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Pediatric pneumonia is a major infectious disease which caused more than 5,00,000 deaths 

of infants and young children below the age of 5 years. This number is equivalent to the 

death of one child per minute. These statistics are daunting and more focused studies and 

development of tools are required to tackle this challenge. It has also been seen that pediatric 

pneumonia is curable through antibiotics and oxygen therapy if it is diagnosed at early 

stages. Current radiology techniques used are not able to diagnose pneumonia at early stages 

because specific arrangements are to be made for childcare. They cannot be treated as 

normal adults. Special care is to be taken for childcare as improper handling of radiology 

techniques may harm the child or generate inaccurate diagnosis. Recent advancements in 

computer aided diagnosis with the help of deep learning techniques has improved the quality 

of medical imaging techniques such as CT-Scan, X-ray images, etc. However, limited 

attention is given to the application of deep learning techniques for diagnosis and 

classification of pediatric pneumonia. Moreover, conducting manual tests, image 

classification and analysis of radiological images are prone to human errors due to lack of 

expertise of the radiologists. Inaccurate analysis of radiological images like X-rays can 

suggest inappropriate treatment for children which can prove to be fatal. To fasten the 

interpretation of radiological images, this paper suggests a deep learning model, focusing 

specifically on classifying pediatric pneumonia from chest X-ray images. In this paper, a 

MobileNeT-V3 architecture is implemented and tested against various datasets containing 

more than 10,000 chest X-ray images. Analysis of suggested implementation shows that this 

is better than various classical tools and techniques used for classification of chest X-ray. 

The suggested technique achieved a classification accuracy of 95.8% over dataset-1 and 

97.8% over dataset-2, shows the efficiency of the technique. The model in this study not 

only demonstrated high classification accuracy but also excelled in other key metrics, 

achieving a precision of 97% and 94%, recall of 97% and 98%, and F1 scores of 97% for 

both datasets, underscoring its precision and reliability in diagnosing pediatric pneumonia.  
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1. INTRODUCTION

Pneumonia is a widespread illness that majorly affects 

young children, with the World Health Organization (WHO) 

reporting it as the single largest infectious cause of death in 

children worldwide [1-3]. Statistically, it is more prevalent 

among children under five, with recent studies indicating that 

up to 156 million new cases are recorded annually, out of 

which around 20 million cases are severe enough to require 

hospital admission [4, 5]. Specifically, the incidence of 

pneumonia in infants younger than two years old is about 13%, 

which is a significant portion of the pediatric population [4-7]. 

The disease is marked by respiratory symptoms such as a 

persistent cough, labored breathing, and fever, which can often 

be mistaken for less severe viral infections [7]. The severity of 

these symptoms can escalate rapidly, necessitating urgent 

medical attention. The WHO also notes that pneumonia 

accounted for approximately 15% of the 5.2 million deaths of 

children under five in 2019, which translates to almost 800,000 

deaths, primarily in low- and middle-income countries [7, 8]. 

Such high morbidity and mortality rates emphasize the need 

for improved diagnostic tools that can facilitate early detection 

and treatment. Rapid and accurate diagnosis is critical because 

pneumonia in children can be effectively treated with 

antibiotics, and in severe cases, with oxygen therapy, which 

are both highly successful if the illness is caught in time [9]. 

The challenge lies in the fact that pneumonia often shares 

symptoms with other illnesses, making it difficult to diagnose 

without the proper tools and expertise [10]. The Global Action 

Plan for Pneumonia and Diarrhea (GAPPD) by WHO and 

UNICEF aims to protect against, prevent, and treat pneumonia 

among children, with targets to reduce mortality rates [11]. 

However, to achieve these targets, there is a pressing need to 

bridge the gap in pneumonia diagnosis, particularly in regions 

where healthcare systems are burdened or under-resourced 

[12]. In many regions, especially in poorer parts of the world, 
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there is a significant lack of skilled diagnosis professionals. 

This shortage can lead to incorrect readings of X-ray images, 

which is a serious issue because it might mean that a child with 

pneumonia does not get diagnosed and treated properly and 

quickly [12]. Even in places with enough radiologists, the 

process of examining chest X-rays is still slow and complex. 

This is due to various factors such as the quality of the X-ray, 

the patient's positioning, and the subtlety of the signs of 

pneumonia on the images [13]. The delay in diagnosis due to 

these factors can be critical because quick and accurate 

identification of pneumonia is crucial for starting the right 

treatment in time.  Moreover, Pneumonia is a significant health 

problem not just in one location but across various regions, 

each with its own set of challenges and impact levels. In the 

Asia-Pacific region, for example, community-acquired 

pneumonia (CAP) is a leading cause of death due to factors 

like an aging population, dense cities, and limited healthcare 

access [14]. The presence of pathogens like Klebsiella 

pneumoniae and Burkholderia pseudomallei, along with a high 

resistance to antibiotics, makes this region particularly 

vulnerable [14].  

In a more global context, pneumonia poses a large burden 

on the elderly population, with hospital admission rates and 

case-fatality ratios (CFR) increasing with age [14, 15]. The 

systematic review in the paper [15] estimated a staggering 6.8 

million hospital admissions for clinical pneumonia in older 

adults worldwide in 2015, with a higher rate among men and 

an increase in admissions with advancing age. This study 

underscores the heavy toll of pneumonia on healthcare 

systems, especially when considering the underestimated 

disease burden when using radiologically confirmed 

pneumonia as the diagnostic criterion. Focusing on Saudi 

Arabia, severe pneumonia in children under five results in 

millions of episodes and a significant number of deaths, with 

states like Uttar Pradesh and Bihar bearing the brunt of the 

disease [15]. Despite the vast number of cases, the actual 

morbidity and mortality rates at the sub-national level remain 

unclear. The disparity in the distribution of pneumonia cases 

and deaths across different states within Saudi Arabia 

highlights the need for targeted healthcare interventions and 

the importance of vaccines in reducing the disease burden. The 

varying prevalence and impact of pneumonia in these regions 

illustrate the necessity for region-specific strategies in 

managing and preventing pneumonia. They also highlight the 

importance of considering local epidemiological factors when 

designing public health initiatives and the potential benefits of 

vaccines in mitigating the disease's impact. Given these 

challenges, there's a pressing need for more reliable and faster 

diagnostic methods. This has led to research on deep learning 

systems that can analyze X-ray images and assist or even 

automate the diagnosis process. However, some challenges 

persist. For example, the authors [16] reports on a system 

utilizing VGG19, which achieved a classification accuracy of 

86.97%, and upon enhancement with an Ensemble Feature 

Scheme, reached an accuracy of 95.70%. However, this 

system's reliance on a complex blend of handcrafted and deep-

learned features can become cumbersome and less practical 

for everyday clinical use. Jaiswal et al. [17] introduces a Mask-

RCNN based model with an innovative post-processing step, 

aiming for robust identification and localization of pneumonia. 

Despite its strengths, the model's need for significant training 

process adjustments and intricate post-processing can be a 

barrier in time-sensitive clinical environments. In the paper of 

Hashmi et al. [18], a model combining various advanced deep 

learning architectures boasts a high accuracy of 98.43% and 

an impressive AUC score of 99.76%. Yet, this amalgamation 

of different models entails high computational costs and 

increased operational complexity. The approach explained in 

the paper of Chakraborty et al. [19] achieved a promising 

accuracy of 95.62% using a convolutional neural network. 

Nonetheless, it did not emphasize the solution's efficiency, 

which is critical for rapid diagnosis in real-world settings. In 

contrast, the MobileNet-V3 architecture proposed in this study 

is engineered to address these challenges effectively. It 

streamlines the diagnostic process by obviating the need for 

complex feature engineering and multiple-model ensembles. 

Its design leverages efficient computing blocks and 

lightweight layers, enhancing speed without sacrificing 

accuracy. This results in a fast, reliable, and resource-efficient 

model, suitable for real-time clinical application, capable of 

high accuracy that is in line with or surpasses the reported 

results, thus overcoming the drawbacks of the previous 

techniques. The proposed model is designed to classify chest 

X-rays into pneumonia and normal categories more efficiently 

than current methods. The MobileNeT-V3 architecture was 

selected for its efficient use of mobile computing resources, 

and its implementation of the H-Swish activation function is 

expected to enhance performance, especially in processing 

speed and accuracy. By automating the classification process, 

my aim to reduce the reliance on scarce radiological expertise 

and speed up the diagnosis, allowing for faster and potentially 

more accurate treatment interventions.  

The contributions of this paper are as: 

• This paper presents an X-ray classification technique 

based on MobileNeT-V3 architecture for classifying X-rays 

into pneumonia and normal type. This architecture is chosen 

because of the advantages like, efficient mobile building 

blocks, layer removal and H-Swish for improving the network, 

which will be discussed in upcoming sections in detail. 

• Manual interpretation of X-rays is a tedious task and are 

prone to human errors. The classification technique suggested 

in this paper will resolve this challenge by automating the 

classification process and saving treatment time. 

Rest of the paper is structured as: Literature review is 

covered in Section 2. Significance of using the suggested 

technique is explained in Section 3. Section 4 explains the 

techniques used and architecture in detail followed by results 

obtained and discussion under Section 5. The paper is 

concluded in Section 6. 

 

 

2. RELATED WORK 

 

X-ray is the most common medical imaging technique that 

is employed for analysis of internal organs such as lungs, 

bones, etc. to detect any abnormalities in the human body. 

However, X-rays are conducted manually by radiologists and 

are prone to errors during interpretation of X-rays. This could 

be fatal for the patients. To resolve this challenge, various 

studies have been done on chest X-rays. An innovative method 

was introduced utilizing the well-known VGG16 model [20], 

enhanced by fine-tuning its deep layers. This approach was not 

confined to merely identifying the presence of pneumonia but 

also extended to gauge its severity—a crucial aspect for 

clinical decision-making. The method achieved a test accuracy 

of 86.67%, with exceptionally high recall rates indicating its 

effectiveness in identifying true positive cases. However, the 

precision rate of 83% suggests that there was still a 
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considerable rate of false positives, which could lead to over-

diagnosis. Additionally, the requirement for data 

augmentation due to imbalanced datasets introduces a 

limitation as it may not fully represent the natural variety in 

real-world clinical data. The authors [21] employed a CNN 

architecture, leveraging the strengths of VGG16 and Inception 

models. The use of transfer learning and ensembling aimed to 

capitalize on the combined strengths of these models to 

enhance prediction accuracy. Although the exact accuracy 

metrics are not detailed, the inherent complexity of 

ensembling models poses a challenge, as it requires significant 

computational resources and may complicate the model's 

interpretability in clinical settings. The authors [22] have 

developed a VGG-based model with a reduced number of 

layers, aiming to simplify the architecture. To address the issue 

of low contrast in chest X-ray images, which can obscure 

diagnostic details, the Dynamic Histogram Enhancement 

technique was employed as a preprocessing step. The model 

showed superior performance across several metrics, 

including an accuracy of 96.068%. Despite the reduction in 

complexity, the model still had a 4% increase in parameters 

compared to MobileNet, indicating that while it has made 

strides in efficiency, there is still room for improvement in 

creating a model that is both lightweight and highly accurate.  

The authors [23] have examined the potential of machine 

learning over deep learning to automate the early detection of 

pediatric pneumonia, a crucial step to reduce its high 

morbidity and mortality. A Quadratic SVM model was used, 

resulting in an accuracy of 97.58%. While this study 

demonstrated machine learning's potential in medical imaging, 

its limitations lie in the necessity for extensive data 

augmentation to balance the dataset and optimize feature 

extraction, which can be resource-intensive and may not scale 

well in different clinical environments. The authors [24] 

delved into the utility of several advanced image recognition 

models to improve pneumonia detection from chest X-rays. 

This investigation deployed models like VGG16, ResNet, 

InceptionNet, and DenseNet, as well as a tailored CNN model. 

The VGG16 model stood out, achieving the lowest Mean 

Absolute Error (MAE), a statistical measure indicating the 

average magnitude of errors in predictions, clocking in at 

66.19. To expedite the learning process of their model, the 

researchers employed TensorFlow's TPU strategy, a 

sophisticated technology designed to accelerate deep learning 

tasks. TPUs, or Tensor Processing Units, are Google's custom-

developed application-specific integrated circuits (ASICs) 

used to boost performance in training large-scale neural 

network models. The use of TPUs enabled the researchers to 

slash training times by over 68% compared to traditional CPUs 

and nearly 55% in comparison to GPUs. However, the study's 

reliance on this advanced technology could pose accessibility 

issues in settings lacking such specialized hardware. In the 

paper of Malik et al. [25], the focus was on distinguishing 

COVID-19 from other respiratory diseases, an important task 

given their symptomatic similarities. A deep learning model 

named CDC Net was developed, which utilized concepts from 

residual networks and dilated convolution to enhance image 

analysis. When evaluated against public benchmark data, the 

CDC Net model achieved impressive metrics, including an 

AUC of 0.9953, demonstrating high accuracy in multi-disease 

classification from chest X-rays. Despite these strong 

performance indicators, the real-world application may be 

hampered by the variability of clinical imaging conditions not 

represented in public datasets.  

The authors [26] introduce a technique combining transfer 

learning with adversarial training to refine pneumonia 

detection from X-ray images. By applying adversarial training, 

the authors aimed to improve the model's performance by 

including synthetic X-rays along with real ones during the 

training phase, thus enhancing the model's adaptability to new, 

unseen images. While this approach yielded a higher accuracy 

rate, its effectiveness depends on the continuous generation of 

high-quality synthetic images, which can be computationally 

demanding. The researchers [27] proposed a novel network 

called QCSA (Quaternion Channel-Spatial Attention 

Network) for pneumonia detection. This network blends 

spatial and channel attention mechanisms with Quaternion 

algebra to process chest X-ray images. The study reported an 

accuracy of 94.53% and an AUC of 0.89. Despite this, the 

integration of attention mechanisms, while beneficial for 

performance, introduces additional complexity to the model, 

which may challenge real-world clinical implementation 

without sufficient computational resources. The authors [28] 

sought to address the issue of dataset imbalance in chest X-ray 

pathology classification by constructing a weakly-labeled 

database from publicly available medical articles. Using 

advanced text extraction and image verification techniques, 

the researchers enhanced the detection of various thoracic 

diseases. Although their approach showed promising results, 

the dependency on text-based labels for image identification 

raises concerns about the accuracy of such weak labels and 

their impact on the model's diagnostic reliability.  

The authors [29] tackled the challenge of developing a 

lightweight model for pneumonia detection that could be 

deployed in under-resourced regions. The proposed model, 

which used a combination of CNN architectures with varying 

kernel sizes, achieved a high recall value of 99.23% and an F1-

score of 88.56%. The absence of deep neural networks and 

transfer learning in this model makes it less computationally 

intensive. However, the model's reliance on a novel weighted 

ensemble approach could introduce variability in diagnostic 

outcomes based on the adjustable threshold, possibly requiring 

fine-tuning to align with clinical expectations. The authors 

[30] addressed the need for accurate classification of COVID-

19 from chest X-rays by utilizing an ensemble of pre-trained 

CNNs and textural features. The model was trained on a 

substantial dataset, resulting in a binary classification accuracy 

of 98.34% for COVID-19. While the study demonstrates the 

utility of large datasets in improving model performance, it 

also hints at potential overfitting when models are trained on 

smaller datasets, questioning the generalizability of the 

findings.  

The authors [31] have implemented a deep learning model 

employing the VGG16 architecture in combination with 

Neural Networks (NN) to analyze chest X-ray (CXR) images. 

This approach is particularly crucial in developing countries 

where rapid and accurate diagnosis is hindered by poor living 

conditions and inadequate healthcare infrastructure. The 

technique used here harnesses VGG16's robust feature 

extraction capabilities, supplemented by the pattern 

recognition power of neural networks. The study reports 

substantial success with this method, as evidenced by an 

accuracy of 92.15%, a recall of 0.9308, a precision of 0.9428, 

and an F1-score of 0.937 for the first dataset. These metrics 

are indicative of the model’s ability to correctly identify cases 

of pneumonia with a high degree of reliability. When applied 

to a more diverse second dataset, which included images 

indicative of pneumonia, normal conditions, and COVID-19, 
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the model maintained a high level of accuracy at 95.4%, with 

equally high recall, precision, and F1-score values. A 

comparative analysis within the study indicates that the 

VGG16-NN combination outstrips the performance of 

VGG16 when paired with other machine learning classifiers 

such as SVM, KNN, RF, and NB. This suggests that neural 

networks provide a more harmonious complement to VGG16 

for this application. Despite the promising results, challenges 

remain implicit in the study. While not explicitly stated, such 

challenges likely include ensuring the model's robustness 

across varying quality of CXR images, adapting to the 

diversity of pneumonia manifestations across different 

demographics, and managing the computational load typical 

of deep learning models. These potential hurdles highlight the 

need for models that not only perform well under test 

conditions but also maintain their efficacy in the less-

controlled environments of real-world clinical settings. 

Collectively, these studies underscore the significant progress 

made in using deep learning for pneumonia detection in chest 

X-rays, while also highlighting the need for solutions that 

balance accuracy, computational efficiency, and 

generalizability to diverse clinical environments. 

A summary of the comparative analysis between the related 

works is done in Table 1.  

 

Table 1. Overview of deep learning techniques for pneumonia detection in chest X-rays 

 
Ref. Method / Techniques Datasets Performance Metrics 

[20] VGG16 model Imbalanced datasets Accuracy: 86.67%, Recall: High, Precision: 83% 

[21] CNN, VGG16 and Inception models Not detailed Not specifically detailed, only stated high accuracy  

[22] Reduced VGG-based model 
Low contrast chest X-

rays 
Accuracy: 96.068%, Parameters increased by 4% 

[23] Quadratic SVM 
Extensive data 

augmentation 
Accuracy: 97.58% 

[24] 
VGG16, ResNet, InceptionNet, DenseNet, 

tailored CNN model 
Not detailed MAE: 66.19, Training time reduced (TPUs used) 

[25] 
CDC Net (residual networks, dilated 

convolution) 
Public benchmark data AUC: 0.9953 

[26] Transfer learning with adversarial training Synthetic + real X-rays Higher accuracy, computationally demanding 

[27] 
QCSA (Quaternion Channel-Spatial Attention 

Network) 
Not detailed Accuracy: 94.53%, AUC: 0.89 

[28] Weakly-labeled database construction Public medical articles Not detailed 

[29] Combination of CNN architectures Not detailed Recall: 99.23%, F1-score: 88.56% 

[30] 
Ensemble of pre-trained CNNs and textural 

features 
Large dataset Accuracy: 98.34% 

[31] VGG16 architecture with Neural Networks Two datasets 
Accuracy: 92.15% - 95.4%, Recall: 0.9308, Precision: 

0.9428, F1-score: 0.937 

 

The existing studies in the literature review offer a breadth 

of approaches to pneumonia classification, each with distinct 

advantages and shortcomings. Many of these methods, such as 

VGG16 and its variations [20-22, 31] although accurate, suffer 

from high computational costs and complexity, which can be 

prohibitive in clinical settings, especially in developing 

countries. Others, like the QCSA network [27], introduce 

additional complexity through attention mechanisms, while 

methods involving adversarial training or large ensembles of 

CNNs may not be feasible due to the need for substantial 

computational resources and potential overfitting issues. 

MobileNetV3, the model selected for this study, is engineered 

to address these gaps by providing a balance between accuracy 

and efficiency. It is specifically designed for mobile and edge 

devices, which means it requires significantly less 

computational power without a substantial trade-off in 

performance [32]. By leveraging lightweight depth wise 

convolutions and an architecture optimized for mobile devices, 

MobileNetV3 offers a more accessible and practical solution 

for pneumonia classification in chest X-ray images of infants. 

This makes it particularly suitable for real-world clinical 

applications where resources are limited and quick, reliable 

diagnostics are needed. Thus, MobileNetV3 has the potential 

to make the detection of pneumonia in infants more feasible in 

diverse clinical environments. 

 

 

3. SIGNIFICANCE AND MOTIVATION 

 

Detecting pneumonia in children using chest X-rays 

presents unique challenges. The developing anatomy of a 

child's lungs often conceals the radiographic indicators of 

pneumonia that are more apparent in adults. Moreover, the 

discomfort and symptoms associated with pneumonia, such as 

persistent coughing, can cause children to move during the X-

ray procedure, resulting in blurred images that make accurate 

diagnosis difficult [33]. Furthermore, the process of obtaining 

a high-quality chest X-ray from a child is fraught with 

difficulties [34]. The fidgeting and lack of cooperation often 

seen due to their discomfort, or the intimidating nature of the 

procedure can lead to compromised image quality. This is 

problematic because the subtleties of pneumonia in pediatric 

X-rays require clarity for proper identification [35, 36]. This 

model, MobileNet-V3 stands out as a solution due to its design 

which prioritizes speed and efficiency without sacrificing 

accuracy. Its architecture is fine-tuned to perform well even 

with images that aren't perfectly clear, which is common in 

pediatric radiographs. This means it can still accurately detect 

the presence of pneumonia from images that are less than ideal, 

reducing the need for repeat X-rays and minimizing stress for 

young patients. Furthermore, MobileNet-V3's streamlined 

design allows for rapid processing of images. This quick 

turnaround is crucial in clinical settings where time is of the 

essence, ensuring that children receive a swift diagnosis and 

treatment. It also has the potential to be implemented in a 

wider range of clinical settings, including those with limited 

resources, due to its lower computational demands compared 

to more complex models. In essence, MobileNet-V3 helps 

bridge the gap between the inherent challenges of pediatric 

pneumonia diagnosis and the need for accurate, timely, and 
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resource-efficient detection. This makes it a valuable tool in 

the clinical management of pediatric pneumonia. Moreover, 

studies like [37, 38] have concluded that despite following the 

best practice in manual radiography in children, up to 40% of 

radiography is done with little or no benefit to the patients. 

This situation arises because current healthcare systems often 

fail to fully appreciate the radiologist's role. Instead of 

recognizing the value of accurate diagnostics, the focus tends 

to be on the costs associated with radiological tests, which 

sidelines the true importance of radiology in patient care 

outcomes. In clinical practice, the heavy workload means that 

radiologists and referring physicians rarely discuss the best 

imaging approach for each patient, leading to a mismatch 

between the patient's needs and the imaging performed. This 

disconnect can result in unnecessary or suboptimal imaging, 

contributing to the high percentage of low-benefit procedures. 

The effectiveness of an imaging procedure is also dependent 

on the quality of the radiology report, which must be clear, 

accurate, and useful for guiding treatment. However, how 

these reports are interpreted and acted upon involves various 

healthcare providers, not just radiologists. Misinterpretations 

of the information provided can further reduce the 

effectiveness of the imaging, adding to the instances where 

radiology does not serve its full potential in aiding patient care 

[37-39].  

To tackle these challenges and to fasten the classification 

process, automated tools and techniques should be used. In this 

paper, I have implemented the MobileNeT-V3 architecture 

over various publicly available datasets of child chest-x ray 

images. This study has chosen MobileNeT-V3 for several 

reasons. Firstly, its lightweight structure allows it to process 

images rapidly, which is crucial in clinical settings where 

quick decision-making can significantly impact patient 

outcomes. MobileNet-V3 achieves this by using a smaller 

model size and fewer computations than traditional neural 

networks, without a substantial drop in accuracy. Secondly, 

MobileNet-V3's efficiency does not demand extensive 

computational resources, making it accessible for use in 

diverse clinical environments, including regions with limited 

healthcare infrastructure. This can be particularly beneficial 

for pediatric care, where timely and accurate diagnosis of 

conditions such as pneumonia is critical for effective treatment. 

An automated classification technique like as suggested in the 

paper will also provide cost-effective treatment to the patients 

followed by enhancement in the clinical governance. This is 

because MobileNetV3 is designed to be incredibly efficient, 

allowing for the rapid processing of images. While specific 

speed gains can vary depending on the hardware used, it’s 

generally understood that MobileNetV3 can classify images in 

real-time or near-real-time on mobile devices. This speed is a 

substantial improvement over older convolutional neural 

network models that require more computational power and 

time to analyze images. Furthermore, the speed and accuracy 

of MobileNetV3 directly translates to improved patient care. 

Quick, reliable diagnoses mean treatment can start sooner, 

which is especially crucial for conditions like pneumonia in 

children, where every minute counts. Additionally, the model's 

ability to handle variable image quality means fewer repeat 

scans are necessary, reducing the child’s exposure to radiation 

and stress. Finally, the model's efficiency means less 

computational resources and time are needed for image 

analysis, which can reduce the operational costs for healthcare 

providers. With fewer repeat scans needed due to the model's 

robustness to image quality, there are savings on consumables 

and less wear on imaging equipment. Moreover, faster, and 

accurate diagnoses lead to optimized use of hospital resources, 

potentially shortening hospital stays and reducing the overall 

cost of care. These claims are further supported by the authors 

of the studies [38, 39], where they confirmed that automated 

techniques fasten the classification process by discussing the 

example of bone X-ray rather than using time consuming 

manual classification techniques like Greulich-Pyle or Tanner-

Whitehouse technique. Thus, these benefits of automated 

classification techniques will act as the base of this study. 

 

 

4. METHODOLOGY 

 

This study has leveraged two extensive labelled datasets, 

collected from the references [40-43] to assess the 

performance of the MobileNet-V3 architecture on a broad 

spectrum of X-ray images. The first dataset encompasses over 

14,000 X-ray images, categorized into training, testing, and 

validation subsets, with a total of 3814 normal and 3875 

pneumonia-infected X-ray images for training, 350 normal 

and 390 pneumonia cases for testing, and 8 images for each 

class in the validation set. An additional 2500+ X-ray images 

are included under 'Other Data'. The second dataset includes 

over 5,000 images, with 1349 normal and 3883 pneumonia X-

rays for training, along with 234 normal and 390 pneumonia 

images for testing. These datasets are publicly accessible and 

have been integral in developing a robust model that addresses 

the data scarcity issue highlighted in previous studies. While 

the resolution of the images is not explicitly stated, it is 

implied that they are of high quality, as this is a prerequisite 

for the accuracy of deep learning models. The comprehensive 

classification of the datasets is meticulously detailed in Tables 

2 and 3 of this paper, ensuring transparency and 

reproducibility of research findings. 

 

Table 2. Classification of dataset 1 

 
Training 

Data 

Normal X-ray Images = 3814, Pneumonia 

Infected X-rays = 3875 

Testing Data 
Normal X-ray Images = 350, Pneumonia 

Infected X-rays = 390 

Validation 

Data 

Normal X-ray Images = 8, Pneumonia Infected 

X-rays = 8 

Other Data 2500+ X-ray Images 

 

Table 3. Classification of dataset 2 

 
Training 

Data 

Normal X-rays = 1349, Pneumonia Infected X-

rays = 3883 

Testing Data Normal X-rays = 234, Pneumonia Infected X-

rays = 390 

 

The accuracy of proposed deep learning model is highly 

dependent on the availability and quality of the X-ray images 

it is trained with. In previous research highlighted by literature 

review, the limited size of datasets raised concerns about the 

precision of the resulting models. To address this, my study 

incorporates two extensive datasets. By utilizing a larger and 

more diverse dataset, this model is better equipped to 

accurately identify pneumonia, which improves its reliability 

and applicability in a clinical setting. In preparing chest X-ray 

image dataset for the MobileNet-V3 model, I employed a 

series of preprocessing steps to ensure the data was in the best 

possible state for training. Initially, I cleaned the dataset by 
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removing any corrupt or unreadable images. I then 

standardized the resolution across all images, which is 

essential for maintaining consistency as the model learns. To 

highlight the critical features for pneumonia detection, I 

adjusted the contrast in each image, making patterns such as 

lung textures and fluid opacities more distinguishable. Data 

augmentation was a key transformation step, where I applied 

various alterations to the images, such as rotating, zooming, 

and flipping them. This process creates a more comprehensive 

set of training examples, teaching the model to recognize 

pneumonia in a variety of appearances and orientations. 

Following augmentation, I normalized the pixel values in the 

images to have a consistent scale, allowing for faster and more 

stable model training. Finally, I divided the dataset into 

distinct training, validation, and testing sets. This division is 

crucial to evaluate the model's learning capability, 

hyperparameter settings, and ultimately its diagnostic 

accuracy on new, unseen images. Each of these preprocessing 

and transformation steps was meticulously carried out to 

enhance the model's learning efficiency and improve its 

predictive performance in real-world clinical applications. 

 

 
 

Figure 1. Schematic representation of the general 

MobileNeT architecture 

 

In this paper, I have used the MobileNeT-V3 architecture 

for training the pneumonia X-ray images and classify them as 

pneumonia and normal class respectively. MobileNeT-V3 is a 

convolutional neural network (CNN), tuned to mobile phone 

CPU through a combination of hardware-aware network 

architecture search scheme and complemented by the 

NetAdapt algorithm [44]. Initially, MobileNeT architecture 

was derived from the VGG network by addition of depth wise 

separable convolutions. The latest version at the time of this 

study is MobileNeT-V3 which is designed after network 

optimizations to increase its efficiency [45]. According to the 

resource usage by the network, MobileNeT is classified in to 

two types, MobileNeT-V3-Small and MobileNeT-V3-Large. 

However, I have followed a generalized architecture for this 

paper as described by Qian et al. [45]. This generalized 

architecture is depicted by Figure 1. 

The various characteristics and layers of the network 

architecture [45-47] is explained as: 

• Depth-wise Separable Convolutions: This is introduced in 

the network to increase the efficiency of computation. The 

convolution is divided into two parts. In first part, a single 

convolutional filter is applied to the depth wise convolution 

(DWC). In second part, 1×1 convolution is applied to all the 

channels of the output generated by the DWC. DWC increases 

the speed of the overall network and is the heart of all the 

versions of MobileNeT. 

• Linear Bottlenecks: This feature is used by the MobileNeT 

architecture to extract features from a high dimensional space 

without the loss of information. This layer consists of a 1×1 

filter, integrated with a linear activation function. This is 

because the transformation of ReLU generates a non-linearity 

in the network, causing the loss of information. 

• Inverted Residual Blocks: To extract the necessary 

information efficiently, ReLU layers are replaced by the 

bottleneck layers. MobileNeT utilizes shorter paths to prevent 

loss of gradient and explosion. An inverted residual block 

(IRB) is found to be valid to act almost similar to the residual 

blocks. This feature helps in reducing memory costs. 

• Neural Architecture Search (NAS): This is performed to 

determine the optimal architecture for a constrained hardware 

platform. During NAS, it constructs a search space for the 

neural network architecture for efficiently searching in the 

hierarchical search space with reinforcement learning to get 

the best structure of the model for specific tasks [48]. The 

general representation of the NAS is given by Figure 2 [49].  

 

 
 

Figure 2. Representation of NAS 

 

The network described by figure 2 works on the similar 

procedure on which the reinforcement learning works. The 

controller depicted in the figure gets updated according to the 

reward function. Normally, the overall model moves from the 

current state to the state where this reward function is 

increasing [44, 49]. This reward function is defined as [44]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑋) ∗ (
𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝐿)

𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑇)
)

𝑦

 (1) 

 

where, X = resultant model from search and y is a constant. 
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This resultant network architecture obtained after NAS is 

refined layer wise using the NetAdapt algorithm. The 

NetAdapt algorithm works on each filter of every convolution, 

as described by algorithm 1 [50]. Algorithm 1 optimizes the 

number of filters for each convolution and chooses the highest 

accurate model. The best model among the M models with 

peak highest accuracy is chosen that comes from working on 

one of the convolutional layers. An improved version of this 

algorithm is used by MobileNeT network, starting with the 

NAS output. After this step, a set of proposals are generated 

with a reduced latency as compared with the previous models. 

Further, weights are set for new proposals by utilizing the 

weights generated from previous networks as well as the 

random initialization of new filters. Finally, the selected 

proposals are finer tuned until the target latency is achieved 

[44-50]. To increase the efficiency of the overall architecture, 

a few improvements to the network is made. These network 

improvements can be made in two ways, removal of layers and 

non-linearity/swish. Layer removal is applied to the initial 

layers and last layers. in the last layer block, 1×1 expansion 

layer is taken from the inverted residual block and is moved 

past the pooling layer. Furthermore, it is seen that the 

expansion layer takes higher computation time but since it is 

moved behind the pooling layer, there is no need to compress 

by projection layer from the last layer of the previous block 

and the projection layer along with the filtering layer can be 

removed from the previous bottleneck layers [44]. This helps 

in saving a lot of computational time. The second way to 

improve network is swish non-linearity. Swish non-linearity is 

used to improve the accuracy of the model. 

 

Algorithm-1: NetAdapt Algorithm 

Input: A Pretrained Network → N0 (with M conv and FC 

layers), A Resource Budget → B, A Resource Reduction 

Schedule → ϕ 

Output: λ → An Adaptive Network Meeting B 

1. j = 0 

2. β𝑗 = empirical measurement of Nj 

3. while β𝑗 > B do  

4. CON =  β𝑗 −  ϕ; 

5. for m from 1 to M do  

6.                𝑁𝑓𝑖𝑙𝑡𝑒𝑟 𝑚, β𝑠𝑖𝑚𝑝 𝑚 = select number of filters (N𝑗, 

m, CON) 

7.                N𝑠𝑖𝑚𝑝 𝑚 = CWF (N𝑗, m, 𝑁𝑓𝑖𝑙𝑡𝑒𝑟 𝑚);        // CWF 

= choose which type of filter 

8.                N𝑠𝑖𝑚𝑝 𝑚 = STFT (N𝑠𝑖𝑚𝑝 𝑚);         // STFT = short-

term fine tuning 

9. N𝑗+1 , β𝑗+1  = Choose Highest Accuracy ( N𝑠𝑖𝑚𝑝 , 

β𝑠𝑖𝑚𝑝) 

10. j = j+1 

11. λ = LTFT (Nj);        // LTFT = Long-Term Fine Tune 

12. return λ 

 

However, it is shown by the references [44-48] that sigmoid 

function is expensive computationally which could affect the 

accuracy of the architecture. Thus, the authors [44] suggested 

a h-swish or hard swish non-linearity defined as: 

 

ℎ𝑎𝑟𝑑 − 𝑠𝑤𝑖𝑠ℎ(𝑍) = 𝑍
𝑅𝑒𝐿𝑈6(𝑧 + 3)

6
 (2) 

 

This function helps in improving the computational power 

of the model. 

5. RESULT ANALYSIS 

 

Before training my model, I started by creating helper 

functions. According to the standard definition of the helper 

functions explained by Creating Helper Functions [51] is, a 

helper function is a function that does the computation of other 

functions to save time. These functions are used to make the 

models easier to understand by giving descriptive names to the 

computation. These functions also allow us to reuse the 

computations like general functions. Various helper functions 

that are utilized in my model are summarized in Table 4 along 

with their features. 

 

Table 4. Summarization of helper functions 

 
Helper 

Functions 
Features 

Create tensor 

board callback 

This function helps to prevent model 

overfitting, visualize the model training, 

saving checkpoints and creating tensor board. 

Plot loss curve 
This helps in visualizing the loss curves of the 

model. 

Unzip data This helps in extracting the data. 

Compare 

history 
This function is used for comparisons. 

Walk through 

dir 

This function helps in checking of contents of 

various directories in the dataset. 

Pred and plot 

This function helps in rounding the 

probability generated and to better visualize 

the plots. 

 

Once the helper functions are defined, data preprocessing 

and data transformation is done. Initially the data collected 

from the real world contains missing values and is in unable 

format by the deep learning models. Data preprocessing helps 

in cleaning the dataset and converting it to a usable format for 

the deep learning models. Data transformation helps to 

increase the data analysis process and improve the data driven 

decision making capability. It also helps in determining the 

structure of the data given to the model for training. Before the 

model training process, the dataset is split into training, testing, 

and validation sets. The training set is used for training the 

model, testing set is used for testing the model, and validation 

set is used for fine tuning the parameters of the deep learning 

model. Finally, the model is evaluated based on test data or 

data which is unseen previously. For training, I have used the 

same model architecture and parameters for both dataset 1 and 

dataset 2. The rationale for employing the same MobileNet-

V3 architecture and training parameters across both datasets is 

anchored in the need for consistency and comparability. Using 

the same architecture allows us to directly compare the 

performance of the model on different datasets, ensuring that 

any variation in results can be attributed to the data itself rather 

than differences in model configuration. MobileNet-V3 is 

designed to be versatile and efficient, which makes it well-

suited to handle the variability inherent in chest X-ray images 

from diverse sources. Furthermore, consistency in parameters 

such as batch size, image dimensions, and learning rate 

ensures that the model trains under uniform conditions, 

allowing us to isolate and evaluate the effectiveness of the 

architecture without the confounding effects of differing 

training regimes. This approach simplifies the evaluation 

process and provides clearer insights into the model's 

capabilities and potential areas for optimization specific to 

pediatric pneumonia diagnosis from X-ray images. During 

training, the data is taken as size 224 × 224 and with batch size 
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32. The shuffling of data is enabled as True, and the class mode 

was chosen as categorical. This means that the model will 

generate a 2D output as mutually exclusive labels, for example, 

either NORMAL or PNEUMONIA. A seed value of 42 is 

assigned for each training, testing, and validation set to enable 

reproducibility of the results. Finally, before training the 

model, an error level analysis (ELA) is done. ELA is a 

technique that is used to enhance the efficiency of 

differentiating copy-move images produced by deep-fake 

from real images [52]. I have also done the ELA for initial 

image analysis for both the datasets. The outcomes generated 

by the ELA process are depicted by Figure 3. 

 

 
 

Figure 3. Illustration of error rate analysis (ELA) for X-ray images of dataset 1 

 

 
 

Figure 4. Random images from the processed dataset 1 

 

Now the data is ready for training. The model is trained for 

30 epochs with 2 output layers and input size of 224 × 224 × 

3 and batch size of 32. The default ImageNet weights were 

used while training the model with an average pooling layer. 

During training, a model checkpoint callback is used to save 

the model/weights in a checkpoint so that the model can be 

reloaded to continue for training after some time. In this model, 

I have defined the checkpoint callback as save the best only. 

This is because, I want to save the best outcomes to the file 

checkpoint. Another parameter defined is monitor = 

val_accuracy. This helps us in monitoring the validation 

accuracy generated by the models. Another parameter, verbose 

is set to 0, which means that no message will be prompted to 

the user when callback actions are taken. I have also set up the 

early stopping callback which is defined to stop training the 

model if the validation loss during the training of the model 
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doesn’t shows any improvement for 3 epochs. I have also used 

optimizers to enhance the accuracy of the model. Generally, a 

deep learning model is difficult to optimize due to complex 

architecture. However, certain optimizers are still able to 

handle the complex architecture and generate efficient results. 

Optimizers are used to adjust the weights of a deep learning 

model and maximize the loss function. A loss function is used 

for measuring the performance of the model. An optimizer 

should be used during training of the deep learning model. In 

this paper, I have used the Adam optimizer with a vale set at 

0.00001, whereas the loss is defined as categorical cross 

entropy. 

This optimizer was chosen because the results generated by 

this optimizer are better than another optimizer, have a fast 

computational time and require a few tuning parameters. In 

this study, I did not employ explicit regularization techniques 

such as dropout or L1/L2 regularization. This decision was 

based on the extensive and varied nature of datasets, which 

inherently reduces the risk of overfitting. Moreover, the use of 

data augmentation and a robust architecture like MobileNet-

V3, which is designed to generalize well, further mitigates the 

need for additional regularization. Before starting training of 

the model, I need to look at some random data from the 

representation of the dataset is shown in Figure 4.  

Now the model is trained for 30 epochs with input size 224 

× 224 × 3 and batch size 32. The outcomes generated from 

training the model is recorded in Table 5. A summary of the 

training parameters and methods used is provided in Table 6. 

The overall training accuracy achieved over dataset 1 is 

96%. In 30 epochs, each epoch was run for 118 rounds. Since 

it is difficult to analyze the results with Table 5. So, a plot 

between validation loss and validation accuracy and training 

loss and training accuracy is plotted for better visualizations of 

results. these plots are shown by Figure 5 and Figure 6 

respectively.  

Once the model is developed, it needs to be validated using 

various datasets. Normally, there is a limited quantity of 

accurate data available for training purposes and validating it 

is necessary to be able to develop a reliable model. To evaluate 

the reliability of the model developed, the plots mentioned by 

Figure 5 and Figure 6 are used. During model training, both 

the accuracy and loss for the validation data can be different. 

With increase in epochs, the loss should decrease and accuracy 

increases.   

 

Table 5. Results generated from dataset 1 

 
# Epochs Loss Accuracy Val Loss Val Accuracy 

1 0.5130 0.7492 0.3906 0.8226 

2 0.3686 0.8412 0.2909 0.8964 

3 0.2917 0.8826 0.2405 0.9092 

4 0.2534 0.8949 0.2146 0.9124 

5 0.2256 0.9120 0.1965 0.9177 

6 0.2049 0.9210 0.1851 0.9199 

7 0.1966 0.9197 0.1767 0.9252 

8 0.1876 0.9301 0.1706 0.9295 

9 0.1838 0.9269 0.1630 0.9327 

10 0.1783 0.9312 0.1576 0.9359 

11 0.1670 0.9386 0.1533 0.9359 

12 0.1585 0.9402 0.1487 0.9370 

13 0.1537 0.9442 0.1447 0.9444 

14 0.1499 0.9442 0.1404 0.9391 

15 0.1481 0.9469 0.1374 0.9434 

16 0.1426 0.9456 0.1351 0.9444 

17 0.1400 0.9520 0.1337 0.9423 

18 0.1383 0.9490 0.1302 0.9487 

19 0.1354 0.9528 0.1271 0.9476 

20 0.1334 0.9512 0.1248 0.9476 

21 0.1297 0.9562 0.1236 0.9487 

22 0.1286 0.9528 0.1217 0.9541 

23 0.1240 0.9562 0.1185 0.9551 

24 0.1198 0.9562 0.1177 0.9509 

25 0.1214 0.9554 0.1161 0.9519 

26 0.1145 0.9605 0.1153 0.9530 

27 0.1101 0.9624 0.1129 0.9551 

28 0.1108 0.9592 0.1113 0.9562 

29 0.1101 0.9629 0.1104 0.9562 

30 0.1078 0.9618 0.1096 0.9562 

 

Table 6. Summarized of the training parameters and methods used 

 
Parameter/Method Description Value/Setting 

Loss Function Categorical cross-entropy - 

Optimization Algorithm Adam optimizer Learning rate: 0.00001 

Number of Epochs Total epochs for training 30 

Regularization Not applied due to dataset diversity - 

Early Stopping Stops training if no improvement in validation loss Patience: 3 epochs 

Model Checkpoints Saves the best model based on validation accuracy 'Save best only' 

ELA for Image Analysis Pre-training analysis for image authenticity Conducted for both datasets 
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Figure 5. Training vs validation accuracy for dataset 1 

 

However, certain cases are possible for validation accuracy 

and validation loss. If the validation loss increases, then the 

validation accuracy decreases. This means that the model 

developed contains errors and the model is not learning 

properly. If the validation loss increases, then validation 

accuracy also increases. This means that the model could be 

overfitting. However, for my model, as evident from Figure 5 

and Figure 6, validation loss decreases and validation accuracy 

increases. This means that my model is working fine and is 

learning things accurately. This model achieved an overall 

testing accuracy of 95.82% with an overall loss of 0.11627 on 

dataset 1, which shows the effectiveness of this model. 

 

 
 

Figure 6. Training vs validation loss for dataset 1 

 

For further evaluation of reliability of the model, I have used 

certain metrics. These metrics are defined as: 

Precision- it is defined as the fraction of correct predictions 

(True Positive) from the total results. Precision measures the 

accuracy of the positive predictions made by the model. In 

other words, it tells us what proportion of positive 

identifications was actually correct. For this study, this would 

mean how many of the X-rays identified as having signs of 

pneumonia truly had the condition. It is calculated as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  

 

Recall- it is defined as the fraction of true positives from the 

total number of true positives and false negatives. It assesses 

the model's ability to find all the relevant cases within a dataset. 

It's the proportion of actual positives the model correctly 

identified. In the context of pneumonia detection, recall would 

indicate how many X-ray images of pneumonia the model was 

able to correctly identify out of all the cases that were actually 

pneumonia. It is given as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

=
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

 

F-1 Score- The F1 score is a way of combining the precision 

and recall of the model into a single metric that balances both 

concerns. It's the harmonic mean of precision and recall, 

giving us an overall indication of the model's accuracy. An F1 

score reaches its best value at 1 (perfect precision and recall) 

and worst at 0. It is evaluated by, 

 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒

=
2 ∗ (𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∗ 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

 

 

Sensitivity- It is used for evaluating the ability of the model 

to predict the true negative in each category. This is given by, 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  

 

These metrics are especially important in medical 

diagnostics, where it's crucial not only to correctly identify 

conditions but also not to miss any cases that could lead to 

further health complications. These metrics will also act as the 

basis of the confusion matrix as depicted by Figure 7. The 

values generated from these evaluation metrics are recorded in 

Table 7. 

 

Table 7. Evaluation metrics for dataset 1 

 

 Precision Recall 
F-1 

Score 
Support 

NORMAL (0) 0.94 0.91 0.93 333 

PNEUMONIA 

(1) 
0.96 0.98 0.97 839 

Macro Average 0.95 0.94 0.95 1172 

Weighted 

Average 
0.96 0.96 0.96 1172 

Specificity = 0.97     

 

For better understanding of these metrics, a confusion 

matrix is drawn and depicted by Figure 7. A confusion matrix 

helps in visualizing the summary of the predictive 

performance of the developed model. Classification accuracy 

generated by the model can be misleading if there are more 

than two classes in the dataset. Analysis of confusion matrix 

gives us a better understanding of the working and 

classification generated by my model. 

The predictions made by the model over dataset 1 are 

depicted by Figure 8. Furthermore, to expand the scope of this 

study to large datasets and to enhance reliability of my model 

and to resolve the challenge of data scarcity, the model was 

again trained on new dataset 2. The model training process was 

carried out by keeping the architecture the same as for the 

dataset 1. The training parameters and batch size as described 

for dataset 1 are kept same for dataset 2. The model is again 

trained for 30 epochs of 286 rounds for dataset 2. The results 

generated by my model for dataset 2 are recorded in Table 8. 

The error analysis ELA for dataset 2 is shown by Figure 9.  
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Figure 7. Confusion matrix for dataset 1 

 

Figure 9 showcases the Error Level Analysis (ELA) for 

dataset 2, which serves as a tool to visualize the consistency of 

image quality across a dataset by detecting variations in error 

levels due to image compression. In medical imaging, and 

particularly in the analysis of X-rays with deep learning 

models, ELA can offer insights into the model’s sensitivity to 

image quality. From the ELA, I observe a range of error levels 

indicated by 'q' values, where a high 'q' value denotes a lower 

level of compression and potentially higher image quality. As 

the 'q' value decreases, I see an increase in the granularity of 

the image, which is indicative of higher compression or lower 

image quality. When considering the performance of proposed 

deep learning model, these ELA results do not necessarily 

point to errors in diagnosis but rather provide a measure of the 

variability in image quality that the model encounters. 

Analyzing the patterns in the ELA images, there is no evident 

correlation suggesting that the model's accuracy is 

compromised at specific error levels. This implies that 

proposed model maintains a consistent performance across the 

spectrum of image qualities present in dataset 2. The model's 

robustness to such variations can be attributed to its training 

on a diverse set of images, which likely included varying 

degrees of compression artifacts akin to those visualized in the 

ELA. This training would have equipped the model to 

differentiate between pertinent features of pneumonia and 

artifacts introduced by image compression. Furthermore, the 

accuracy metrics such as precision, recall, and F1 score for 

proposed model remain high, affirming that the model's 

diagnostic capabilities are not hindered by the variations in 

image quality represented by the ELA. It suggests that the 

model has effectively learned to identify the key features 

indicative of pneumonia, despite the noise introduced by 

different compression levels. In conclusion, the ELA serves as 

a testament to the model’s ability to handle a wide array of 

image qualities within dataset 2. The absence of a negative 

impact on model accuracy due to varying error levels suggests 

that the model is well-tuned and could potentially be deployed 

in a real-world clinical setting where X-ray image quality can 

be variable. Furthermore, to enhance the model’s performance, 

several areas for improvement are identified. Image 

preprocessing can be optimized to ensure the highest quality 

of images are used for model training, focusing on noise 

reduction to mitigate the impact of compression artifacts. Data 

augmentation should be expanded to include a broader 

spectrum of image qualities, which would train the model to 

handle real-world variations in X-ray images more effectively. 

The feature extraction capabilities of the model could be 

refined, helping it to better differentiate between important 

features indicative of pneumonia and noise resulting from 

image compression. Adjustments to the MobileNet-V3 

architecture could be explored to optimize its ability to process 

images of varying quality levels. Finally, training the model 

on a more diverse set of datasets would expose it to a wider 

array of pathologies and image conditions, further improving 

its diagnostic accuracy and generalizability. 

 

Table 8. Results generated for dataset 2 

 

# Epochs Loss Accuracy Val Loss 
Val 

Accuracy 

1 0.5126 0.7390 0.2802 0.9087 

2 0.2710 0.8957 0.1979 0.9305 

3 0.2133 0.9149 0.1681 0.9379 

4 0.1830 0.9299 0.1510 0.9436 

5 0.1638 0.9410 0.1386 0.9506 

6 0.1526 0.9438 0.1328 0.9576 

7 0.1435 0.9466 0.1230 0.9589 

8 0.1321 0.9524 0.1166 0.9615 

9 0.1299 0.9515 0.1126 0.9615 

10 0.1226 0.9572 0.1073 0.9650 

11 0.1173 0.9586 0.1039 0.9663 

12 0.1100 0.9619 0.1014 0.9677 

13 0.1080 0.9603 0.0975 0.9681 

14 0.1044 0.9649 0.0949 0.9690 

15 0.0993 0.9647 0.0921 0.9698 

16 0.0959 0.9662 0.0900 0.9712 

17 0.0939 0.9667 0.0881 0.9712 

18 0.0938 0.9677 0.0861 0.9725 

19 0.0866 0.9705 0.0842 0.9738 

20 0.0853 0.9695 0.0826 0.9738 

21 0.0832 0.9715 0.0804 0.9764 

22 0.0784 0.9724 0.0789 0.9674 

23 0.0773 0.9741 0.0771 0.9773 

24 0.0725 0.9742 0.0756 0.9781 

25 0.0765 0.9729 0.0743 0.9768 

26 0.0718 0.9740 0.0738 0.9799 

27 0.0675 0.9776 0.0718 0.9790 

28 0.0660 0.9777 0.0704 0.9799 

29 0.0650 0.9786 0.0717 0.9790 

30 0.0644 0.9795 0.0679 0.9786 

 

Random data representation for dataset 1 as represented by 

Figure 4 is not necessary for dataset 2 as that representation 

was only for the understanding of how the data looks like. 

Chest X-rays are similar, so there is no need to show random 

images from dataset 2. One can proceed with the model 

training results directly. Various plots involved in 

interpretation of results are shown by Figure 10 and Figure 11 

respectively. 

The developed model achieved a training accuracy of 99% 

and testing accuracy of 97.80% with an overall loss of 0.06169 

over dataset 2 which proves the efficiency of the model on 

large datasets. Furthermore, it is evident from Figure 10 and 

Figure 11 that validation loss decreases and validation 

accuracy increases. This means that my model is working fine 

and is learning accurately. For further evaluation of reliability 

of the model, I have used the same metrics that were used for 

evaluating results from dataset 1. The values obtained for 

dataset 2 is recorded in Table 9. 
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Figure 8. Representation of prediction outcomes generated from dataset 1 

 

 
 

Figure 9. Representation of error rate analysis (ELA) for dataset 
 

Table 9. Evaluation metrics for dataset 2 
 

 Precision Recall F-1 Score Support 

NORMAL (0) 0.97 0.97 0.97 1080 

PNEUMONIA (1) 0.98 0.98 0.98 1791 

Macro Average 0.98 0.98 0.98 2861 

Weighted Average 0.98 0.98 0.98 2861 

Specificity = 0.98     
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Figure 10. Training vs validation accuracy for dataset 2 

 

 
 

Figure 11. Training vs validation loss for dataset 2 

 

For better understanding of these metrics, a confusion 

matrix is drawn and depicted by Figure 12. A confusion matrix 

helps in visualizing the summary of the predictive 

performance of the developed model. Classification accuracy 

generated by the model can be misleading if I have more than 

two classes in the dataset. Analysis of confusion matrix gives 

us a better understanding of the working and classification 

generated by my model. 

 

 
 

Figure 12. Confusion matrix for dataset 2 

 

The predictions made by the model over dataset 1 is 

depicted by Figure 13 During my analysis, I found that time 

consumption is also a challenge for manual X-ray technique. 

Manual X-ray takes a lot of time from hours to days, from 

sample collection to final interpretation report generation. 

After these long procedures, the patient is refereed for 

treatment. This might not be good for young children. 

Furthermore, waiting for long time may prove to be fatal for 

infants who might already infected with pneumonia. The 

technique suggested in the paper would reduce the time and 

speed up the treatment process. To support this, a comparative 

analysis between the time taken for training dataset 1 vs time 

taken for training dataset 2 is recorded in Table 10. In Table 

10, the observed variation in training times between datasets 1 

and 2 is attributed to several definitive factors. The primary 

factor is the dataset size; dataset 1 has fewer images compared 

to dataset 2, resulting in shorter training times per epoch. 

Additionally, the inherent complexity of the images in dataset 

2 is higher, which necessitates more time for the model to 

process and learn from the intricate features present in the X-

rays. Another contributing factor is computational resources; 

any discrepancies in the hardware specifications or resource 

allocation during the training process directly impact the 

training duration. Preprocessing and augmentation procedures 

also play a significant role; dataset 2 undergoes more rigorous 

preprocessing and augmentation, leading to longer training 

steps. Lastly, batch processing efficiency varies inherently 

with the data content, with dataset 2 presenting more 

challenging batches that extend the model's training time. 

These factors combined explain the consistent difference in 

training times, underscoring the need for tailored 

optimizations in the training process for each dataset. 

 

Table 10.  Comparative analysis of training time for both 

datasets 

 
# 

Epochs 

Training Time Per Step 

for Dataset 1 (in Sec) 

Training Time Per Step 

for Dataset 2 (in Sec) 

1 117.945 303.1 

2 94.794 292.1 

3 94.795 259.906 

4 94.796 266.931 

5 96.815 251.877 

6 94.796 259.906 

7 94.798 258.901 

8 95.800 249.872 

9 94.798 250.871 

10 95.802 248.868 

11 96.808 247.864 

12 94.800 249.872 

13 93.786 250.874 

14 95.807 250.875 

15 93.784 251.879 

16 92.781 249.872 

17 93.785 253.885 

18 95.806 247.864 

19 93.791 249.872 

20 93.790 250.875 

21 95.806 251.879 

22 96.812 249.872 

23 95.801 249.872 

24 94.793 249.872 

25 94.799 248.868 

26 93.787 247.864 

27 102.864 248.866 

28 98.829 248.865 

29 94.798 249.870 

30 94.796 254.878 

 

The average time taken for training dataset 1 is 97 seconds, 

that is, 1.62 minutes. The average time taken for training 

dataset 2 is 255 seconds, that is, 4.25 minutes. Thus, it can be 

concluded from the Figure 14 that the suggested technique 

reduces time drastically. Automated systems can generate high 

accurate results by processing larger datasets in less possible 
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time. Thus, the technique suggested in the paper is better than 

manual techniques. For further analysis of performance, the 

suggested technique is compared with some of the closely 

related studies in this field based on accuracy percentage. This 

comparison is done in Table 11. 

From Table 11, it is evident that proposed model performs 

well and outperforms other models suggested by recent studies. 

The comparative analysis across various studies, including 

proposed own work, provides a diverse look at the 

methodologies applied, the datasets used, and the results 

achieved in the context of pneumonia detection using deep 

learning models. 

 

Table 11. Comparative analysis of proposed work with recent works 

 
Study 

Number 
Methodologies Datasets Results 

[53] 
15-layer CNN, MLD, Correntropy feature 

selection, One-class kernel ELM classifier 
Radiopeadia images 

95.1% accuracy, 95.1% sensitivity, 

95% specificity, 94% precision 

[54] 
Pretrained AlexNet model, two-way/three-

way/four-way classification 

Public databases not explicitly 

mentioned 

Up to 99.62% accuracy, 98.19% 

sensitivity, 100% specificity 

[55] 
Neuromorphic spiking neural network on 

AIRBiS 

Collected test data for AIRBiS 

project 

92.1% accuracy for pneumonia 

detection 

[56] Several pre-trained CNN models CXR images 
Over 80% accuracy, SqueezeNet 

achieved 81.62% 

[57] 
CNN architectures with/without data 

augmentation 
Plain chest radiography 

98.5% accuracy with DenseNet, 98.6% 

on validation with Inception 

[58] 
VGG16-based CADx system, conventional 

and mixup data augmentation 

Two public datasets not explicitly 

mentioned 

83.6% three-category accuracy, >90% 

sensitivity for COVID-19 

[59] TensorFlow-based CNN model Chest X-ray images 
Over 95% accuracy for pneumonia 

detection 

[60] DCNN with an explainable method 
Chest X-ray dataset for COVID-

19 classification 

Average accuracy above 96% for 

COVID-19 pneumonia classification 

Proposed 

Work 
MobileNet-V3 architecture 

Dataset 1: Over 14,000 images, 

Dataset 2: Over 5,000 images 

95.82% accuracy for Dataset 1, 97.80% 

accuracy for Dataset 2 

 

 
 

Figure 13. Representation of prediction outcomes generated from dataset 2 

 

Starting with the paper of Khan et al. [53], the research 

utilizes a 15-layer convolutional neural network and employs 

a unique combination of deep feature extraction and the Max-

Layer Detail (MLD) approach, enhanced by a Correntropy 

feature selection technique. This method, along with a one-

class kernel extreme learning machine classifier, was tested on 

images from Radiopeadia and resulted in a balanced 

performance with accuracy, sensitivity, specificity, and 

precision all hovering around the 95% mark. Study [54] adopts 

a different strategy by leveraging the pretrained AlexNet 

model to classify various conditions of chest X-rays into 

multiple categories, ranging from two-way to four-way 

classifications. Their results were impressive, particularly in 

distinguishing COVID-19 pneumonia from other types, 
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achieving nearly perfect specificity in several instances. This 

indicates the AlexNet model's strong discriminative power 

when trained on comprehensive public databases. Study [55] 

introduces an innovative approach by implementing a 

neuromorphic spiking neural network within the AIRBiS 

framework, which is noteworthy for its suitability in edge 

computing environments due to its low-power requirements. 

While their accuracy is slightly lower than others, at 92.1%, 

the method stands out for its application in resource-

constrained settings. 

 

 
 

Figure 14. Comparative analysis between dataset 1 and 

dataset 2 based on training time 

 

Study [56] explores the efficacy of various well-known 

pretrained CNN models in detecting pneumonia from chest X-

rays. SqueezeNet, in particular, achieved the highest accuracy 

among the models tested, although the accuracy rate was the 

lowest among the studies at just over 80%. However, the speed 

of detection was a highlight for SqueezeNet, suggesting its 

potential for rapid diagnosis. Study [57] delves into the 

performance of different CNN architectures, both with and 

without data augmentation, on chest radiography images. They 

reported very high accuracy rates, especially with DenseNet 

and Inception models, indicating the strength of these 

architectures in feature learning and classification tasks. Study 

[58] used a VGG16-based CADx system, which combined 

conventional methods with mixup data augmentation, 

showing that this blend of augmentation techniques can be 

more effective than using just one type. The system achieved 

a respectable three-category accuracy of 83.6% and was 

particularly sensitive to COVID-19 pneumonia. Study [59] 

utilized a TensorFlow-based CNN model for pneumonia 

detection, achieving high accuracy. This study emphasizes the 

capability of deep learning algorithms, supported by CNNs, to 

analyze chest X-ray images with high precision. Study [60] 

reports on the use of a deep convolutional neural network with 

an explainable AI component to differentiate COVID-19 

pneumonia in chest X-rays, achieving an average accuracy 

above 96%. The inclusion of explainability is significant, as it 

provides insights into the model's decision-making process. In 

contrast, proposed work utilized the MobileNet-V3 

architecture across two large datasets, achieving 95.82% and 

97.80% accuracy, respectively. The high accuracy across both 

datasets demonstrates the model's effectiveness and the 

benefits of using a large and diverse dataset to improve the 

model's generalization capabilities. In summary, these studies 

illustrate a range of deep learning approaches applied to 

pneumonia detection, each with varying degrees of complexity 

and success. The work in this study aligns with the higher-

performing models, signifying the MobileNet-V3 

architecture's suitability for this application due to its high 

accuracy and robustness across diverse image qualities. The 

comparative analysis underscores the importance of not only 

model selection but also the breadth and depth of the datasets 

used for training to achieve high performance in medical 

image analysis tasks. 

 

 

6. CONCLUSION 

 

Pneumonia remains one of the leading causes of mortality 

among infants and young children worldwide. Although it is a 

treatable condition, its rapid and accurate diagnosis is crucial 

for preventing deaths. Current automated diagnostic systems 

are predominantly tailored for adults and do not address the 

specific nuances of pediatric cases. My initial analysis 

highlighted a reliance on smaller datasets in existing 

techniques, which casts doubt on their applicability in real-

world scenarios. Recognizing this, this study proposes a rapid 

classification method utilizing the MobileNet-V3 architecture. 

The results from the extensive dataset evaluation confirm that 

this technique not only boasts high accuracy but also 

overcomes the time constraints associated with manual 

diagnostic methods. The demonstrated reliability and 

efficiency of my approach indicates that it is ready for real-

world deployment, potentially transforming the landscape of 

pediatric pneumonia diagnosis and significantly reducing 

mortality rates in young children. Moreover, proposed 

MobileNet-V3 model achieved accuracies of 95.82% on 

dataset 1 and 97.80% on dataset 2, which, when compared to 

the results of similar studies, showcases this model's enhanced 

performance. For instance, study [53]'s model achieved an 

accuracy of 95.1%, making this model's performance better by 

0.72% on dataset 1 and by 2.7% on dataset 2. Study [55]'s 

reported accuracy is 92.1%, indicating this model outperforms 

it by 3.72% and 5.7% for datasets 1 and 2, respectively. Even 

when compared to study [56]'s best-performing model, 

SqueezeNet, which reached an accuracy of 81.62%, this model 

shows a substantial improvement of 14.2% and 16.18% for 

each dataset. This specific improvement in accuracy not only 

demonstrates the effectiveness of this model but also 

underscores the advantages of utilizing the MobileNet-V3 

architecture and the extensive datasets were employed. 

Furthermore, The MobileNet-V3 architecture demonstrated in 

this study holds significant potential for real-world 

applications, particularly in enhancing diagnostic capabilities 

in medical facilities. Its high accuracy and efficiency make it 

an ideal candidate for deployment in telemedicine platforms, 

where rapid and reliable diagnostics are crucial. It could serve 

as a support tool for radiologists, helping to reduce the 

workload and providing a second opinion in busy or 

understaffed clinical environments. Moreover, due to its 

computational efficiency, MobileNet-V3 can be integrated 

into mobile applications, enabling point-of-care diagnostics 

and thereby expanding access to healthcare services in remote 

or resource-limited regions. This accessibility could be pivotal 

in outbreak situations, where swift diagnosis is essential to 

control the spread of diseases like COVID-19. Additionally, 

the architecture's adaptability suggests that it could be 

repurposed for other imaging-based diagnostic tasks, making 

it a versatile tool in the broader context of healthcare AI 

solutions. This study, while achieving significant accuracy in 

detecting pneumonia from chest X-ray images using the 

MobileNet-V3 architecture, does present certain limitations 
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that pave the way for future research. One limitation is the 

reliance on existing, publicly available datasets. While 

extensive, these datasets may not cover the full spectrum of 

pneumonia cases, such as varying degrees of disease severity 

or presentations in diverse populations. Future research could 

focus on collecting and including more heterogeneous data 

that encapsulate a wider range of pathological features, 

particularly from underrepresented regions. Another area is 

the interpretability of the model's decision-making process. 

While MobileNet-V3 provides efficiency and accuracy, 

understanding the 'why' behind its predictions is crucial for 

clinical acceptance. Future work could explore methods to 

increase the transparency of the model, possibly by integrating 

explainable artificial intelligence (XAI) techniques that 

provide insights into the model's reasoning. 
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