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Accurate plant leaf detection and disease diagnosis are crucial for various applications, 

including plant species identification, disease management, and ecological monitoring. 

Existing methods often rely on single modalities, limiting their effectiveness due to 

insufficient spatial resolution, sensitivity, and disease-specific features. To overcome these 

limitations, we propose a novel approach C-MAN using multi-attention networks with 

multi-scale, channel-wise, and cross-modal attention mechanisms for plant leaf analysis and 

disease diagnosis. Multi-Scale Attention captures both fine-grained and global features, 

ensuring comprehensive understanding of leaf shape, texture, and disease patterns. Channel-

wise Attention focuses on disease-specific information within each feature channel, 

enhancing disease detection sensitivity. Cross-modal Attention integrates information from 

various weighted feature maps for richer and more robust analysis. We train our model on a 

standard plant leaf dataset of 4,500 images from twelve economically and environmentally 

significant plant species, containing both healthy and diseased leaves. The model performs 

a two-step categorization, first classifying leaves by species and then diagnosing diseases. 

We evaluate our approach using standard metrics like accuracy, precision, recall, and F1-

score. Our experiments demonstrate significant improvements in plant detection accuracy 

(96.74%) and disease diagnosis accuracy (95.43%) compared to single-modal methods. 

These results highlight the potential of our approach for more reliable and accurate plant 

analysis in various domains. 
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1. INTRODUCTION

The study of plant leaf detection and disease diagnosis [1] 

occupies a pivotal position in modern-day research, offering 

multifaceted implications that extend across various domains, 

including agriculture, environmental science, and botanical 

studies [2]. In the ever-evolving landscape of global 

challenges, understanding the health and conditions of plant 

leaves assumes profound significance, driven by the intricate 

relationships between plant life and the environment. 

1.1 Background 

One of the fundamental aspects of this field is the 

identification of plant species. In a world teeming with various 

plants, the ability to discern one species from another is not 

merely an academic pursuit; it forms the basis of agriculture, 

forestry, and ecological conservation. Apart from the species 

identification, another critical task lies in this field is disease 

detection. The ability to swiftly and accurately diagnosing 

plant diseases is helpful in implementing timely interventions, 

minimizing crop losses, and safeguarding the environment 

against the spread of pathogens [3]. 

Inspired from the above [2, 3], in this study we determined 

to focus on plant leaf detection and disease diagnosis to 

promptly identify and classify these diseases to reduce the crop 

losses and minimizing ecological impacts. 

Historically, researchers have primarily relied on single 

sensing modalities to analyze plant leaves. These 

methodologies require the examination of leaves through a 

single lens, focusing on one aspect of leaf characteristics such 

as color analysis, shape recognition or texture examination. 

For example, Sunil et al. [4] addressed the critical issue of 

disease detection in cardamom plants using a neural network 

architecture variety, specifically EfficientNetV2. Similarly, 

Silviya et al. [5] explored the application of deep learning for 

plant leaf disease detection and classification using general 

deep convolution techniques. In their study, Harshavardhan et 

al. [6] utilized the deep ResNet-34 model to identify and 

diagnose various plant leaf diseases at an early stage, aiming 

to prevent crop damage. 

1.2 Problem statement 

Although these methods [4-7] have provided valuable 

insights, they encountered the inherent challenges of relying 

on a single sensing modality are spatial resolution, sensitivity 

and specificity. 

Spatial resolution [8] identified by its subsections Color 

analysis, Shape recognition and Texture analysis is a challenge 
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where the traditional deep learning methods often struggle to 

discern fine details on a leaf's surface, making it complex to 

detect subtle deformations, anomalies, or early-stage disease 

symptoms. Focusing exclusively on color analysis at 

identifying prominent discolorations, will create struggles 

with subtle variations that characterize early-stage diseases, 

especially on leaves with natural color variations. For example, 

it is hard to differentiate subtle fungal spots from markings on 

variegated leaves based solely on color intensity. Similarly the 

Shape recognition method thrives on well-defined structures 

and clear boundaries, making it ineffective in detecting 

diseases like leaf curl or wilting that cause deformations. 

While accurately identifying leaf rust, which manifests as 

slight bumps on the leaf surface, would be challenging for 

shape recognition alone. In same way the Texture analysis 

approach is susceptible to environmental factors like lighting 

and leaf orientation, leading to misinterpretations of disease-

related changes in texture. 

Similarly the sensitivity to relevant features and specificity 

in identifying disease-related patterns are essential for accurate 

diagnosis. Single-modal methods may excel in one aspect 

while falling short in another, leading to potential inaccuracies 

in disease detection [8, 9]. These methods can miss crucial 

disease symptoms hidden by visual elements like shadows, 

overlapping leaves, or background clutter. These limitations 

can impede model capacity to achieve a comprehensive 

understanding and diagnosis of plant health, particularly when 

dealing with complex real-time data and disease dynamics. 

 

1.3 Proposed model (C-MAN) 

 

To address the inherent limitations of single sensing 

methods in plant leaf detection and disease diagnosis, our 

research proposed a Custom Multi Attention Network (C-

MAN) innovatively designed to revolutionize plant leaf 

detection and disease diagnosis limitations of conventional 

single sensing methods. This approach allows us to harness the 

full potential of multi-modal data and provide a 

comprehensive solution to plant disease analysis. We 

customized the traditional multi attention networks model [10] 

into a sophisticated deep learning C-MAN architecture by 

employing the Multi-Scale attention, Channel-wise attention 

and Cross-modal attention features. 

To address spatial resolution issues, our C-MAN model is 

utilizing the “Multi-Scale attention” mechanism at different 

scales of network to capture both overall leaf structure and 

fine-grained details, enabling detection of subtle color 

variations, deformations, and textural changes associated with 

early-stage diseases. To overcome the sensitivity issues, our 

C-MAN contained “Channel-wise attention” mechanisms 

focus on specific channels within the feature maps, allowing 

the model to selectively attend to disease-relevant information 

even when masked by other visual elements. Finally our C-

MAN having “Cross-modal attention”, which is implemented 

to manage the specificity issues by learning the relationships 

between different modalities and allowing the model to 

leverage the contextual information from various sources to 

differentiate between disease symptoms and other stresses. 

Our novel C-MAN model with features Multi-Scale 

attention, Channel-wise attention and Cross-modal attention 

will empowers our system to extract vital information from 

plant leaf images, encompassing aspects such as color, shape, 

texture, and disease-related patterns. Our key contributions in 

this research paper are: 

o Developing a novel Multi-Attention Network 

architecture with specific features tailored for plant 

disease diagnosis. 

o Demonstrating the effectiveness of our model in 

addressing the limitations of single-modality methods 

through comprehensive experiments. 

o Providing insights into the importance of multi-modal 

data and attention mechanisms for improved plant 

disease detection. 

We plan to conduct experiments using the plant leaf dataset, 

containing 45 thousand leaf images of various plant species 

with different diseases. We will evaluate our C-MAN model's 

performance using standard metrics like accuracy, precision, 

recall, and F1-score, and compare it with existing methods to 

showcase its advantages. By addressing the limitations of 

single-modality methods and leveraging the power of multi-

modal data and attention mechanisms, our research aims to 

significantly contribute to the development of more accurate 

and reliable plant disease diagnosis systems. 

In the subsequent sections, we will detail our methodology, 

dataset, experiments, and results, demonstrating how our 

multi-attention network-based approach significantly 

improves plant detection accuracy and disease diagnosis 

compared to previous single-modal methods, reaffirming its 

potential for transformative impact in various domains, 

including agriculture, environmental monitoring, and botany. 

 

 

2. LITERATURE REVIEW 

 

In the field of plant leaf analysis and disease diagnosis, a 

comprehensive review of existing literature serves as a 

foundational step to understand the current state of research, 

identify gaps, and delineate the motivations behind the 

proposed custom multi-attention network-based approach C-

MAN. This section critically assesses the methodologies 

employed in prior studies and emphasizes the limitations of 

single-modal methods. Furthermore, it elucidates the 

evolution of deep learning techniques, specifically multi-

modal and attention-based approaches, which have emerged 

as promising avenues for enhancing the accuracy and 

robustness of plant health analysis. 

Plant leaf analysis and disease diagnosis have attracted 

considerable attention from researchers worldwide due to their 

profound implications in various domains. To gain insight into 

the progress made in this field, it is imperative to review the 

existing literature. One significant aspect of this research area 

revolves around the identification of plant species. Accurate 

species identification forms the basis of agriculture, botany, 

and ecological studies. Previous studies, such as the work by 

Sunil et al. [4], have addressed the importance of species 

identification in agriculture. They employed neural network 

architecture, specifically EfficientNetV2, to classify different 

plant species. While this research contributes to the field, it 

primarily relies on a single sensing modality. Shoaib et al. [7] 

explores various techniques, including image processing, 

feature extraction, convolutional neural networks (CNNs), and 

deep belief networks (DBNs), showcasing how these methods 

enhance the precision and efficiency of plant disease detection. 

Andrew et al. [11] leveraged deep learning, specifically 

CNN based pre-trained models like DenseNet-121, ResNet-50, 

VGG-16, and Inception V4, the paper focuses on efficient 

plant disease identification. Silviya et al. [5] delved into the 

application of deep learning techniques for plant leaf disease 
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detection and classification. Their approach was based on 

general deep convolution techniques, which, while valuable, 

also relied solely on single-modal methods. Similarly, 

Harshavardhan et al. [6] utilized a deep ResNet 34 model to 

identify and diagnose various plant leaf diseases. However, 

their approach primarily leveraged deep learning techniques in 

isolation. 

 

2.1 Challenges faced by single-modal methods 

 

Single-modal methods, as illustrated by the aforementioned 

studies, have provided valuable insights into plant leaf analysis 

and disease diagnosis. Nevertheless, they grapple with several 

inherent limitations. These limitations can be categorized into 

spatial resolution, sensitivity, and specificity. 

Spatial Resolution: Single-modal methods often struggle to 

discern fine details on the surface of plant leaves based on 

color, shaper and texture. Fine-grained characteristics, subtle 

deformations, anomalies, or early-stage disease symptoms 

may not be captured adequately. This limitation is particularly 

critical when dealing with high-resolution images, where the 

nuances of leaf properties are paramount for accurate 

diagnosis. 

Sensitivity and Specificity: Achieving the right balance 

between sensitivity and specificity is challenging for single-

modal methods. Sensitivity refers to the ability to detect 

relevant features, while specificity pertains to the capability of 

identifying disease-related patterns accurately. Single-modal 

methods may excel in one aspect while falling short in the 

other, leading to potential inaccuracies in disease detection. 

These inaccuracies can be detrimental in real-world scenarios 

where timely intervention is crucial. 

 

2.2 Multi attention-based approaches in deep learning 

 

In the fast evolving landscape of deep learning, it has 

become evident that single-modal methods, while valuable, 

are constrained by inherent limitations. The limitations of 

single-modal methods have paved the way for innovative 

approaches that harness the power of multi attention 

mechanisms in deep learning. Multi attention modal collects 

and combines the information from various characteristics of 

the images allowing for a more comprehensive understanding 

of complex patterns. Attention mechanisms, on the other hand, 

enable models to focus on relevant regions within an input, 

enhancing feature extraction and interpretability for a deeper 

understanding of the image features and complexities. 

Ding et al. [12] blend CNNs and graph attention networks 

(GATs) to enhance hyperspectral image classification, 

combining spatial feature extraction and spectral feature 

fusion for heightened accuracy. Gu et al. [13] introduce CA-

Net, merging CNNs and comprehensive attention mechanisms 

for transparent medical image segmentation, showing promise 

in various medical imaging applications. Additionally, Tan et 

al. [14] proposed novel network architecture for remote 

sensing image object detection, employing multi-scale 

attention mechanisms for improved accuracy, contributing to 

the remote sensing field's advancements. 

Wang et al. [15] proposed an innovative approach using 

multi-layer LSTM networks to enhance fine-grained image 

captioning. They introduce a novel mechanism for generating 

detailed captions, promising advancements in applications 

requiring precise image descriptions. Xu et al. [16] introduced 

an innovative method using MSSA-Net to improve breast 

ultrasound image segmentation accuracy. Their method 

leverages a Multi-Scale Self-Attention Network to enhance 

segmentation accuracy in the field of medical image analysis. 

Multi-attention Networks (MANs) [17, 18], as evidenced in 

above literature, offer a versatile and powerful toolset that can 

significantly benefit plant detection and disease diagnosis 

tasks. These mechanisms enable models to selectively focus 

on relevant regions within complex plant images, enhancing 

both feature extraction and interpretability. The adaptability 

and contextual awareness offered by multi-attention networks 

make them a promising approach for improving the accuracy 

and robustness of plant detection and disease diagnosis 

systems, with broad implications in agriculture, environmental 

monitoring, and botany. 

As part of this research literature review, Table 1 is 

presenting the key findings and limitations identified in the 

domain of computer vision especially the plant spices and 

disease detection. 

 

Table 1. Literature review key findings and limitations 

 
Study Methodology Key Findings Limitations 

Sunil et al. [4] 

Neural network 

architecture 

(EfficientNetV2) 

- Emphasizes the importance of species 

identification in agriculture. 

- EfficientNet V2 for plant species 

classification. 

- Primarily relies on a single sensing modality, 

limiting the scope of analysis. 

Shoaib et al. [7] 
Image processing, 

CNNs, DBNs 

- Explores various techniques, including 

image processing, CNNs, and DBNs for 

plant disease detection. 

- Demonstrates how these methods enhance 

precision and efficiency in disease detection. 

- The specific impact of individual techniques on 

precision and efficiency is not extensively discussed. 

- Limited attention to the integration of multi-modal 

methods. 

Andrew et al. [11] 

Deep CNN models 

like DenseNet-121, 

ResNet-50, VGG-16, 

Inception V4 

- Leverages pre-trained CNN models for 

efficient plant disease identification. 

- Explores the use of multiple pre-trained 

models to enhance accuracy. 

- Limited exploration of the shortcomings of using 

multiple pre-trained models. 

- Focus on efficiency may lead to trade-offs in other 

aspects of disease identification. 

Silviya et al. [5] 

Deep learning 

(general deep 

convolution) 

- Applies deep learning for plant leaf disease 

detection and classification. 

- Reliance on single-modal methods, potentially 

limiting the model's ability to capture diverse 

features. 

Harshavardhan et 

al. [6] 

Deep learning 

(ResNet-34) 

- Utilizes deep ResNet-34 model for 

identifying and diagnosing various plant leaf 

diseases. 

- Primarily leverages deep learning techniques in 

isolation, missing potential benefits of multi-modal 

approaches. 
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3. METHODOLOGY 

 

This research leverages a novel Custom Multi-Attention 

Network (C-MAN) architecture specifically designed for plant 

leaf analysis and disease diagnosis. C-MAN addresses the 

limitations of traditional deep learning methods by 

incorporating three key attention mechanisms: Multi-scale 

attention, Channel-wise attention, and Cross-modal attention. 

The methodology of this research is grounded in the 

innovative application of Custom Multi-Attention Networks 

(C-MAN) to plant leaf analysis and disease diagnosis. We 

begin by providing a detailed introduction to C-MANs, 

explaining their historical development and relevance in image 

analysis. A comprehensive exploration of the theoretical 

foundations of MANs follows, delving into the mathematical 

principles underpinning their attention mechanisms. 

The architecture of our proposed C-MAN model for plant 

leaf analysis and disease detection is presented with Figure 1 

in thorough detail, outlining network layers and component 

functionalities. Emphasis is placed on the integration of multi-

attention mechanisms and their specific roles within the model. 

The deep learning techniques employed for feature extraction, 

including CNNs and the integration of attention mechanisms, 

are thoroughly explained. 

 

 
 

Figure 1. C-MAN model based plant leaf analysis and 

disease diagnosis architecture 

 

3.1 MANs in plant leaf analysis 

 

MANs represent an in-depth neural network architecture 

designed to improve the accuracy and interpretability of image 

analysis tasks, making them particularly valuable in the 

context of plant leaf analysis. These networks have evolved 

over time, becoming a foundational component of modern 

image analysis techniques [17, 18]. Historically, the 

development of MANs can be traced back to the growing need 

for models that can effectively capture intricate patterns and 

nuanced details within images [19]. Traditional MAN’s often 

struggle to discern subtle variations in plant leaves, 

particularly when it comes to detecting early-stage disease 

symptoms or distinguishing between species. Our C-MANs 

address these challenges by introducing a custom mechanism 

with Multi-scale attention, Channel-wise attention and Cross-

modal attention, which allows the C-MAN model to 

selectively focus on specific regions of interest within an 

image while simultaneously considering the broader context. 

In the domain of plant leaf analysis C-MANs offer a 

transformative solution by harnessing the power of attention 

mechanisms, C-MAN will extract the critical features related 

to leaf color, shape, texture, and disease-related patterns with 

remarkable precision [20]. A distinguishing feature of MANs 

is their ability to understand the broader context of plant 

images. While concentrating on specific regions of interest, C-

MANs also consider the relationships between these regions 

and the overall image composition. This contextual 

understanding aids in generating comprehensive and accurate 

insights into plant health. C-MANs introduce the concept of 

selective attention using Channel-wise Attention, allowing the 

model to dynamically prioritize regions of interest. This 

selective focus enhances the extraction of relevant features 

while effectively filtering out irrelevant or noisy information. 

 

3.2 Proposed C-MANs architecture 

 

This section delves into the intricate details of our proposed 

C-MAN architecture specifically designed for plant leaf 

disease diagnosis. As depicted in Figure 1, the network 

leverages the combined power of Multi-Scale Attention, 

Channel-wise Attention, and Cross-modal Attention to 

achieve superior accuracy and interpretability. 

Process Flow: The C-MAN begins with an Input Layer that 

receives plant leaf RGB images with labeling information as 

raw data is fed into the network for feature extraction. A 

sequence of CNN layers forms the backbone of feature 

extraction. Each layer progressively extracts and abstracts 

spatial features such as edges, shapes, and textures. This 

hierarchical approach, leveraging the inherent structure of 

CNNs, enables the capture of increasingly complex spatial 

information from the input images. 

Followed by CNN, the Custom Multi-Attention Network 

(C-MAN) is defined with Multi-Scale Attention Module, 

Channel-wise Attention Module and Cross-modal Attention 

Module. Multi-Scale Attention module tackles the challenge 

of limited spatial resolution by simultaneously learning 

features at different scales. Parallel branches with varying 

kernel sizes extract low-level details (texture) and high-level 

features (overall structure). The extracted features are then 

fused to create a comprehensive representation encompassing 

both fine-grained and global information. Sensitivity to 

disease-relevant information is enhanced by Channel-wise 

Attention module, which focuses on specific "channels" 

within the feature maps [21]. Through mechanisms like 

squeeze-and-excitation, it learns to selectively attend to 

disease-specific patterns, even when masked by other 

elements (e.g., shadows, background clutter). Cross-modal 

Attention module facilitates communication and knowledge 

exchange between various attention channels of attention 

modules. This fusion of diverse information empowers the 

model to learn complex relationships and improve its ability 

to differentiate disease symptoms from other stresses based on 

the combined context. 
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After the C-MAN model, the final layers consist of fully 

connected neurons and a Softmax activation function. These 

layers leverage the extracted features to output two potential 

results are: identifying the specific plant species the leaf 

belongs to the learned features and classifying the leaf as either 

healthy or infected with a specific disease. The C-MAN 

system provides a combined output encompassing both plant 

species classification and disease detection results. This 

comprehensive information offers valuable insights for 

various applications in agriculture, environmental monitoring, 

and botanical research, assisting in timely interventions and 

informed decision-making. 

The key advantages of our C-MAN architecture are: 

o Multi-scale feature extraction: Captures both fine-

grained details and overall leaf structure for 

improved disease detection. 

o Channel-wise attention: Enhances sensitivity by 

focusing on disease-specific features within the 

data. 

o Cross-modal attention: Leverages the power of 

multiple attentions for improved disease 

differentiation and specificity. 

o Interpretability: The attention mechanisms offer 

valuable insights into which image regions are 

crucial for diagnosis. 

 

3.3 CNNs for spatial feature extraction 

 

The dataset connected Input Layer, where plant leaf images 

are represented as a set of pixel values in a two-dimensional 

matrix. Each image is denoted as 𝐼 and it can be symbolized 

as, where i and j represent the row and column indices of 𝐼 =
(𝐼𝑖𝑗)  the matrix, respectively. The input data consists of a 

batch of images for more efficient computation, which can be 

represented as a tensor 𝑋, where 𝑋 = {𝐼1, 𝐼2, … , 𝐼𝑛}, and 𝑛 is 

the number of images in the batch. The preprocessed input 

tensors fed to the CNN [22] layers block for spatial feature 

extraction. Here, each CNN layer operates as a series of 

convolutional and pooling operations, which can be 

represented mathematically as: 

 

( )*i i iC f W I b= +  

 

Here, 𝐶𝑖  represents the feature map produced by the ith 

convolutional layer. 𝑊𝑖 represents the learnable convolutional 

kernel (filter) for the ith layer. 𝑓 denotes the activation function, 

which introduces non-linearity (commonly ReLU). ‘ 𝐼 ’ 

represents the input feature map from the previous layer, and 

𝑏𝑖 is the bias term. The '*' operator denotes the convolution 

operation. Alongside convolution, pooling operations are 

often employed in CNN layers to reduce the spatial 

dimensions of the feature maps can be mathematically 

represented as: 

 

max( , )jP I size s= =  

 

where, the 𝑃𝑗 represents the output of the jth pooling operation 

(to reduce the spatial dimensions of the feature map), ‘𝐼’ is the 

input feature map and size =s denotes the size of the pooling 

window used for pooling, which determines the region of the 

input feature map that is considered during the pooling 

operation. In a CNN, feature abstraction occurs as the data 

passes through multiple layers. Each layer performs a series of 

mathematical operations, including convolution and pooling, 

to abstract features from the input data. 

We represent the input feature map [12] at a layer as 𝐼(𝑙) 
(with '𝑙' as the layer index) and denote the resulting feature 

map after abstraction as 𝐹(𝑙). This process is mathematically 

represented as: 

 

( )( ) ( 1) ( ) ( ),l l l lF I W b−= +  

( )( ) ( )l lF F=  

 

here, 𝐹(𝑙) is the feature map produced by layer '𝑙' after feature 

abstraction, ⊗ (𝐼(𝑙−1),𝑊(𝑙)) represents convolution operation 

‘⊗’ between the input feature map 𝐼(𝑙−1) from the previous 

layer and the learnable convolutional kernel 𝑊(𝑙)  for the 

current layer with bias 𝑏(𝑙) for layer '𝑙'. The activation function 

‘𝜎 ’ (ReLU) [23] applied element-wise to the result of the 

convolution operation as 𝜎(𝑥) = 𝑚𝑎𝑥( 0, 𝑥)  to introduce 

non-linearity and enabling the network to learn complex 

features. 

As data passes through each layer in the CNN, it undergoes 

convolution operations, feature abstraction, and non-linear 

transformations through the activation function. This 

progressive abstraction allows the network to capture 

increasingly complex spatial information, starting from simple 

features like edges and gradually recognizing more intricate 

patterns and textures in the plant leaf images as it moves 

deeper into the network. 

 

3.4 Custom multi attention networks (C-MAN) model 

processing 

 

After the spatial feature extraction through CNN layers, the 

final CNN layer output is seamlessly integrated into C-MAN 

model. This C-MAN model, equipped with multi scale 

attention [24], channel wise attention and cross model 

attention to play a pivotal role in refining the extracted features 

by focusing on salient regions within the plant leaf images. 

These attention mechanisms allow the network to prioritize 

certain areas of the image that contain valuable information 

related to plant species and disease presence. This integration 

is crucial for enhancing the precision and interpretability of the 

model's predictions. 

 

3.4.1 Multi scale attention 

Within the C-MANs, multi scale attention mechanisms are 

organized into individual attention heads [20]. Each attention 

head is responsible for attending to specific aspects of the 

image, such as color, shape, texture, or disease-related patterns 

[16]. The structure and training of these attention heads are 

optimized to ensure that they collectively capture diverse and 

relevant information from the input images. The attention 

heads are trained in parallel, and their outputs are later fused 

to provide a comprehensive feature representation that 

combines the strengths of each attention head. The integration 

of attention mechanisms within the C-MANs can be 

mathematically represented as follows: 

Let 𝐹(𝐶𝑁𝑁) be the feature map produced by the CNN layers, 

and 𝐹(𝑀𝐴𝑁) be the feature map output by the Multi-Attention 

Networks. The attention mechanisms within the C-MANs can 

be symbolized as 𝐴(1), 𝐴(2), … , 𝐴(𝑛)  representing individual 

attention heads. Each attention head 𝐴(𝑖) operates on the input 

feature map 𝐹(𝐶𝑁𝑁)  and produces an attention-weighted 
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feature map 𝐹(𝑎𝑡𝑡𝑖) [25]. The combination of the outputs from 

all attention heads is represented as: 

 
( ) ( ) ( )1 2( ) (1) (2) ( )* * * nattatt attMAN nF A F A F A F= + ++  

 

This equation illustrates how the attention mechanisms 

contribute to the final feature map 𝐹(𝑀𝐴𝑁) , where each 

attention head focuses on distinct aspects of the input to 

enhance feature extraction [10]. Integrating attention 

mechanisms in C-MANs is pivotal for locating essential 

regions in plant leaf images, boosting accuracy in species 

classification and disease detection. 

 

3.4.2 Channel-wise attention 

Building upon the multi-scale attention module, our C-

MAN architecture incorporates a Channel-wise Attention 

Module to further refine feature representation and enhance 

disease specificity. This module operates within each feature 

map extracted by the multi-scale attention module, effectively 

analyzing the "channels" that hold disease-relevant 

information. 

Spatial Squeeze and Channel Excitation: The Channel-wise 

Attention Module operates independently on each feature map 

𝐹(𝑀𝐴𝑁) obtained from the Multi-Scale Attention Module. This 

attention model incorporates the Spatial Squeeze mechanism 

which aggregates spatial information across each channel, 

collapsing the feature map into a single channel representing 

overall channel importance. This is typically achieved through 

two common methods are Global Average Pooling (GAP) and 

Global Max Pooling (GMP): 
 

1
( ) * ( , , )

( . )

MAN

i j

GAP S F F i j c
H W

= =   

( )( ) max ,max ( , , )MAN

i jGMP S F F i j c= =   

 

where, 𝐹𝑀𝐴𝑁(𝑖, 𝑗, 𝑐)  represents the feature map value at 

position (i, j) in channel c, H and W are height and width of 

the feature map and 𝑆(𝐹) is the resulting single-channel vector. 

For channel excitation, the resulting single-channel descriptor 

𝑆(𝐹)  then undergoes a transformation involving two fully 

connected layers and a non-linear activation function (e.g., 

ReLU) to learn a weighting factor for each channel based on 

its global importance for disease detection. The excitation 

process (𝑈(𝑠)) for a single channel descriptor 𝑆(𝐹) can be 

represented as: 

 

( )( 2 1( ) *Re * ( )U s w LU w S F=  

 

where, 𝑤1  and 𝑤2  are the weight matrices of the two fully 

connected layers, and 𝜎 is the activation function. 

Weighted Feature Map: Finally, the learned weight vector 

is multiplied element-wise with the original feature map, 

effectively amplifying disease-relevant channels and 

suppressing less informative ones. This refined feature map is 

then fed into subsequent layers for classification as follows: 

 

( , , ) ( , , )* ( )C MAN MANF i j c F i j c U s− =  

 

here, 𝐹𝐶−𝑀𝐴𝑁(𝑖, 𝑗, 𝑐) represents the weighted feature map for 

the specific channel 𝑐  extracted from the excitation vector, 

helps to perform the channel wise attention. These refined 

weighted feature maps are then concatenated or summed to 

create a more robust and disease-specific representation before 

being fed into the classification modules. 

Focusing on relevant channels, this module reduces the 

influence of noisy or irrelevant background information, 

leading to more accurate disease classification. By analyzing 

the generated weights, we can gain insights into which 

channels are crucial for different diseases, aiding in 

understanding the model's decision-making process. 

Compared to processing the entire feature map, focusing on 

individual channels reduces computational overhead, making 

the model more efficient. 

 

3.4.3 Cross model attention 

Following the Channel-wise Attention Module, our C-

MAN architecture can incorporate a Cross-modal Attention 

Module to generalize the multiple feature maps utilized for 

disease diagnosis. This module facilitates communication and 

knowledge exchange between multiple attentions, leading to 

improved disease differentiation and specificity. In this 

module, each channel attention is processed separately 

through individual CNNs feature maps resulting in distinct 

feature maps. Each feature map undergoes its own Spatial 

Squeeze and Channel Excitation steps as described in the 

previous section. This ensures individual channel importance 

is assessed within each attention. An attention matrix is 

computed, capturing the relationships between channels 

across different feature maps. This matrix represents, for each 

channel in one feature map, how much attention it should pay 

to each channel in the other feature maps of same group is 

scaled using a dot-product attention mechanism. 

 

2Soft max *
TC MAN

k

K
A F

d

−
 

=  
 
 

 

 

where, A is the attention matrix with dimensions m×n, 

𝐹𝐶−𝑀𝐴𝑁 is the weighted feature map from the excitation vector 

of attention-1, 𝐾2𝑇 weighted feature map from the excitation 

vector of attention-2, √𝑑𝑘  is the dimensionality of the key 

vector. The attention matrix is used to weight the feature maps 

effectively amplifying relevant inter-modal relationships and 

suppressing irrelevant ones. These results in a fused feature 

representation that captures complementary information from 

different modalities will be discussed in feature fusion section. 

By leveraging the information from different attention 

feature maps, the model can better distinguish disease 

symptoms from other stresses or background noise, leading to 

more accurate diagnosis. Cross-modal relationships help the 

C-MAN model focus on specific disease-related patterns 

across modalities, improving the overall specificity of disease 

detection. 

 

3.5 Feature fusion 

 

Feature fusion [26] is a critical step in the multi-attention 

network architecture for plant leaf detection and disease 

diagnosis. It involves the combination of outputs from the 

multi-attention mechanisms with features extracted from the 

CNN layers [13]. This fusion process enriches the overall 

feature representation and plays a pivotal role in enhancing the 

model's capacity to capture both spatial and salient features 

from plant leaf images. Mathematically, feature fusion [26] 

can be expressed as follows: 
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Let 𝐹𝑚𝑎(𝑙)  represent the feature map produced by the multi-

attention mechanisms at layer '𝑙' and 𝐹𝑐𝑚𝑛(𝑙)  denote the feature 

map obtained from the CNN layers at the same layer '𝑙'. These 

feature maps are represented as matrices with dimensions 

dependent on the layer, then the feature fusion at layer '𝑙' is 

described as: 

 

𝐹
fusion 

(𝑙) =⊕ (𝐹𝑚𝑎(𝑙) , 𝐹𝑐𝑚𝑛(𝑙)) 

 

In the equation above, Concatenate signifies the operation 

of concatenating feature maps along a specified axis, often the 

channel axis. This operation merges the spatial features 

extracted by the CNN layers with the salient features 

accentuated by the multi-attention mechanisms at layer '𝑙'. The 

resulting feature map, 𝐹
fusion 

(𝑙) , integrates both the fine-

grained spatial details captured by the CNN layers and the 

contextually important regions highlighted by the attention 

mechanisms at layer '𝑙'. This enriched feature representation 

becomes the foundation for subsequent plant species 

classification and disease detection tasks, contributing 

significantly to the model's accuracy and interpretability. 

 

3.6 Plant species classification and disease detection 

 

The goal of Plant Species Classification is to assign each 

analyzed leaf to its corresponding plant species category based 

on the learned features from the previous stages of the model. 

Mathematically, this can be represented as: 

Let 𝐹
fusion 

(𝑙)  represent the fused feature map [10] obtained 

after feature fusion, where '𝑙 ' indicates the layer at which 

feature fusion was performed. This feature map encapsulates 

both spatial and salient information for plant spices 

classification as follows: 

 

( )( )fusion
* lP pP Softmax W F b= +  

 

where, 𝑃 represents the predicted probability distribution over 

plant species classes, 𝑊𝑃  is the learnable weight matrix 

specific to plant species classification, 𝑏𝑝 is the bias term and 

Soft max [23] is the activation function that normalizes the 

output into a probability distribution. The output probability 

distribution 𝑃  provides the likelihood of the analyzed leaf 

belonging to each plant species class. The model assigns the 

leaf to the class with the highest probability, making it a 

powerful tool for plant species identification. 

Concurrently, the processed features of plant spices 

classification are employed for disease detection, a task 

involving the discrimination between healthy leaves and those 

exhibiting signs of diseases. The disease detection can be 

represented mathematically as: 
 

𝐷 = Sigmoid(𝑊𝑑 ∗ 𝐹fusion 
(𝑙) + 𝑏𝑑) 

 

where, 𝐷 represents the predicted probability [27] of disease 

presence, 𝑊𝑑 is the learnable weight matrix specific to disease 

detection, 𝑏𝑑  is the bias term and Sigmoid  is the activation 

function [23] that maps the output to a probability between 0 

and 1. The output 𝐷 indicates the likelihood of the analyzed 

leaf being diseased. If 𝐷  is close to 1, it suggests a high 

probability of disease, whereas a value close to 0 indicates a 

healthy leaf. This dual classification system is crucial for 

assessing plant health comprehensively. 

4. EXPERIMENTS 

 

This section explores the practical implementation and 

assessment of our proposed architecture C-MAN, which 

seamlessly integrates multi-modal data and attention 

mechanisms for enhanced accuracy and interpretability. 

Within this section, we will delve into the crucial aspects of 

data preparation and augmentation, model training and 

evaluation, as well as cross-validation and hyperparameter 

tuning. Through rigorous experimentation, we aim to 

showcase the real-world applicability and performance of our 

C-AMN in the context of plant leaf analysis and disease 

diagnosis. 

 

4.1 Dataset preparation and augmentation 

 

The plant leaf dataset [28] used in our research is a valuable 

resource that encompasses a diverse collection of plant leaf 

images is shown in Figure 2. These images were acquired to 

support our objectives related to plant leaf identification, 

detection, and disease diagnosis, recognizing the vital role that 

plants play in the environment. The dataset features twelve 

economically and environmentally significant plant species, 

including “Mango, Arjun, Alstonia Scholaris, Guava, Bael, 

Jamun, Jatropha, Pongamia Pinnata, Basil, Pomegranate, 

Lemon, and Chinar”. 

 

 
 

Figure 2. Sample leaf (healthy and diseased) images from 

dataset 

 

 
 

Figure 3. Plant leaf data augmentation techniques 

visualization 

 

The dataset comprises a total of approximately 45k RGB 

images with 24 bits depth are thoughtfully organized, with 

images categorized into two primary classes: healthy and 
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diseased leaves. Initially, the images were classified and 

labeled according to the respective plant species, denoted as 

P0 to P11. Subsequently, the entire dataset was further divided 

into 22 subject categories, spanning from 0000 to 0022. The 

classes labeled from 0000 to 0011 correspond to the healthy 

class, while those labeled from 0012 to 0022 pertain to the 

diseased class. 

In the pursuit of enhancing our dataset's diversity and 

robustness for plant leaf detection and disease diagnosis, we 

employed a range of data augmentation strategies. These 

strategies are essential for enriching the dataset, enabling our 

model to generalize effectively to different scenarios. The data 

augmentation strategies we applied are rotation, scaling, 

flipping, and other transformations [29, 30]. We presented in 

Figure 3 about the specifics of each augmentation technique, 

outlining how they introduce variations into the dataset. 

Furthermore, we highlight the significance of data 

augmentation in improving the model's ability to handle 

variations in plant leaf images, ultimately contributing to its 

overall robustness and performance. 

 

4.2 Standardization and preprocessing 

 

To maintain consistency in our dataset, we perform image 

resizing to a standardized resolution. This step guarantees that 

all input images have the same dimensions, simplifying the 

subsequent computations. Additionally, we apply 

normalization techniques to scale pixel values, typically in the 

range of 0 to 1 or -1 to 1, enhancing convergence during model 

training. One of the challenges in real-world plant leaf images 

is variations in lighting, noise, and quality. To address these 

issues, we employed denoising techniques [30] to reduce 

image noise and improve overall data quality. 

Standardization is crucial to ensure that our multi-attention 

network receives consistent and high-quality input data. By 

applying these preprocessing steps, we mitigate the impact of 

noisy or poorly illuminated images, allowing our model to 

focus on salient features relevant to plant species classification 

and disease detection. 

Infrastructure setup: To conduct the experiments on 

proposed multi-attention network in plant leaf detection and 

disease diagnosis, we employ high-performance Graphics 

Processing Units (GPUs) in a multi-GPU setup, significantly 

reducing training time. The infrastructure includes GPUs with 

specifications like NVIDIA GeForce RTX 3080, 32GB RAM, 

and Intel Core i9 processors. In the software stack, we utilize 

TensorFlow 2.5 as our deep learning framework, Python 3.8 

for programming, and OpenCV 4.5 for image preprocessing. 

We maintain version control using Git and conduct 

experiments within Jupyter Notebooks. 

Performance Metrics: We assess our C-MAN's 

effectiveness using diverse metrics [31] like accuracy, 

precision, recall, and F1-score, providing a holistic view of its 

performance. Accuracy measures overall classification 

correctness, while precision and recall focus on disease 

detection accuracy and sensitivity, respectively. F1-score 

balances these aspects, particularly useful when dealing with 

class imbalances. Additionally, we monitor training 

performance and error minimization using loss functions like 

cross-entropy. These metrics guide us in optimizing the model 

for accurate plant leaf analysis and disease diagnosis, 

ultimately contributing to improved plant health management. 

Data Partitioning: To train and test the proposed model for 

plant leaf detection and disease diagnosis using multi-attention 

networks, we perform careful data partitioning to ensure 

robust model training and evaluation. For robust training and 

evaluation, we split the plant leaf dataset [28] (healthy & 

diseased, 12 species) into training (70%) and validation (30%) 

sets using stratified sampling. This ensures balanced 

representation of healthy and diseased samples in both sets, 

facilitating diverse learning and accurate performance 

assessment on unseen data. 

 

4.3 C-MAN model creation and training 

 

4.3.1 Model creation 

The C-MAN architecture leverages multi-attention 

mechanisms to capture both spatial and salient features from 

plant leaf images, enabling accurate disease diagnosis and 

plant species classification. This intricate design integrates 

CNN layers for basic feature extraction with custom attention 

modules (Multi Attention, Channel-wise Attention and Cross 

Model Attention) for focusing on crucial image regions. 

Figure 4 depicts the high level sequence of layers within our 

C-MAN model, along with their corresponding output shapes. 

With a total of only 76,551 trainable parameters, the C-

MAN model strikes a balance between complexity and 

efficient learning. This efficient architecture translates to 

faster training times while maintaining exceptional accuracy 

in both disease detection and plant species classification. 

 

 
 

Figure 4. Multi-attention model summary for plant spices 

classification and disease detection 

 

4.3.2 Model training and optimization 

Training our C-MAN model hinges on iterative processing 

batches of leaf images. Each iteration completes a portion of 

the data, and multiple iterations define an epoch, representing 

a full pass through the entire dataset. To achieve optimal 

performance, we carefully select and fine-tune 

hyperparameters [32, 33] like Learning Rate (α), Batch Size, 

Optimizer function, Loss Functions and Dropout Rate as 

hyperparameters as specified in Table 2. These 

hyperparameters are adjusted around the model training 

process to yield high accuracy in plant spices classification and 

disease detection. 

During training, the learning rate (set at 0.001) controls the 

pace of weight updates, balancing rapid learning with stability. 

A batch size of 32 images ensures efficient convergence and 

memory usage. The Adam optimizer [33] facilitates efficient 

gradient updates, while separate cross-entropy loss [34] 
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functions handle plant species classification and disease 

detection. Additionally, dropout regularization [35] (rate of 

0.3) prevents overfitting and improves model generalization. 

These meticulously chosen hyperparameters maximize our 

model's training performance for precise plant analysis and 

disease diagnosis. 

 

Table 2. Configured values of the hyperparameters for model 

optimization 

 
Hyperparameter Value 

Learning Rate (α) 0.001 

Batch Size 32 

Optimizer Adam 

Loss Function (Species Classification) Categorical Cross-Entropy 

Loss Function (Disease Detection) Binary Cross-Entropy 

Dropout Rate 0.3 

 

The C-MAN model employs a two-step categorization 

process. First, it uses extracted features to classify leaves into 

specific plant species, aiding botanical research and ecological 

monitoring. In the second step, the same features are used to 

distinguish healthy leaves from those with disease symptoms. 

By precisely optimizing the training process, the C-MAN 

model achieves accurate and reliable performance in both 

plant species classification and disease detection. 

At the end, the learning rate, set at an optimal value of 0.001, 

determines the step size for updating model weights during 

training, ensuring a balance between fast convergence and 

stability. We've found that a batch size of 32 samples in each 

iteration provides efficient convergence and memory usage. 

Additionally, we employ the Adam optimizer [33] for efficient 

gradient-based updates and use categorical cross-entropy loss 

[34] for plant species classification and binary cross-entropy 

loss for disease detection. Regularization techniques [35], such 

as dropout with a rate of 0.3, are also incorporated to prevent 

overfitting and enhance model generalization. These 

hyperparameters have been meticulously selected and fine-

tuned to maximize the training performance of our multi-

attention network for precise plant leaf analysis and disease 

diagnosis. 

During the training process, our multi-attention network 

employs a two-step categorization procedure, which is pivotal 

for both plant species identification and disease labeling. In the 

first step, the model focuses on categorizing plant leaves into 

specific plant species, leveraging the extracted features. This 

step allows the model to determine the plant species to which 

each analyzed leaf belongs, contributing to botanical studies 

and ecological monitoring. In the second step, the same set of 

features is utilized for disease detection, distinguishing 

between healthy leaves and those exhibiting signs of diseases. 

 

 

5. RESULTS AND DISCUSSIONS 

 

Our C-MAN model has undergone rigorous testing on a 

dedicated test dataset, ensuring an unbiased assessment of its 

capabilities. The results clearly demonstrate the model's ability 

in accurately classifying plant species and detecting diseases 

within plant leaves. The evaluation process included testing on 

a dedicated test dataset that was not used during training, 

ensuring unbiased assessment. By quantifying its performance, 

we can ascertain the model's overall accuracy, precision, recall, 

F1-score, and loss functions [31, 33, 34]. 

 

5.1 Plant species classification results 

 

Robust performance in plant species classification is crucial. 

We employed 5-fold cross-validation [36] for unbiased 

evaluation and hyperparameter tuning to optimize C-MAN's 

accuracy, precision, and recall. These experiments will 

compare the C-MAN against the existing methods like CNN 

[21], ResNet [6], Multi Attention [37] and Single Attention 

[38]. This procedure provided an unbiased estimate of the 

model's performance and helped detect overfitting. Several 

key hyperparameters [33] were fine-tuned, including the 

learning rate, batch size, and the selection of optimal attention 

mechanisms. Through a systematic search, the best 

combination of hyperparameters was determined to maximize 

model accuracy, precision, and recall. Techniques such as 

dropout [34] and batch normalization [33] were explored to 

mitigate overfitting and enhance model effectiveness. These 

strategies contributed to the model's ability to classify plant 

species accurately. 

In the context of plant species classification, the 

performance of various models is summarized in Table 3. The 

CNN model [21] achieved an average precision of 0.850 

(±0.030), recall of 0.882 (±0.035), accuracy of 0.860 (±0.040), 

and F1-score of 0.865 (±0.025), with an average processing 

time per evaluation of 180.103 (±20.000) seconds. The ResNet 

model [6] demonstrated an average precision of 0.891 

(±0.035), recall of 0.920 (±0.040), accuracy of 0.901 (±0.045), 

and F1-score of 0.905 (±0.030), with an average processing 

time of 245.678 (±25.000) seconds. 

 

Table 3. Performance metrics for plant species classification 

 
Model 

Name 

Precision 

(±) 
Recall (±) 

Accuracy 

(±) 

F1-Score 

(±) 

Process 

Time (±) 

CNN 
0.850 

(±0.030) 
0.882 

(±0.035) 
0.860 

(±0.040) 
0.865 

(±0.025) 
180.103 

(±20.000) 

ResNet 
0.891 

(±0.035) 

0.920 

(±0.040) 

0.901 

(±0.045) 

0.905 

(±0.030) 

245.678 

(±25.000) 

Sin_Attn 
0.912 

(±0.040) 

0.943 

(±0.045) 

0.920 

(±0.050) 

0.927 

(±0.035) 

315.432 

(±30.000) 

Mul_Attn 
0.930 

(±0.045) 
0.963 

(±0.050) 
0.940 

(±0.055) 
0.946 

(±0.040) 
238.917 

(±28.000) 

C-MAN 
0.953 

(±0.050) 
0.984 

(±0.055) 
0.967 

(±0.060) 
0.968 

(±0.045) 
274.167 

(±22.000) 

 

 
 

Figure 5. Plant spices classification accuracy comparison 

 

The Single Attention Method [38] showed an average 

precision of 0.912 (±0.040), recall of 0.943 (±0.045), accuracy 

of 0.920 (±0.050), and F1-score of 0.927 (±0.035), with an 

average processing time of 315.432 (±30.000) seconds. Multi 

Attention model [37] achieved an average precision of 0.930 
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(±0.045), recall of 0.963 (±0.050), accuracy of 0.940 (±0.055), 

and F1-score of 0.946 (±0.040), with an average processing 

time of 238.917 (±28.000) seconds. Notably, our C-MAN 

model outperformed others with an average precision of 0.953 

(±0.050), recall of 0.984 (±0.055), accuracy of 0.967 (±0.060), 

and F1-score of 0.968 (±0.045), while maintaining an average 

processing time of 274.167 (±22.000) seconds. These results 

highlight the effectiveness of the C-MAN model in plant 

species classification, offering both high accuracy and 

reasonable processing time is presented in Figure 5. Similarly, 

Figure 6 presenting the comparison of the classification time 

across different plant disease detection models. 

 

 
 

Figure 6. Comparison of classification time across different 

plant disease detection models 

 

Table 4. Each plant level classification performance metrics 

by C-MAN 

 
Plant Type Precision Recall F1-Score Accuracy 

Mango 0.953 0.984 0.968 0.964 

Arjun 0.952 0.967 0.961 0.955 

Alstonia Scholaris 0.967 0.983 0.975 0.973 

Guava 0.925 0.981 0.952 0.949 

Jamun 0.961 0.892 0.925 0.928 

Jatropha 1.000 1.000 1.000 1.000 

Basil 0.954 0.959 0.957 0.958 

Pomegranate 1.000 0.961 0.981 0.979 

Lemon 0.954 0.958 0.956 0.957 

Pongamia Pinnata 1.000 1.000 1.000 1.000 

Chinar 0.943 1.000 0.970 0.969 

Average 0.964 0.971 0.968 0.967 

 

In order to provide the robust information about the 

experiments, Table 4 is presenting the performance metrics at 

each plant level as plant species classification results. From 

this, we observed the slight variations in our C-MAN model's 

performance across different plant types. For Mango, Arjun, 

and Alstonia Scholaris, our model demonstrated high 

precision, recall, F1-Score, and accuracy values, with Alstonia 

Scholaris achieving exceptional precision (0.967) and recall 

(0.983). Guava showed slightly lower precision (0.925), but 

compensated with high recall (0.981). On the other hand, 

Jamun exhibited a trade-off between precision (0.961) and 

recall (0.892), resulting in a balanced F1-Score (0.925). 

Jatropha, Basil, Pomegranate, and Pongamia Pinnata 

performed exceptionally well with perfect scores in precision, 

recall, F1-Score, and accuracy. In contrast, Chinar displayed a 

specific pattern with high recall (1.000) but slightly lower 

precision (0.943), resulting in an F1-Score of 0.970. Our C-

MAN obtained plant type classification metrics related graph 

with precision, recall, F1 score and accuracy are presented in 

Figure 7. 

 

 
 

Figure 7. Plant type classification metrics comparison graph 

 

The average metrics indicate strong classification 

performance across all plant types, with an average precision 

of 0.964, recall of 0.971, F1-Score of 0.968, and accuracy of 

0.967. These results showcase our C-MAN model's 

effectiveness in distinguishing between different plant species, 

with certain plant types achieving near-perfect classification. 

 

5.2 Plant disease detection results 

 

The Figure 8 shows a collection of detected diseased leaf 

images obtained through our disease detection model using C-

MAN model. These images represent a diverse range of plant 

species and leaf types affected by various diseases. Each 

image provides a visual insight into the symptoms and 

manifestations of plant diseases, including discoloration, 

lesions, spots, and other identifiable characteristics. These 

detections demonstrate the model's ability to accurately 

identify and localize disease-afflicted areas on plant leaves, 

aiding in the early diagnosis and management of plant health. 

In the context of plant disease detection, we present the 

comparison of our proposed model C-MAN performance 

metrics with its counterparts are CNN [21], ImageNet [39], 

GoogLeNet [40] and Inception-V4 [41] as summarized in the 

Table 5. 

 

 
 

Figure 8. C-MAN detected disease plant leaves from dataset 
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Table 5. Performance metrics for plant disease detection 

 
Model Precision (±) Recall (±) Accuracy (±) F1-Score (±) Process Time (±) 

CNN 0.847 (±0.030) 0.819 (±0.055) 0.826 (±0.045) 0.833 (±0.040) 221.12 (±18.00) 

ImageNet 0.895 (±0.025) 0.912 (±0.035) 0.902 (±0.30) 0.903 (±0.035) 357.54 (±42.00) 

GoogLeNet 0.907 (±0.035) 0.931 (±0.025) 0.912 (±0.030) 0.919 (±0.030) 382.17 (±37.00) 

InceptionV4 0.943 (±0.040) 0.909 (±0.045) 0.922 (±0.045) 0.925 (±0.040) 344.91 (±35.00) 

C-MAN 0.940 (±0.045) 0.968 (±0.065) 0.954 (±0.050) 0.953 (±0.050) 359.65 (±18.00) 

 

The results from Table 5 reveal several noteworthy findings: 

The baseline CNN model [21] achieved reasonable precision 

and recall values of approximately 0.847 and 0.819, 

respectively, indicating decent accuracy in identifying 

diseased plants, although there is room for improvement. 

Figure 9 is presenting the comparison of the disease detection 

time across different plant disease detection models. 

In contrast, the ImageNet [39] and GoogLeNet [40] models 

exhibited enhanced performance metrics, including precision, 

recall, accuracy, and F1-scores, surpassing the CNN baseline. 

This improvement can be attributed to their utilization of more 

intricate architectures and pre-trained features, resulting in 

superior disease detection capabilities. InceptionV4 [41], 

while excelling in precision (0.943), demonstrated a relatively 

lower recall (0.909), indicating its proficiency in correctly 

identifying diseased plants but with potential limitations in 

capturing all instances. 

 

 
 

Figure 9. Comparison of disease detection time across 

different plant disease detection models 

 

 
 

Figure 10. Plant leaf disease detection accuracy comparisons 

 

Remarkably, the C-MAN model emerged as the top-

performing model, boasting a precision of 0.940 and an 

impressive recall of 0.968, highlighting its effectiveness in 

disease identification while minimizing false negatives. The 

observed trends in accuracy and F1-score largely paralleled 

precision and recall, underscoring the importance of achieving 

a balance between these metrics. Additionally, the processing 

time is a crucial consideration, where CNN offers faster 

processing while ImageNet [39] and GoogLeNet [40] demand 

greater computational resources. Figure 10 is presenting the 

leaf disease detection accuracy improvements across different 

epochs and emphasizing that the our C-MAN model exhibits 

superior disease detection capabilities compared to its 

counterparts, holding promise for precise plant disease 

diagnosis with substantial implications for agricultural 

practices. 

 

 

6. CONCLUSION AND FUTURE WORKS 

 

This study presented C-MAN, a novel custom multi-

attention network architecture that leverages the power of both 

CNNs and attention mechanisms for plant leaf classification 

and disease detection. Through comprehensive analysis of 

diverse plant species and their associated diseases, C-MAN 

demonstrated remarkable performance in both tasks. Our C-

MAN model achieved outstanding results in plant leaf 

classification, surpassing state-of-the-art methods with an 

accuracy of 0.967. Similarly our C-MAN's prowess extended 

to disease detection as well, achieving an impressive accuracy 

of 0.954. This demonstrates the model's ability to reliably 

diagnose plant diseases while minimizing false negatives, 

offering a valuable tool for early intervention and improved 

plant health management. 

While these results are encouraging, further exploration 

holds exciting possibilities. Integrating transfer learning from 

related domains, such as plant image analysis, could 

significantly enhance accuracy and generalization. Fine-

tuning pre-trained models on our diverse dataset presents an 

opportunity for further performance optimization. 

It is mandatory to have conclusions in your paper. This 

section should include the main conclusions of the research 

and a comprehensible explanation of their significance and 

relevance. The limitations of the work and future research 

directions may also be mentioned. Please do not make another 

abstract. 
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