation (MSD) quantifies the average 

squared disparity between the desired and actual weight-error 

vectors, thereby providing a measure of how closely the 

adaptive filters approximate the desired impulse response. A 

lower MSD signifies a higher degree of accuracy and, 

consequently, better overall performance. The equation for 

calculating the MSD is as follows: 

 

𝑐(𝑛) = 𝐸[‖𝝐(𝑛)‖2] = 𝐸 [‖𝒉𝑎(𝑛) − 𝒘𝒂,𝑺(𝑛)‖
2
] (20) 

 

After substituting Eq. (20) into basic-NLMS Eq. (10) and 

performing the necessary calculations to determine the 

squared Euclidean model: 

 

𝑐(𝑛) − 𝑐(𝑛 − 1) = 𝜇1
2𝐸 [

𝑒(𝑛)2

𝐬𝑏,𝑆
𝑇 (𝑛)𝐬𝑏,𝑆(𝑛)+𝜉𝑛𝑙𝑚𝑠

]  

−2𝜇1𝐸 [
𝛜𝑇(𝑛−1)𝐬𝑏,𝑆(𝑛)𝑒(𝑛)

𝐬𝑏,𝑆
𝑇 (𝑛)𝐬𝑏,𝑆(𝑛)+𝜉𝑛𝑙𝑚𝑠

]  
(21) 

 

By observing that 𝑐(𝑛) − 𝑐(𝑛 − 1) = 𝑓(𝜇) , selecting an 

optimal value of μ that maximizes the function f(μ) guarantees 

the most substantial reduction in the mean-square deviation 

(MSD) from one iteration (n-1) to the next (n), resulting in 

𝑐(𝑛) being less than 𝑐(𝑛 − 1). In simpler terms, this means 

that by choosing the right step-size, we can significantly 

enhance the algorithm's performance in minimizing the error 

between the desired output and the actual output at each 

iteration. This, in turn, leads to a more efficient adaptation 

process. Considering 𝑐(𝑛) < 𝑐(𝑛 − 1), it follows that 𝑓(𝜇) is 

less than zero, allowing us to express the relationship as 

follows:  

 

𝜇2𝐸 [
𝑒(𝑛)2

𝐬𝑏,𝑆
𝑇 (𝑛)𝐬𝑏,𝑆(𝑛)+𝜉𝑛𝑙𝑚𝑠

]  

−2𝜇𝐸 [
𝛜𝑇(𝑛−1) 𝐬𝑏,𝑆(𝑛)𝑒(𝑛)

𝐬𝑏,𝑆
𝑇 (𝑛) 𝐬𝑏,𝑆(𝑛)+𝜉𝑛𝑙𝑚𝑠

] < 0  
(22) 

 

Based on Eq. (22), the optimal step-size parameter is given 

by: 

 

𝜇𝑜𝑝𝑡 < 2{
𝐸[

𝛜𝑇(𝑛−1)𝐬𝑏,𝑆(𝑛)𝑒(𝑛)

𝐬𝑏,𝑆
𝑇 (𝑛)𝐬𝑏,𝑆(𝑛)+𝜉𝑛𝑙𝑚𝑠

]

𝐸[
𝑒(𝑛)2

𝐬𝑏,𝑆
𝑇 (𝑛)𝐬𝑏,𝑆(𝑛)+𝜉𝑛𝑙𝑚𝑠

]

}  (23) 

 

We note that  
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𝜇𝑜𝑝𝑡 < 2𝜗(𝑛) (24) 
 

Using the NLMS algorithm and referring to Eq. (25), the 

optimal step-size value is constrained within the range of 0 <
𝜇𝑜𝑝𝑡 < 2. This constraint is dependent on the small parameter 

𝜗(𝑛), which is provided as a variable: 

 

𝜗(𝑛) < 1 (25) 

 

In the following section, we introduce our innovative 

approach to parameterize 𝜇(𝑛) through recursive estimations. 

This novel adaptation enables us to derive recursive formulas 

for 𝜇𝑜𝑝𝑡. In the optimal situation, the input signal, denoted as 

𝐬𝑏,𝑆(𝑛) , for the adaptive filter 𝒘𝒂,𝑺(𝑛) , and the estimated 

output error 𝑒(𝑛) , tend to become decorrelated signals. 

However, the small parameter 𝜗(𝑛)  can be estimated by 

examining the cross-correlation function between the input 

signal 𝐬𝑏,𝑆(𝑛) and the output error 𝑒(𝑛). We now propose an 

alternative method for estimating this small quantity 𝜗(𝑛) 

using a newly derived quantity, �̃�(𝑛) , which is based on 

minimizing the cross-correlation between 𝑒(𝑛) and 𝐬𝑏,𝑆(𝑛). 

 

�̃�(𝑛) =
‖𝑮(𝑛)‖2

𝑐+‖𝑮(𝑛)‖2  (26) 

 

with 0 < 𝑐  and {𝑐 + ‖𝐆(𝑛)‖2} > ‖𝐆(𝑛)‖2  applies that 

�̃�(𝑛) < 1 . We note also that the proposed estimation of 

optimal step-size parameter is presented as 

 

𝜇𝑜𝑝𝑡 < 2 × �̃�(𝑛) (27) 

 

We substitute the value of 2 with 𝜇𝑚𝑎𝑥, a selection has a 

purpose for achieving the fastest convergence rate while 

observing to the condition 𝜇𝑚𝑎𝑥<2. Our proposition involves 

the recursive estimation of the optimal variable step-size 

parameter, which can be computed as: 

 

�̃�𝑜𝑝𝑡(𝑛) = 𝜇𝑚𝑎𝑥 ×
‖𝑮(𝑛)‖2

𝑐+‖𝑮(𝑛)‖2  (28) 

 

The vector 𝑮(𝑛) is estimated through the minimization of a 

cross-correlation function between the input signal 𝐬𝑏,𝑆(𝑛) 

and the output error signal 𝑒(𝑛). The estimation of this vector 

is expressed as follows: 

 

𝑮(𝑛) = 𝑘𝑮(𝑛 − 1) + (1 − 𝑘)
𝒔𝑏,𝑆(𝑛)𝑒(𝑛)

𝒔𝑏,𝑆
𝑇 (𝑛)𝒔𝑏,𝑆(𝑛)+𝜀

  (29) 

 

with 0 < 𝑘 < 1. The final variable step-size parameter used in 

updating equation is controlled and adapted using the next 

condition to guarantee the convergence of adaptive filters, 

 

𝜇(𝑛) = {
𝜇𝑚𝑖𝑛        𝑖𝑓    �̃�𝑜𝑝𝑡(𝑑) < 𝜇𝑚𝑖𝑛

�̃�𝑜𝑝𝑡(𝑑) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
  (30) 

 

𝜇𝑚𝑖𝑛 represents the potential minimum value necessary to 

ensure the highest level of quality. 

 

 

4. SIMULATION RESULTS 

 

4.1 Signals and parameters of simulation environment 

 

The simulation involves comparing the performance of the 

Proposed algorithm with three other algorithms: the Basic-

NLMS (fixed-and-non-proportionate step-size), the IP-NLMS 

[19] (fixed-and-proportionate step-size) and the VSS-NLMS 

[21] (variable-and-nonproportionate step-size). These 

algorithms are implemented and tested in the MATlab 

environment. Two types of input signals are used for testing 

the performances of these algorithms: USASI-noise (USA 

Standards Institute) and Additive White Gaussian Noise 

(AWGN). The statistical characteristics of USASI-noise are: a 

spectrum close to the average spectrum of the speech signal, a 

spectral range of 32 𝑑𝐵  and a power of 𝜎𝑥
2 = 0.33 . These 

signals represent the background noise that the AEC system 

needs to cancel it (see Figure 5). We note that the sparse 

impulse responses are used to model the characteristics of real 

rooms. These responses are crucial for simulating the acoustic 

environment accurately.  

The sparse impulse response is designed with a specific 

number of active coefficients representing 10% of the impulse 

response length. This indicates that only a part of the impulse 

response is active, which is a common scenario in real-

acoustic room environments, see Figure 6. 

 

 
 

Figure 5. Time evolution of USASI signal and AWGN 

 

 
 

Figure 6. SIR, M = 128 with 12 active coefficients 

 

Table 1. Numerical values of simulated adaptive algorithms 

 
Algorithms Parameters 

Basic-NLMS µ=0.9, 𝜉𝑛𝑙𝑚𝑠 = 10−6 

IP-NLMS 
µ=0.9, 𝜉𝐼𝑃 = ((1 − 𝛼) 2𝑀⁄ )𝜉𝑛𝑙𝑚𝑠, α=-0.5, 

𝜑=10−6 

VSS-NLMS 
µmax=0.9, µmin=0.02, c=0.00009, k=0.999, 

𝜉𝑉𝑆𝑆 = 10−6 

Proposed  

VSC-IP-NLMS 

µmax=0.9, µmin=0.02, c=0.00009, k=0.999, 

𝜉𝐼𝑃,𝑆 = 𝜉𝐼𝑃, α=-0.5, 𝜑=10−6 

 

The input signals are sampled at 8 kHz, which is the suitable 

sampling frequency for the applications of speech 

communication. The simulation is performed over 60 000 

iterations, which implies that the algorithms are tested for 

various scenarios to assess their convergence and performance. 
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The input Signal-to-Noise Ratio (SNR) is fixed at a high value 

of 90 dB, indicating that the input signals have a minimal 

amount of noise compared to the desired signal. Numerical 

values of the parameters are presented in Table 1.  

As criteria of evaluation, we have used subjective and 

objective criteria. Three subjective measures are used to 

evaluate the performance of the proposed algorithm: (i) time 

evolution of the error signals, (ii) the obtained adaptive filters 

and (iii) the evolution of variable step-size parameters. These 

measures help assess how well the AEC system cancels the 

echo and adapts time varying changes. A deep analysis can be 

also done using the objective criteria, such as: (i) Mean Square 

Error (MSE) and (ii) Echo Return Loss Enhancement (ERLE). 

These metrics provide quantifiable measures of how well the 

AEC system reduces echo and enhances the quality of the 

desired signals. 

The objective evaluation criterion MSE is defined by the 

following formula: 

 

𝑀𝑆𝐸𝑑𝐵 = 10 log
10

(𝐸‖𝑒(𝑛)2‖) (31) 

 

The other objective evaluation criterion ERLE measures the 

amount of attenuated echo signal in AEC applications, that is 

expressed by: 

 

𝐸𝑅𝐿𝐸𝑑𝐵 = 10 log
10

(
𝐸‖𝑑(𝑛)2‖

𝐸‖𝑒(𝑛)2‖
) (32) 

 

4.2 Subjective criteria results 

 

In this subsection, we present the time evolution of all error 

signals 𝑒(𝑛)  obtained by the proposed algorithm compared 

with the desired signal, when using the AWGN signal as input 

signal. Figure 7 shows the signals of the output error obtained 

by the four algorithms.  

 

 
 

Figure 7. Temporal evolution of error signals 

 

 
 

Figure 8. Estimated sparse filters 

Figure 8 displays a comparison between the actual 

coefficients of the sparse filter obtained by four algorithms. 

The simulations conducted in these figures are performed 

using the parameter values of Table 1. 

Figure 7 presents the signals of the output error obtained by 

the four different algorithms. These algorithms are used to 

estimate and adapt to a desired signal with an input signal 

corrupted by AWGN. The objective is to reach to error signals 

close to zero, indicating that the algorithms are effectively 

minimizing the difference between the estimated and desired 

signals. This figure likely shows how the proposed VSC-IP-

NLMS algorithm outperforms the three other algorithms in 

terms of error signal convergence.  

The proposed VSC-IP-NLMS algorithm, show the fastest 

convergence, that means it reaches a small error signal quickly. 

We can say that the proposed algorithm is highly efficient for 

adapting the noisy input signal and approximating the desired 

signal accurately. The comparison between these error signals 

helps assess the algorithms performance in terms of signal 

estimation. 

The goal of Figure 8 is examining how well these adaptive 

filters can approximate the true sparse filter coefficients to the 

change of input conditions. The Figure 8 demonstrates that 

proposed and all presented algorithms are estimating the 

sparse filter coefficients. 

In Figure 9, we illustrate the changes in a particular variable 

step-sizes parameter achieved by the proposed VSC-IP-NLMS 

algorithm. 

 

 
 

Figure 9. Variable step-size evolution 

 

In Figure 9, the variable step-size values achieved by the 

proposed VSC-IP-NLMS algorithm are compared with those 

obtained by the VSS-NLMS algorithm and the Basic fixed-

step-size NLMS. The results provide insights into how 

effectively the proposed algorithm adjusts its step-size during 

the simulation. A key observation to make here is that the 

proposed VSC-IP-NLMS algorithm is expected to exhibit the 

most minimizing and efficient adaptation of step-sizes, which 

means that it rapidly reduces the step-size when the error 

signal is close to the steady-state regime, which contributes to 

faster convergence and minimizes the risk of divergence. 

 

4.3 Convergence rate by MSE criteria  

 

In this section, the primary focus centers on evaluating the 

convergence speed performance of all algorithms within the 

context of sparse impulse response identification. The 

assessment of convergence speed is quantified through the 

evolution of MSE values, where low MSE values corresponds 

to high accuracy, indicating a small difference between 
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estimated and desired signals. In the other hand, high MSE 

values corresponds to large errors and, consequently, less 

effective algorithm performance.  

 

 
 

Figure 10. Convergence speed with USASI noise, for M = 

128 and Ms = 12 

 

 
 

Figure 11. Convergence speed with USASI noise, for M = 

256 and Ms = 25 

 

 
 

Figure 12. Convergence speed with USASI noise, for M = 

512 and Ms = 51 

 

 
 

Figure 13. Convergence speed with USASI noise, for M = 

1024 and Ms = 102 

The measure of tracking capability is derived from an 

analysis of how rapidly the adaptive filter can adapt to new 

noise conditions and changes in the impulse response. In this 

context, it is worth noting that tracking capability performance 

is a vital aspect of this research.  

Figures 10-13 serve as visual representations of the 

evolution of the MSE when the algorithms are simulated with 

USASI noise. The input SNR is fixed at a constant value of 90 

dB. Experiments are performed under four different sparse 

acoustic systems, each with different lengths of M, specifically 

128, 256, 512, and 1024. The input SNR conditions are 

maintained at the consistent level of 90 dB.  

From Figures 10-13, we can conclude that: (i) Basic-NLMS 

exhibits a relatively slower convergence rate than IP-NLMS. 

Its MSE values are higher, indicating that it is less effective 

for sparse impulse response identification and the tracking 

capability. (ii) IP-NLMS shows remarkable convergence 

speed. Its MSE values decrease rapidly and efficiently tracks 

and estimates desired signals. (iii) The behavior of the VSS-

NLMS algorithm is better than Basic-NLMS and IP-NLMS in 

terms of convergence speed and MSE values. But we note that 

the final MSE values obtained by this algorithm are high. (vi) 

The proposed algorithm consistently outperforms all others. It 

exhibits the fastest convergence and the lowest MSE values, 

indicating their exceptional ability to track and accurately 

estimate desired signals, it can be considered as a best 

candidate in sparse systems. 

Figures 14-17 provide experimental results of how the 

proposed algorithm behaves when operating in the presence of 

a challenging noise environment, specifically AWGN, with a 

steady Signal-to-Noise Ratio (SNR) of 90 dB, with different 

degrees of sparsity. 

 

 
 

Figure 14. Convergence speed with AWGN signal, for M = 

128 and Ms = 12 

 

 
 

Figure 15. Convergence speed with AWGN signal, for M = 

256 and Ms = 25 
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Figure 16. Convergence speed with AWGN signal, for M = 

512 and Ms = 51 

 

 
 

Figure 17. Convergence speed with AWGN signal, for M = 

1024 and Ms = 102 

 

Based on these figures, the IP-NLMS algorithm shows a 

rapid convergence rate and consistently achieves low Mean 

Square Error (MSE) values compared with Basic-NLMS 

which presents a slower convergence rate and higher MSE 

values. As we note that the VSS version gives a fast 

convergence compared to Basic-NLMS and high MSE values 

compared to IP-NLMS algorithm. All Figures prove the 

consistent superiority of the proposed algorithm. It shows a 

fast convergence with the lowest MSE in AWGN conditions. 

All MSE figures confirm that the proposed algorithm has 

the best performance in USASI and AWGN noise scenarios 

and with time varying SIR. In terms of statistical analysis, the 

proposed algorithm converges faster than the other algorithms 

to the power of the input noise. Its capacity to estimate desired 

signals and to adapt the changes of noise conditions, gives it a 

priority to be selected as the best candidates for achieving 

high-quality noise reduction in real-world speech applications. 

The superiority of this algorithm is obtained from its selective 

adaptation of active coefficients. This approach offers a 

distinct advantage in real-world applications. The adaptation 

of the proposed algorithm is focused exclusively on the active 

coefficients, which results to a reduced complexity. 

 

4.4 Echo Return Loss Enhancement criteria 

 

Now, we evaluate the performance of proposed VSC-

NLMS and presented algorithms using the ERLE (Echo 

Return Loss Enhancement) criterion. The ERLE is a critical 

measure, reflecting the algorithm ability to enhance the quality 

of acoustic signals by reducing the presence of unwanted 

echoes. A high ERLE values indicate a more effective 

algorithm in minimizing echo interference, while low ERLE 

values signify a poor performance. Figures 18-21 present the 

evolution of the ERLE when the algorithms are subjected to 

the input signal of USASI noise. The input SNR is set to 90 

dB for all the following evaluations.  
 

 
 

Figure 18. ERLE evaluation with USASI noise, for M = 128 

and Ms = 12 
 

 
 

Figure 19. ERLE evaluation with USASI noise, for M = 256 

and Ms = 25 
 

 
 

Figure 20. ERLE evaluation with USASI noise, for M = 512 

and Ms = 51 
 

 
 

Figure 21. ERLE evaluation with USASI noise, for M = 

1024 and Ms = 102 
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Figure 22. ERLE evaluation with AWGN signal, for M = 

128 and Ms = 12 

 

 
 

Figure 23. ERLE evaluation with AWGN signal, for M = 

256 and Ms = 25 

 

 
 

Figure 24. ERLE evaluation with AWGN signal, for M = 

512 and Ms = 51 

 

 
 

Figure 25. ERLE evaluation with AWGN signal, for M = 

1024 and Ms = 102 

 

Figures 18-21 offer a comprehensive analysis of the 

algorithm performance with respect to the ERLE criterion for 

two different input signals, the results consistently maintain a 

high input SNR of 90 dB. After careful examination of all 

presented ERLE results, it becomes evident that the proposed 

algorithm outperforms the other algorithms in terms of ERLE 

enhancement. With an input signal of USASI noise, the 

proposed algorithm shows high ERLE values for different 

impulse response lengths, of 128, 256, 512, and 1024.  

The ERLE values results obtained in case of AWGN signal 

are presented in Figures 22-25 for filters lengths, 128, 256, 512 

and 1024, respectively. These visual representations offer a 

comprehensive view of the algorithm performance under 

different conditions, focusing on their effectiveness in 

reducing echo interference and enhancing acoustic signal 

quality. Nothing that we have used the same parameters values 

presented previously in Table 1. 

In the presence of AWGN noise, the proposed algorithm 

gives superior ERLE values compared to the other algorithms. 

This show that the proposed algorithm is robust in reducing 

echo interference under real-world noise scenarios. These 

findings strongly indicate that the proposed algorithm presents 

the best solution for enhancing ERLE. The ability of the 

proposed algorithm to outperform the state of art algorithms in 

reducing echo interference and improving acoustic signal 

quality results. 

The superior ERLE performance of the proposed algorithm 

can be attributed to two key characteristics embedded within 

its design. (i) First, it employs the strategy of minimizing 

variable step-sizes. This strategic choice allows the algorithm 

to dynamically adjust its learning rate, ensuring that it 

converges to the optimum while maintaining stability. By 

minimizing step-sizes, the algorithm can tune its adaptation 

process, effectively reducing echo interference and enhancing 

acoustic signal quality. (ii) Secondly, the algorithm 

demonstrates its effective performances by adapting only the 

active coefficient after an adaptive selection process. This 

means that it focuses its adaptation efforts on the most relevant 

and impactful coefficients, rather than expending time on 

irrelevant or less influential ones. By prioritizing active 

coefficients, the algorithm optimizes its echo reduction 

capabilities, further contributing to its remarkable ERLE. 

 

4.5 Proposed algorithm performance  

 

In this section, we present the performance of proposed 

algorithm in term of convergence rate, steady-state error and 

computational complexity. In Table 2, we present the 

convergence rate and final MSE values presented previously 

in section 4.2 exactly for M = 512 and Ms = 51.  

 

Table 2. Performance of proposed algorithm in term of 

convergence rate and final MSE values 

 
Performance Algorithms USASI AWGN 

Convergence 

rate [Bloc] 

Basic- NLMS 290 118 

IP-NLMS 270 110 

VSS- NLMS 150 100 

Proposed 140 96 

Final MSE 

values [dB] 

Basic- NLMS -75 -70 

IP-NLMS -80 -75 

VSS- NLMS -80 -75 

Proposed -89 -86 

  

Based on Table 2, we note that the IP-NLMS algorithm and 

VSS version demonstrate rapid convergence and consistently 

low Mean Square Error (MSE) values compared to Basic-
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NLMS, which exhibits slower convergence and higher MSE 

values. As we can observe the superiority of the proposed 

algorithm, very fast convergence rate with the lowest MSE 

values for two situations, USASI and AWGN signals.  

We thoroughly examine the complexities of Basic-NLMS, 

IP-NLMS, and VSS-NLMS algorithms in comparison to our 

proposed VSC-IP-NLMS algorithm. We gauge complexity by 

analyzing the number of multiplications and additions 

required for each weight update process. Our comparative 

simulations encompass various sparse impulse responses with 

different coefficient counts (M = 32, 64, 128, 256, 512, 1024, 

and 2048). Our proposed algorithm offers a distinct advantage 

in computational efficiency by exclusively adapting the active 

coefficients, which constitute only 10% of the total 

coefficients in sparse impulse responses. This advantage is 

clearly evident as we adapt only these 10% active coefficients. 

The theoretical complexity analysis of the four algorithms is 

summarized in Table 3. Figures 26 and 27 showcase the 

computational complexity (multiplication and addition 

operations) across simulations with varying coefficient counts.  

 

Table 3. Theoretical computational complexities, in function 

of real filter length M and selected active coefficients Ms 

with Mp: Multiplication and Ad: Addition 

 
Algorithms Mp Ad 

NLMS 6M+4 3M+3 

IP-NLMS 8M+2 4M+3 

VSS-NLMS 14M+8 7M+4 

Proposed 16MS+8 8MS+4 

 

 
 

Figure 26. Computational complexities of all algorithms in 

terms of multiplication 
 

 
 

Figure 27. Computational complexities representation of all 

algorithms in terms of addition 

 

Based on Table 3, Figure 26, and Figure 27, firstly, as both 

the filter length (M) and the number of active coefficients (Ms) 

increase, there's a noticeable uptick in computational cost, 

suggesting a linear relationship with multiplications and 

additions. Secondly, among NLMS, IP-NLMS, and VSS-

NLMS algorithms, basic NLMS consistently exhibits the 

lowest computational complexities for M, demanding the 

fewest multiplications and additions. IP-NLMS follows with 

higher complexities but offers improved convergence. VSS-

NLMS, though the most complex, provides enhanced 

performance features. Finally, our proposed algorithm 

emerges with the lowest computational complexities, 

demonstrating superior efficiency. For instance, at M = 2048 

with selected coefficients of Ms = 204, it requires 3,272 

multiplications and 1,640 additions, reinforcing its 

computational advantage over alternatives. 

 

 

5. CONCLUSIONS 

 

In this paper, we have addressed the critical issue of sparse 

acoustic impulse response identification, by introducing the 

Variable Selection Coefficients IP-NLMS algorithm. This 

proposed algorithm, equipped with efficient variable step-size 

parameters, focuses on adapting only the active coefficients of 

the Sparse Impulse Response (SIR). The extensive simulations 

conducted under various sparse acoustic environments 

confirm its exceptional efficacy in convergence rate and 

improving signal quality. The performance evaluation of the 

proposed algorithm shows the superiority of this latter 

compared with the state of art algorithms. In the presence of 

both USASI noise and AWGN signal, it exhibits fast 

convergence by maintaining the lowest MSE values and best 

ERLE level for different SIRs. The combination of minimized 

variable step-sizes and the focus on relevant coefficients 

results to a powerful, efficient, and robust algorithm. We know 

that the adaptive algorithms for system identification have 

significant potential for real-world implementation in various 

applications for example enhancing the speech quality in case 

of echo cancellation. However, there are several challenges 

and limitations that need to be considered for practical 

implementation, such as: computational complexity, 

convergence speed, nonlinear distortions and impulse 

response variability. As a final conclusion, the proposed VSC-

IP-NLMS algorithm proposed in this paper offers a promising 

solution for addressing sparse acoustic impulse response 

identification. Its exceptional performance, adaptability, and 

efficiency make it a valuable contribution to the field of 

acoustic echo cancellation, noise reduction and various real-

world applications.  
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NOMENCLATURE 

 

AEC Acoustic echo cancellation 

IP-NLMS Improved proportionate NLMS 

VSC-IP-NLMS Variable Selection Coefficient IP-

NLMS 

SIR Sparse impulse response 

LMS Least mean square 

IR Impulse response 

FIR Finite impulse response 

NLMS Normalized LMS 

PNLMS Proportionate NLMS 

ACS Active coefficient selection 

MSD Mean-square deviation 

USASI USA standards institute noise 

AWGN Additive white gaussian noise 

dB Decibel 

VSS-NLMS Variable step-size NLMS 

ERLE Echo return loss enhancement 

MSE Mean square error 

SNR Signal-to-noise ratio 

 

Greek symbols 

 

µ Fixed step-size 

µ(n) Variable step-size 

µmax Maximal step-size value 

µmin Minimal step-size value 

𝛼 and 𝜑 Control parameters of sparse adaptation  

𝑐 and 𝑘 Control parameters of VSS adaptation 

𝜉𝑛𝑙𝑚𝑠, 𝜉𝐼𝑃 , 𝜉𝐼𝑃,𝑆 

and 𝜉𝑉𝑆𝑆 

Very small constants used to avoid 

division by zero 

𝛜(𝑛) Weight-error vectors 

 

Subscripts 

 

M Length of real sparse impulse response  

Ms Number of selected active coefficients 
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