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The rising occurrence of epilepsy along with the intricate nature of focal epilepsy and its 

potential to progress to generalized epilepsy requires the advancement of intelligent systems 

capable of delivering precise diagnoses. This paper developed a novel approach for the 

classification of patients with focal and generalized epilepsy based on the analysis of EEG 

signals using the Ensemble Empirical Mode Decomposition (EEMD) and Complete 

Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) techniques. 

These adaptive methods are applied to a comprehensive database consisting of EEG signals 

captured during sleep from patients with focal and generalized epilepsy. Feature extraction 

is performed on the resulting Intrinsic Mode Functions (IMFs) obtained from EEMD and 

CEEMDAN methods, four statistical features being computed for each extracted IMF. 

Finally, the K-nearest neighbors (KNN) and Naïve Bayes (NB) classifiers are employed to 

accurately classify the EEG signals into focal and generalized categories. The combination 

of CEEMDAN-based approach and KNN classifier achieved the highest classification rate 

of 94.54%, exceeding the EEMD-based approach and KNN classifier, which attained a 

maximum classification rate of 93.32%. By means of the proposed methods, we aim to 

contribute to the development of effective and efficient diagnostic systems for epilepsy. 
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1. INTRODUCTION

Epilepsy is a predominant chronic neurological disease 

represented by seizures affecting approximately 1.5% of the 

global population. Seizures are episodic and unpredictable 

events resulting from abnormal electrical activity of the brain. 

They can be present in various forms, such as convulsions, loss 

of consciousness, or abnormal movements [1]. 

Seizures are represented through distinctive waveforms, 

known as epileptiform discharges, exhibiting pronounced 

spikes and sharp wave complexes [2]. A spike refers to a brief 

and transient signal observed in the EEG, lasting from 20-70 

ms, while sharp-waves have durations of 70-200 ms [3]. 

The electroencephalogram (EEG) is a technique employed 

to capture the electrical activity of the brain [4]. By monitoring 

and analyzing complex and non-stationary EEG signals, 

epilepsy seizures can be detected and identified, contributing 

to a better understanding of the brain condition and its impact 

on the quality of life of the patients [5, 6]. 

The detection of epileptic seizure types consists of the 

analysis of the collected EEG signals. Epilepsy can take two 

forms: focal and generalized. 

In focal epilepsy, the seizures are manifested and can only 

be observed in a specific area of the brain. The EEG signals 

are recorded from the brain zone where the epileptic activity 

originates, allowing us to locate the specific area of seizure 

onset. In generalized epilepsy, the seizures involve the entire 

brain and the generalized EEG signals are detectable across all 

EEG channels [7].  

These signals often exhibit distinct patterns and frequency 

characteristics in various brain regions, providing valuable 

information for the accurate diagnosis and classification of 

epilepsy cases. 

Experienced neurologists usually analyze these EEG signals 

through visual inspection, considering various waveform 

characteristics such as amplitude, frequency, reactivity to 

stimuli, and spatial-temporal abnormalities [8]. Visual 

observation for seizure detection has certain limitations: 

analysis is laborious, time-consuming, expensive, and can be 

prone to fatigue-induced errors. Therefore, it is a need for a 

reliable computerized algorithm to automatically detect the 

type of epilepsy [5]. 

Over the years, different techniques based on Fourier 

transform and parametric methods have been used for the 

automatic analysis of epileptic EEG signals [9, 10]. These 

approaches are built on previous findings indicating that 

epileptic seizures lead to alterations in specific frequency 

bands, including the 𝛿 (0.5-4 Hz), 𝜃 (4-8 Hz), 𝛼 (8-12 Hz), 

𝛽(12-30 Hz) and 𝛾(30-60 Hz) bands [11, 12]. 

In the field of EEG epilepsy recognition, researchers have 

developed numerous algorithms. Previous studies in the 

literature have used several methods such as Empirical Mode 

Decomposition (EMD), proposed by Huang et al. [13], which 

is an adaptive signal processing technique that decomposes a 
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signal into a finite number of intrinsic mode functions (IMFs). 

Despite its data adaptivity, the EMD method encounters the 

challenge of mode mixing [8]. Further, extensions of EMD 

method have been proposed to address multivariate data [5, 

14], and mitigate the issue of mode mixing. Mode mixing 

occurs when signals with significantly different amplitudes 

coexist within the same intrinsic mode function, or when a 

signal of similar scale is divided into different IMF 

components [14]. Recent advancements in signal 

decomposition have significantly contributed to the use of 

Empirical Wavelet Transform (EWT) [15], Variational Mode 

Decomposition (VMD), EEMD [14], Complete Ensemble 

Empirical Mode Decomposition (CEEMD) [16], and 

Complete Ensemble EMD with Adaptive Noise (CEEMDAN) 

techniques [8].  

In study [14], the EEMD method is developed in order to 

avoid the EMD mode mixing. The proposed approach 

transforms the EMD method into a really dyadic filter bank 

applicable to various types of data. 

In study [17], both EEMD and CEEMDAN methods are 

employed. The reconstructed signal is used to approximate the 

skewness, crest factor, and root mean square value parameters 

to analyze their characteristics and behavior. Results show that 

CEEMDAN technique produces higher statistical values for 

the reconstructed signal compared to EMD and EEMD ones. 

In study [5], CEEMDAN is applied to a database with 

epileptic EEG recordings to detect the type of seizure. The 

mode functions are extracted from the analysis and are 

subsequently modeled using parameters from the normal 

inverse Gaussian (NIG) probability density function. The 

experimental findings demonstrate that the proposed approach 

shows promising performances for all clinically significant 

cases. 

In this study, two novel and effective approaches are 

proposed for the classification of focal and generalized 

epilepsy. These methods involve two adaptive decomposition 

techniques based on EEMD and CEEMDAN, along with a 

combination of four features: median, kurtosis, skewness, and 

fluctuation index. By extracting relevant features from the 

decomposed signals, a robust and accurate classification 

algorithm is developed. These approaches have the potential 

to overcome the limitations of existing methods and to 

improve the efficiency and reliability of epilepsy diagnosis 

[18]. The current research uses a property database consisting 

of interictal focal and generalized EEG epileptic signals 

recorded during the sleep state. To classify EEG signals, the 

K- nearest neighbors (KNN) and Naive Bayes (NB) classifiers 

are employed. 

The paper is structured as follows: Section II provides an 

overview of the database employed in the study. Section III 

outlines the methodology used, including the feature 

extraction process and the classification stage. Section IV 

describes the experimental results. Section V provides the 

conclusion of the paper. 

 

 

2. DATABASE 

 

The current study is conducted using our own database 

obtained in the EEG Epilepsy and Monitoring Center in Cluj-

Napoca, Romania [18]. The database comprises interictal 

epileptiform EEG recordings obtained from 16 patients 

ranging in age from 7 to 66 years, diagnosed with focal and 

generalized epilepsy. The non-invasive acquisition of EEG 

signals is accomplished by employing the Nicolet Clinical 

EEG Natus System, featuring 21 channels. The positions of 

the electrodes adhered to the guidelines of the international 10-

20 system. 

The study received approval of the Ethics Committee, and 

all participants provided informed consent, allowing access to 

anonymized raw data for analysis purposes. Specifically, this 

research used a subset of 16 EEG recordings achieved in sleep 

state. The diagnosis of focal and generalized epilepsy was 

established by a qualified neurologist for the patients involved 

in the study. To simplify the analysis process, the data was 

segmented into 40 segments, each of them consisting of 6 

seconds of recorded data. The sampling frequency was 1000 

Hz.  

Figure 1 illustrates an EEG recording from a person with 

focal epilepsy, while Figure 2 shows an EEG recording from 

a patient diagnosed with generalized epilepsy. 

 

 
 

Figure 1. Focal EEG signals 

 

 
 

Figure 2. Generalized EEG signals 

 

 

3. METHODS 

 

3.1 Adaptive decomposition approaches 

 

Ensemble empirical mode decomposition is an extension of 

the empirical mode decomposition method, designed to 

overcome the issue of mode mixing [13].  

The principle of EEMD method can be briefly defined as 

follows: 

In the process of EEMD, during each trial, white noise is 

introduced into the original signal. The act of employing EMD 

on the input signal affected by noise is known as a trial. The 
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trials are executed multiple times to obtain the mode functions 

of EEMD [5].  

The relation between the EEG signal 𝑋(𝑡) and its corrupted 

versions is given below: 

 

( ) ( ) ( )
0

i iX t X t t = + , for i =  1, 2, …, K  (1) 

 

where, 𝑋𝑖(𝑡) represent the signal corrupted by white noise, the 

white noise is denoted by 𝜔𝑖(𝑡), 휀0 is the standard deviation 

of the white noise, and K represents the trials [16]. 

In this method, the white noise has zero mean and unit 

variance, consequently, 휀0 = 1. 

EMD is applied to the noisy signal 𝑋𝑖(𝑡) and decomposes it 

into N IMF components noted 𝐼𝑀𝐹𝑗
𝑖(𝑡)  and 𝑟(𝑡)  residuals, 

(𝑗 =1, 2, …, 𝑁).  

 

( ) ( ) ( )

1

N
i iX t IMF t r t

j i
j

= +
=

 (2) 

 

where, 𝐼𝑀𝐹𝑗
𝑖(𝑡) represents the j-th IMF obtained through the 

decomposition process after addition of the Gaussian white 

noise for the i-th trial. 

The addition of noise in the EEMD method helps to evenly 

distribute the signal’s components across different scales or 

frequencies [5].  

The EEMD modes noted 𝐼𝑀𝐹𝑗(𝑡)  are obtained by 

averaging the IMFs obtained throughout the ensemble number 

of trials - 𝐼𝑀𝐹𝑗
𝑖(𝑡) [16]. 

 

1
( ) ( )

1

K
iIMF t IMF t

j jK i

= 
=

, 
1

( ) ( )

1

K
r t r t

iK i

= 
=

 (3) 

 

The quantity of intrinsic mode function generated through 

the EEMD method depends on the number of trials conducted 

during the procedure. By employing the ensemble number of 

trials and averaging the IMFs, EEMD enhances the separation 

of different oscillations and improves the accuracy of mode 

decomposition. EEMD is characterized by a high 

computational complexity [17].  

While the EEMD method effectively addresses the issue of 

mode mixing, it still has certain limitations. These include the 

presence of residual noise in the reconstructed signal and 

varying numbers of modes in different trials [18]. 

The enhanced complete ensemble empirical mode 

decomposition with adaptive noise method represents a 

significant advancement over EMD and EEMD techniques by 

addressing the above-mentioned issues [19]. 

The CEEMDAN method involves several key steps, as 

follows: 

1. An adaptive noise term 𝜔𝑖(𝑡) with standard deviation 

휀0  is introduced in each trial during CEEMDAN 

decomposition. This noise term is generated 

iteratively, estimating the noise from the residuals of 

the previous trial, allowing for the inclusion and 

adjustment of the noise component within the signal 

similar to the Eq. (1) [20]. In this method, the 

decomposition modes are noted as 𝐼𝑀𝐹𝑗(𝑡)̃ . 

2. Conducting EMD on the signal contaminated with 

adaptive noise 𝑋𝑖(𝑡) , similar to EEMD, each trial 

incorporates the addition of adaptive noise to the 

original signal, followed by the application of EMD 

on the noisy signal, resulting 𝐼𝑀𝐹𝑗(𝑡); 𝑗 =1, 2, ..., N. 

Then, the first IMF noted 𝐼𝑀𝐹1(𝑡)  is determined 

averaging the decomposed components: 

 

1
( ) ( ) ( )1 1 1

1

K
iIMF t IMF t IMF t

K i

= =
=

 (4) 

 

3. The IMFs derived from each trial, along with their 

associated adaptive noise components, are 

accumulated and combined across all trials. The 

residual 𝑟1(𝑡) obtained in the first stage (𝑗 = 1) is as 

follows: 

 

( ) ( ) ( )
11

r t X t IMF t= −  (5) 

 

The operator 𝐸𝑀𝐷𝑗(⋅)produces the j-th IMF attained by 

EMD method. 

The signal 𝑟1(𝑡) + 휀1𝐸𝑀𝐷1(𝜔
𝑖(𝑡)) , i=1, 2, …, K, 

undergoes additional decomposition using EMD to calculate 

the second IMF mode noted 𝐼𝑀𝐹2(𝑡)̃ : 

 

1
( ) ( ( ) ( ( )))2 1 1 1 1

1

K
iIMF t EMD r t EMD t

K i

 = +
=

 (6) 

 

and the related residual 𝑟2(𝑡):  
 

( ) ( ) ( )
22 1

r t r t IMF t= −  (7) 

 

4. In the next step, the j-th residual and the (j+1)-th 

component for j=2, 3, ..., N are calculated:  

 

( ) ( ) ( )
( 1)

r t r t IMF t
j j j

= −
−

 (8) 

 

5. The signal 𝑟𝑗(𝑡) + 휀𝑗𝐸𝑀𝐷𝑗(𝜔
𝑖(𝑡)), i=1, 2, …., K, is 

decomposed and defined the (𝑗 + 1) -th mode as: 

 

1
( ) ( ( ) ( ( )))( 1) 1

1

K
iIMF t EMD r t EMD tj j j jK i

 = ++
=

 (9) 

 

where, 휀𝑗 is the standard deviation of white noise in the j-th 

iteration, 𝐼𝑀𝐹(𝑗+1)(𝑡)̃  represents the (𝑗 + 1)-th IMF obtained 

by CEEMDAN method. 

6. Return to step 4 and 5 for the next j. 

When steps 4 and 5 are iterated, at a certain stage, the 

residues form a strictly monotonic function. Consequently, it 

becomes unfeasible to further extract IMFs. The algorithm 

stops when the following stop condition is met: 

 

2
( ) ( )

1

2 ( )0
1

r t r tT j j
SD

K
r tt
j

−
−


=

−

 (10) 

 

where, T represents the length of the signal X(t). After 

performing the j-th decomposition, the resulting signal is 
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referred to as 𝑟𝑗(𝑡), and the standard deviation -𝑆𝐷𝐾  is set to 

0.2 [20]. 

If 𝑟𝑗(𝑡) represents the ultimate residue, and N is the total 

number of modes beyond which no additional mode extraction 

is achievable, the original input signal 𝑋(𝑡)  can be 

reconstructed using the following relationship from all the 

CEEMDAN mode functions. 

 

( ) ( ( ) ( ))

1

N
X t IMF t r t

j j
j

= +
=

 (11) 

 

In our study, we have used the first five EEMD and 

CEEMDAN IMFs from each EEG signal for feature extraction. 

Then, four features were computed from each extracted IMFs. 

By incorporating the adaptive noise term, CEEMDAN 

improves the removal of noise contamination during the mode 

decomposition process, resulting in cleaner and more accurate 

IMFs [8]. 

Compared to EMD and EEMD, CEEMDAN has notable 

advantages. It ensures complete reconstruction without 

residual noise interference and requires a reduced number of 

trials, leading to enhanced computational efficiency [20]. 

 

3.2 Features extraction 

 

For each IMF obtained through EEMD and CEEMDAN 

methods, the parameters: median, skewness, kurtosis, and 

fluctuation index were calculated.  

The median value of the extracted intrinsic mode functions 

represents a significant feature that can be used to identify the 

central point in the distribution of signal amplitudes. This 

measure can be a valuable tool in detecting and characterizing 

the abnormal patterns in EEG epilepsy [21]. 

The kurtosis is a reliable indicator in terms of tail extremity 

in a distribution.  

The kurtosis is given as follows:  

 

4{( )}

4

E X
Kurtosis





−
=  (12) 

 

In this context, 𝜇 represents the mean of the variable, 𝜎 is 

the standard deviation, and 𝐸[⋅] represents the expected value 

[22]. 

The skewness evaluates the symmetry of the data 

distribution relative to the sample mean. It helps in 

establishing whether the distribution is symmetrical or skewed 

towards one side [23]. The skewness is computed as: 

 

3{( )}

3

E X
Skewness





−
=  (13) 

 

The fluctuation index provides a numerical value that 

reflects the degree of variation in a signal over a given time 

period, allowing the quantification of signal intensity changes 

[24]. The fluctuation index is defined as follows: 

 

11
_ ( 1) ( )

1 1

l
Fluctuation index IMF j IMF j

l j

−
= + −

− =

 (14) 

 

where, IMF denotes the extracted IMFs with a length of 𝑙. 
 

3.3 Classifiers 

 

This paper uses the K-nearest neighbors and Naïve Bayes 

classifiers to classify the data. To evaluate the performance of 

these classifiers, a ten-fold cross-validation procedure is 

employed. 

Previous studies [18, 25] have conducted comprehensive 

evaluations of various classifiers and concluded that the KNN 

and NB classifiers are particularly suitable for distinguishing 

between the two different classes of EEG epileptic data. 

The KNN classifier identifies the majority class among its 

closest training examples in the feature space. On the other 

hand, the NB classifier applies the theorem of Bayes to 

calculate the probability of each class given the input features, 

making assumptions of feature independence. 

The classifiers have been employed to classify various types 

of EEG epileptic signals, including normal and abnormal [26], 

focal and non-focal, focal and generalized [18], as well as 

different stages of seizures: ictal, interictal, or postictal [27]. 

The performances of the classifiers used in this paper were 

estimated employing the following metrics: sensitivity, 

specificity, classification rate, and F1-Score, with detailed 

computations provided below.  

The sensitivity (recall) of the proposed methods indicates 

their ability to accurately classify focal EEG signals, while the 

specificity demonstrates their capability to correctly classify 

generalized EEG signals. 

 

100
TP

Sensitivity
TP FN

= 
+

 (15) 

 

100
TN

Specificity
TN FP

= 
+

 (16) 

 

Classification rate (Class_rate) represents the percentage of 

accurately classified EEG signals. 

 

_ 100
TP TN

Class rate
TN FP FN FP

+
= 

+ + +
 (17) 

 

The F1-Score [28] assesses the accuracy of a model by 

considering both precision and recall. The harmonic mean 

gives equal weight to precision and recall, making the F1-

Score a balanced measure that considers both true positives 

and true negative instances in classification tasks. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × Re𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + Re𝑐𝑎𝑙𝑙
 (18) 

 

Pr 100
TP

ecision
TP FP

= 
+

 (19) 

 

True Positives (TP) represent the number of instances (in 

this study, focal EEG signals) that are correctly categorized as 

positive (focal). False Positives (FP) are the number of 

instances (focal EEG signals) that are incorrectly categorized 

as positive (generalized EEG signals). True Negatives (TN) 

comprise the number of instances (in this study, generalized 

EEG signals) that are correctly categorized as negative 

(generalized). False Negatives (FN) are the number of 

instances (generalized EEG signals) that are incorrectly 
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categorized as negative (focal EEG signals). 

A flowchart with the proposed methods is presented in 

Figure 3. 

 

 
 

Figure 3. A schematic outline of the proposed methods 

 

 

4. RESULTS 

 

Two different offline approaches based on adaptive mode 

decomposition techniques for classifying epileptic EEG 

signals were proposed. To assess their individual performance, 

the EEG signals were decomposed into intrinsic mode 

functions using two different approaches: EEMD and 

CEEMDAN. 

After several attempts to set the ensemble size, testing 

values both higher and lower than 500, the best results for data 

classification were obtained with an ensemble of 500, leading 

to a good balance between accuracy and computational 

efficiency. In both proposed methods, the ensemble size was 

set to 500 trials and the standard deviation was set to 0.2. 

A number of five IMFs were extracted. Each IMF includes 

40 segments and 6000 samples. The order of IMFs is from 

highest to lowest frequency. 

Figure 4 and Figure 5 represent the extracted IMFs with 

both methods: EEMD and CEEMDAN, and they are given to 

illustrate the differences between their representation. The 

variations observed in the IMFs obtained from EEMD and 

CEEMDAN method illustrate the distinct decomposition 

characteristics and signal features captured by each method.  

Further, the above-mentioned feature extractions were 

computed for each of the five extracted IMF components, 

separately for each proposed method. Based on the data 

collected from these features, the EEG signals were classified. 

The results get with the proposed approaches for 

categorizing focal and generalized EEG epileptic signals are 

presented in the following tables. 

Standard formulas were used to calculate the minimum, 

maximum, mean, and median values. These metrics provide a 

descriptive overview of the performance of the proposed 

methods. 

 

 
 

Figure 4. IMFs extracted through the EEMD method from a 

generalized EEG recording 

 

 
 

Figure 5. IMFs extracted through the CEEMDAN method 

from a generalized EEG recording 
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Table 1. The results with EEMD method using KNN 

classifier 

 
 EEMD 

 
Classification 

Rate (%)  

Sensitivity 

(%) 

Specificity 

(%) 

Min 63.78 65.10 57.87 

Max 93.32 92.89 96.31 

Mean 79.57 79.27 79.88 

Median 80.01 79.06 80.16 

 

Table 2. The results with EEMD method using NB classifier 

 
 EEMD 

 
Classification 

Rate (%)  

Sensitivity 

(%) 

Specificity 

(%) 

Min 57.80 60 55.63 

Max 90.60 90 94.38 

Mean 75.99 75.73 76.24 

Median 75.90 75.63 74.38 

 

Table 3. The results with CEEMDAN method using KNN 

classifier 

 
 CEEMDAN 

 
Classification Rate 

(%)  

Sensitivity 

(%) 

Specificity 

(%) 

Min 66.83 64.28 59.74 

Max 94.54 92.73 96.94 

Mean 82.14 80.78 83.75 

Median 85.15 81.96 87.19 

 

Table 4. The results with CEEMDAN method using NB 

classifier 

 
 CEEMDAN 

 
Classification 

Rate (%)  

Sensitivity 

(%) 

Specificity 

(%) 

Min 61.30 59.38 60 

Max 91.40 92 93.75 

Mean 79.48 77.56 81.46 

Median 80.60 77.5 84.38 

 

Using the KNN classifier, the EEMD approach achieved a 

classification rate ranging from 63.78% to 93.32%, as shown 

in Table 1. Similarly, when using the NB classifier, the 

classification rate varied between 57.80% to 90.60%, as 

presented in Table 2. 

The KNN classifier obtained a maximum sensitivity of 

92.89% in recognizing focal EEG data, while the NB classifier 

demonstrated a maximum sensitivity of 90% in recognizing 

focal EEG data. 

For the identification of generalized EEG data, the KNN 

classifier demonstrated a maximum specificity of 96.31%, 

while the NB classifier obtained a maximum specificity of 

94.38%. 

The results achieved with the CEEMDAN approach are 

presented in Table 3 and Table 4. The KNN classifier achieved 

a classification rate between 66.83% and 94.54%, while the 

NB classifier achieved a classification rate between 61.30% 

and 91.40%. 

The analysis of sensitivity in the classification results 

showed that the signals were correctly identified as focal, with 

a maximum sensitivity of 92.73% using the KNN classifier, 

and 92% using the NB classifier. 

The attained maximum specificity is 96.94% using the 

KNN classifier and 93.75% using the NB classifier. This 

indicates that the classification algorithm is capable of 

accurately distinguishing generalized EEG signals. 

The performances of the classifiers are also assessed using 

F1-Score and are presented in Table 5. 

 

Table 5. Performances of the classifiers based on F1-Score 

 
F1-Score 

 EEMD CEEMDAN 

 KNN NB KNN NB 

Min 0.40 0.40 0.30 0.30 

Max 0.90 0.90 0.90 0.90 

Mean 0.60 0.59 0.63 0.60 

Median 0.70 0.60 0.70 0.60 

 

CEEMDAN combined with the used four features, KNN 

and NB classifiers, works as a powerful tool for achieving high 

accuracy and robustness in the classification of EEG epileptic 

signals. 

Table 6 presents a comparison between these approaches 

and other methods. Only methods that are evaluated using the 

Cluj-Napoca Database are involved. The results are reported 

according to the median values obtained for the data collected 

during sleep. 

 

Table 6. Performances obtained with the proposed methods 

and other works using the same database 

 
Work  Method Classifier Results 

[18] 

EMD with power 

spectral density 

feature extraction 

KNN 

NB 

Classification Rate: 

95.79% KNN/ 

95.83%NB 

Sensitivity: 95.29% 

KNN/ 95.14% NB 

Specificity: 96.29% 

KNN/ 99.51% NB 

F1-Score: 0.70 KNN / 

0.70 NB 

[29] 

EMD with 

median, skewness, 

kurtosis, and 

fluctuation index 

feature extraction 

KNN 

Classification Rate: 

74.21% 

Sensitivity: 73.77% 

Specificity: 77% 

F1-Score: 0.70 

Classification Rate: 

80.01% KNN/ 75.90% 

NB 

This 

paper 

EEMD with 

median, skewness, 

kurtosis, 

fluctuation, and 

index feature 

extraction 

KNN 

NB 

Sensitivity: 79.06% 

KNN/ 75.60% NB 

Specificity: 80.16% 

KNN/ 74.38% NB 

F1-Score: 0.70 KNN/ 

0.60 NB 

CEEMDAN with 

median, skewness, 

kurtosis, and 

fluctuation index 

feature extraction 

KNN 

NB 

Classification 

Rate:85.15 % KNN/ 

80.60% NB 

Sensitivity: 81.96% 

KNN/ 77.50% NB 

Specificity: 87.19% 

KNN/ 84.38% NB 

F1-Score: 0.70 KNN/ 

0.60 NB 

 

The proposed algorithms are developed in an original way, 

being applied on our own database and the results confirm 

their applicability in epilepsy diagnosis domain. 
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The comparison between the attained results from the 

application of the proposed methods and the established 

diagnosis by the neurologist revealed accurate and consistent 

identification of focal and generalized epilepsy.  

In all classification scenarios, the proposed methods have 

correctly estimated the diagnosis, aligning closely with the 

expert assessments provided by the neurologist. This 

agreement further validates the accuracy and effectiveness of 

the proposed methods in the classification of epilepsy cases. 

This study successfully achieved its aim by implementing 

the proposed EEMD and CEEMDAN methods, which led to 

higher accuracy in classifying the data compared to EMD 

approach developed in study [19]. 

 

 

5. CONCLUSIONS 

 

The application of the adaptive decomposition methods in 

the classification of focal and generalized EEG signals 

produced superior performances than other methods reported 

in the literature.  

The implementation of the EEMD method combined with 

the four-feature extraction mentioned parameters has shown 

higher results in the identification of focal and generalized 

EEG signals compared to the algorithm based on EMD method.  

The results obtained highlight the superiority of 

CEEMDAN approach over EMD and EEMD methods, in 

capturing the intricate characteristics of epileptic EEG signals. 

The application of the chosen four features provides valuable 

insights into the underlying patterns and abnormalities 

associated with focal and generalized epilepsy leading to more 

accurate and robust classification of EEG signals. 

In the case of CEEMDAN method, the adaptive noise 

reduction mechanism helps mitigate the impact of noise on the 

decomposition process. By adaptively estimating and 

removing the noise components from the signal during 

decomposition, CEEMDAN approach demonstrated that it is 

able to extract more accurate and reliable intrinsic mode 

functions to be used in further analysis.  

The classification outcomes for differentiating between 

focal and generalized EEG epileptic sleep signals using KNN 

and NB classifiers showcased diverse classification rates, 

sensitivities, and specificities across both EEMD and 

CEEMDAN methodologies. Notably, the CEEMDAN 

combined with the KNN classifier demonstrated superior 

classification rates in comparison to the CEEMDAN with NB 

approach, and the EEMD with KNN, and NB approaches. 

The F1-Score analysis revealed a remarkable level of 

performance for both methods, indicating their effectiveness 

in classifying EEG epileptic signals. 

The achieved results demonstrate the capacity of 

CEEMDAN approach in precisely distinguishing between 

different types of EEG epileptic signals. This mark an 

important starting point in the development of automated 

systems capable not only of identifying the type of epilepsy, 

but also of being utilized in designing an epilepsy prediction 

system. 

The agreement between the results obtained from the 

proposed methods and the established diagnosis by 

neurologists further validates their accuracy in classifying 

epilepsy cases. 

The future research directions aim to expand the number of 

classifiers, features, and the database involved in the study. 
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