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In the realm of unwanted digital content, image spam presents a distinct challenge, 

characterized by its evasion of traditional text-based filters. This study introduces an 

advanced approach for the classification of image spam through the deployment of hybrid, 

cost-sensitive machine learning techniques. Images laden with spam (unwanted content) and 

benign images (ham) are distinguished by employing a combination of textual and visual 

data, which enriches the interpretative depth of the analysis. By integrating multi-modal 

features, resilience against fluctuations in input data and noise is significantly improved. 

The synthesis of textual context and visual elements enables robust generalization across 

similar instances while compensating for variations in verbal descriptions, thus maintaining 

consistent model performance in diverse conditions. A novel methodology is presented 

wherein cost-sensitive (CS) learning is applied to optimize both feature representations and 

classifier parameters concurrently, using a deep convolutional neural network (CNN) 

integrated with a support vector machine (SVM) model. This cost-effective strategy is 

designed to address class imbalances and refine intermediate feature representations, 

facilitating rapid adaptation to class-dependent costs. The proposed CSCNN-SVM model is 

evaluated using the ISH dataset, demonstrating superior performance with an accuracy rate 

of 98.05%, an AUC of 99.01%, and a computational testing duration of one to two seconds. 

Furthermore, a variety of machine learning techniques including Logistic Regression, 

Random Forest, Decision Trees, K Nearest Neighbors, Gaussian Naive Bayes, AdaBoost, 

and Linear SVM are employed. Utilizing the Spam Hunter Dataset, which consists of real 

spam emails, these algorithms have proven effective in identifying both text and image 

spam, achieving comparable levels of accuracy. This innovative, hybrid model not only 

enhances the detection capabilities of spam classifiers but also contributes significantly to 

the broader field of digital content management. 
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1. INTRODUCTION

The internet has become an integral part of human 

existence, with over 4.5 billion people using it for daily 

activities. Most internet users consider email a reliable 

communication tool [1], and its effectiveness has grown over 

time. However, as email usage increases, so does the number 

of spam attacks. Spammers can transmit spam from anywhere 

with internet access, as long as they have the receiver's data 

and are not solicited. Spam emails are sent without the 

receiver's data [2]. Phishing emails, often containing fake 

content or links to malicious websites [3], are widely used to 

collect users' sensitive information for their own financial gain 

without their consent. Despite advancements in spam filtering 

software, there is no reliable mechanism to distinguish genuine 

and harmful emails due to the ever-changing nature of spam 

content, and despite anti-spam tools, naive end-users continue 

to fall prey to this harmful trap [4]. Spam has been sent for 

three or four decades, and, despite this, it continues to be sent. 

The Personalized Email Prioritization (PEP) issue is a key 

impediment, with the goal of assisting users in rating the 

relevancy of email communications [5, 6]. This is yet another 

issue with email classification; one potential solution would be 

to assign low priority to suspicious emails [7-9]. Spam emails 

are those that were sent without the receiver's data and were 

not solicited. Machine learning is a powerful tool for detecting 

image spam shown in Figure 1, but it's crucial to recognize its 

limitations. Machine learning models can be vulnerable to 

biased training data, which can make it difficult to detect new 

spam types [10]. Adversaries can exploit this vulnerability by 

creating intentionally obfuscated or manipulated images, 

which can bypass the model's detection mechanisms, 

particularly for image spam relying on visual elements like 

logos, watermarks, or text. Intelligent detection is crucial for 

identifying changes in spam email content and individual user 

priorities [11, 12]. Deep learning is a powerful technique that 

has shown great potential in various domains, including image 

processing and pattern recognition. It involves training deep 

neural networks with multiple layers to learn representations 

and features from data automatically. With image spam 
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detection, deep learning can be utilized to extract relevant 

features from images that distinguish between spam and non-

spam. By leveraging multiple layers of neurons, deep learning 

models can learn complex patterns and relationships in the 

data, enhancing the accuracy of the classifier. Supervised 

learning approaches can be used to train deep learning models 

for image spam detection using a labeled dataset where each 

image is annotated as spam or non-spam. CNNs [13] are a 

common approach to deep learning for image classification 

tasks. They are particularly effective for image analysis 

because of their ability to capture spatial hierarchies and local 

patterns. Unsupervised feature learning algorithms, such as 

autoencoders or generative adversarial networks (GANs), can 

be employed to learn meaningful representations from the 

image data, which can then be used for spam detection. In 

conclusion, deep learning is a powerful tool for image spam 

identification because of its ability to automatically learn 

complex features and patterns from image data, leading to 

more accurate and robust classifiers. CNNs are built from 

repeated bits of information organized in this way and have 

been successfully employed in image spam detection [14]. 

 

 
 

Figure 1. Examples of spam images 

 

The data augmentation [15] approach generates new 

training dataset samples by making random changes to 

existing datasets. This has a number of consequences, 

including faster learning process convergence and less 

overfitting [16]. Starting from scratch with a deep neural 

network demands a significant amount of data and computing 

resources. Transfer learning has become an essential tool for 

building efficient text and image spam classification models. 

It enables faster training, higher levels of efficiency, and 

greater adaptation to emerging spam threats by using pre-

trained models and fine-tuning them for particular tasks [17]. 

To do this, most of the layers' parameters are inaccessible, and 

the learning process only adjusts a subset of the layer's 

parameters. It is also useful for dealing with data scarcity, 

assuming that the pre-trained model was trained with a 

sufficient amount of data. They differentiated between images 

classified as spam and those labeled ham. The Dredge dataset 

[18], the Image Spam Hunter (ISH) dataset [19], and the 

enhanced dataset [20] are some of the common datasets used 

in conjunction with a variety of deep learning models and their 

respective applications. 

The objective and motivation behind the research are 

mentioned below: 

• Our paper introduces a novel approach that integrates 

both text and image data to enhance the accuracy of 

spam image classification. 

• We propose an innovative technique that 

automatically calculates class-dependent costs based 

on data statistics, such as distribution and reparability 

measurements. 

• Unlike existing methods, our approach applies class-

dependent costs exclusively during the training phase. 

This allows for predictions without the need to alter 

the trained network post-learning, streamlining the 

inference process while maintaining the integrity of 

the trained CNN parameters. 

In the following section, we discussed the related work in 

our field. The third section explains the proposed work. 

Sections 4 and 5 covered the results and conclusion. 

 

 

2. RELATED WORK 

 

Several research works have explored the integration of text 

and image information with cost-sensitive learning for spam 

classification. 

The authors [21] optimized a model for feature extraction 

and classification tasks, meeting both parties' needs, and tested 

it against various "improved" and "challenge" databases. The 

datasets were designed to enhance the classification process, 

and the proposed model significantly improved task accuracy 

compared to other methods used. Image spam, a type of spam 

containing text-encoded images, is classified using machine 

learning methods based on a comprehensive collection of 

image attributes. CNNs are widely used in image classification 

and feature extraction due to their superior results.  

The authors [22] used datasets like Personal Collection, 

Dredze, and Spam Archives for image spam classification. 

Low-level metadata and image metadata are two common 

feature sets. SVM is the most widely used supervised machine 

learning method. Naive Bayes and K-Nearest Neighbor are 

two algorithms used. The study identifies and discusses 

metrics for evaluating the effectiveness of current image spam 

classifiers and examines the results of recent algorithms. 

The authors [23] proposed a model for spam email 

classification that includes dataset collection, feature 

extraction, feature selection, and detection. They use a 

standard email dataset, combining text and image data, and 

extract text features using TF-IDF for evaluation. The study 

used a gray-level co-occurrence matrix (GLCM) to capture 

visual attributes and the Fitness-Oriented Levy Improvement-

based Dragonfly Algorithm (FLI-DA) for feature selection. 

After selecting the best features, a hybrid learning strategy 

combines RNN and CNN for detection, leveraging RNN's 

sequential data processing skills and CNN's spatial image 

capture capabilities. 

The authors [24] proposed deep learning techniques to 

detect image-based spam on Twitter, including Arabic text. 

This is a common issue on Online Social Networks (OSNs) 

like Facebook and Twitter. The "Efficient and Accurate Scene 

Text Detector" and "Convolutional Recurrent Neural Network' 

are employed for text recognition. The text is classified as 

spam or non-spam using blocklists and allow lists, a useful 

method for combating spam in OSNs, which is flexible and 

resilient to explicit classification problems. 
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The authors [25] explored the use of deep CNNs and 

transfer learning-based pre-trained CNN models for image 

spam classification. The rapid growth of the internet has led to 

numerous cyberattacks, with spam emails accounting for 55% 

of all emails. To address this, two deep CNNs models and pre-

trained ImageNet architectures like VGG19 and Xception 

were trained using three datasets. The study also explored the 

impact of a cost-sensitive learning strategy to address data 

imbalances. The proposed models achieved impressive results, 

with accuracies reaching up to 99% and a false positive rate of 

zero in the best-case scenario. 

The authors [26] studied and analyzed four deep-learning 

algorithms for detecting image spam. They trained these 

networks to distinguish specific visual properties and tested 

their performance on a robust dataset. They also built two 

other CNN architectures and provided experimental data to 

distinguish image spam. The study focused on images 

containing spam, which is unwanted bulk content, and image 

spam, which refers to unwanted content embedded within 

images. The legitimacy of email-based communication 

systems may be uncertain because of image spam. The field of 

spam classification is growing, with researchers exploring new 

deep learning architectures, cost-sensitive learning methods, 

and multimodal fusion techniques to address spam strategies. 

 
 

3. MATERIAL AND METHODS 

 

The method employs text and image spam filtering 

techniques to enhance accuracy. The model architecture 

shown in Figure 2 includes data preprocessing, feature 

selection, and classification models. Data normalization and 

standardization are performed in stage 1, followed by feature 

extraction selection in stage 2. In stage 3, various classification 

models are trained and tested for text and image features. Stage 

4 evaluates performance metrics, while stage 5 demonstrates 

spam or ham detection. 

 

3.1 Datasets description 

 

In this paper, we use two datasets, namely the Spambase and 

ISH datasets. 

Spambase dataset [27]: The dataset contains 4,601 emails, 

which are categorized as spam or not. The dataset comprises 

57 numerical features that indicate email features, including 

word and character rate, capital letter sequence length, and 

symbol occurrence. The Spambase dataset is used for spam 

filtering and machine learning classification. The dataset is 

difficult to deal with since no one feature separates spam from 

legitimate emails. 

ISH: In this paper, we used ISH [28], which was the first 

dataset made available to the public. As seen in Figure 3, it 

contains two unique sets of genuine images preserved in the 

JPEG file format. Figure 3a shows some images from 810 ham 

images. Similarly, the 928 spam images were collected from 

real spam e-mails (see Figure 3b). It should be noted that it 

corrupted eight spam images during the extraction process 

from the spam image collection and is thus not included in the 

sample set. Table 1 lists all the details of an ISH dataset, which 

contains 1730 images. 

 

Table 1. Summary of ISH dataset 

 
Dataset Number of Spam Number of Ham Total 

ISH 920/8 810 1730/8 

 

3.2 Data preprocessing  

 

Preprocessing organizes and modifies raw data before 

training and evaluating classifiers. A data mining approach 

organizes raw data into usable formats. Preprocessing is the 

initial step in building a machine-learning model. This stage 

takes real-world data, which often contains errors, 

inconsistencies, and inaccuracies, and converts it into accurate, 

precise, and usable input variables and patterns. 

 
 

Figure 2. Architecture of proposed model 
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(a) Ham images from ISH dataset 

 

 
(b) Spam images from ISH dataset 

 

Figure 3. Some examples of images from ISH dataset 

 

3.3 Data extraction 

 

Feature extraction simplifies large raw datasets, which 

depend on the initial dataset. At this stage of the process, we 

can extract data from the dataset, such as variables, attributes, 

or classes. One of the most critical processes in training the 

model is feature extraction [29]. This contributes to more 

reliable and accurate outcomes. We refer to the strategy of 

selecting a few significant variables that accurately define the 

data throughout the feature extraction process as feature 

selection. The method employed is feature selection from 

among the various attributes. Following that, we construct the 

model by combining the traits or variables that were chosen. If 

we follow the feature selection procedure correctly, it will 

minimize the time spent on the model. 

Monarch Butterfly Optimization: After discussing the 

concept of a self-adaptive strategy, an enhanced MBO 

algorithm called monarch butterfly optimization with a self-

adaptive population (SPMBO) is presented [30]. New 

individuals in SPMBO are only accepted by those who are 

superior to previous generations. 

 

3.4 Proposed model 

 

The primary goal of the proposed model is to build a deep 

learning-based model and evaluate and compare it with several 

machine learning algorithms from more traditional approaches 

that were tested. 

Gaussian Naive Bayes: Supervised machine learning has 

been used to detect spam. The ability to discriminate between 

various things based on defined features is a key component 

of its success. We calculated the probability of a word or event 

reoccurring in the future using this method [31]. For instance, 

if an e-mail has a word that is only present in spam e-mails and 

not in ham e-mails, the algorithm will almost certainly classify 

it as spam. 

 

(𝑐/𝑥) = (𝑃(𝑥/𝑐)𝑃(𝑐)/(𝑃(𝑥))) (1) 

 

𝑃(𝑥) =∑𝑃(𝑥/𝑐𝑃(𝑐))

𝑦

 (2) 

In this case, x represents function vectors, and c denotes a 

class variable. 

SVM: Another tool for supervised machine learning is the 

SVM. It will only function with pre-classified datasets. When 

training SVMs, it is most often used for classification and 

regression models. The data classification is more reliable than 

another model when there is a limited amount of labeled data. 

The SVM serves better for the classification. To distinguish 

between positive and negative values in the dataset (also 

known as spam and ham), a hyperplane is used. Then, 

determine which values are close to the decision boundary. 

Figure 4 is an illustration of the SVM. 

 

 
 

Figure 4. SVM [32] 

 

KNN: This serves as a classification method that represents 

items as points in a space and calculates the distances between 

them. In the learning phase, the algorithm assigns training data 

points to clusters based on their proximity to the center. The 

algorithm takes a parameter, k, which represents the number 

of nearest neighbors to consider, and its value can be 

optimized. The choice of k has an impact on the accuracy of 

the classification. The k nearest neighbors are the instances in 

the training sample that are closest to the object being 

classified. The object is assigned to the class that shares the 

most attributes with its k nearest neighbors. However, the 

KNN algorithm can be unstable when dealing with outliers and 

does not perform well with many features. 

Logistic Regression: This is a suitable method for 

modeling and explaining the relationship between a binary 

response variable and instructive modules [33]. It is used to 

analyze data and predict the probability of assigning a specific 

class, where the values range from 0 to 1. Logistic regression 

provides a way to model the likelihood of an event occurring 

based on the given inputs. 

Decision tree: This is a hierarchically structured structure 

that divides the feature space into subspaces. Then, for each 

object encompassed within this subspace, predict the result, in 

which algorithm overfitting is a typical issue. 

Random forest: This prediction method relies on the 

construction of trees. By combining multiple trees into a forest, 

the predictive power of each tree can be enhanced. In the 

training phase, we construct multiple decision trees based on 

the programmer's specifications [34]. These trees are then 

utilized to predict the class. The prediction is made by 

examining the class votes from each tree, and the output is 

determined by selecting the class with the highest number of 

votes. 

Adaptive Boosting: AdaBoost is a machine learning 

ensemble method used for classification tasks. It involves 
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iteratively training weak learners, such as decision trees, into 

a single strong learner with improved accuracy. The process 

involves assigning equal weights to all data points, evaluating 

the learner's performance, and increasing or decreasing the 

weights of misclassified data points. 

Cost-insensitive models: Cost-insensitive models refer to 

machine learning models that do not explicitly consider the 

cost associated with misclassifying instances during the 

training process. In many classification problems, especially 

in scenarios where the cost of false positives and false 

negatives is uneven, it becomes important to account for these 

costs to optimize the model's performance.  

In a cost-insensitive model, the misclassifications are 

treated equally during the training process, and the model is 

optimized based on a standard loss function without 

considering the specific costs associated with different types 

of errors. However, there are scenarios where cost-insensitive 

models might be appropriate. If the cost associated with 

misclassifications is relatively uniform across different classes, 

or if the focus is solely on overall accuracy without 

considering the consequences of specific errors, a cost-

insensitive approach may be suitable. 

Cost-sensitive models: Cost-sensitive models are machine 

learning models that explicitly consider the costs associated 

with different types of errors during the training process. In 

many real-world scenarios, the consequences of false positives 

and false negatives can vary, and it's important to build models 

that prioritize minimizing the total cost rather than simply 

optimizing for overall accuracy. 

 

3.5 CNN model 

 

Figure 5 shows the CNN 2D image processing architecture. 

An ordinary CNN classifies the visible spam and ham data. 

CNNs are best suited for text and image spam classification. 

CNNs mimic the way the human brain interprets images. By 

not integrating all the nodes, the approach reduces the 

processing time required and increases efficiency. Also, it 

successfully discriminates and emphasizes data as features 

with nearby images with the help of spatial data. This 

facilitates comparison. CNN models' components are in 

charge of extracting and classifying image features. 

 

 
 

Figure 5. Illustration of the architecture of CNN 2D 

 

3.6 Proposed cost matrix 

 

We denote the proposed cost matrix with the symbol θ, 

which is appropriate for training the input data for feature 

extraction. However, as shown in Figure 6, it can be used to 

alter the output of a CNN's last layer for activation of layers 

compressed amid 0 and 1 in advance, determining the loss of 

the model. 

 
 

Figure 6. Simplified overview of CNN parameters 

 

The CNN classifies data based on the highest latent score 

during the classification procedure. During training, the 

classifier weights are adjusted to alter the confidences or 

probabilities of the classifier. This is done to ensure that the 

targeted class receives the highest latent score while the other 

sequences have significantly lower scores. To enhance 

classification, "score-level costs" are added to the trainset, 

affecting the CNN outputs (o) through a mathematically 

indicated cost matrix (ξ). 

 

𝑦(𝑖) = ℱ(𝜉𝑝, 𝑜
(𝑖)), ; 𝑦𝑝

(𝑖) ≥ 𝑦𝑗
(𝑖), ∀𝑗 ≠ 𝑝, (3) 

 

where, y represents the adjusted output, and p indicates the 

desired class. The confidence of a classifier is significantly 

influenced by its “score-level costs.” This type of perturbation 

enables the classifier to prioritize “less common” and 

“challenging-to-separate classes.” 

 

3.7 Cost-sensitive surrogate losses 

 

This CNN training method overcomes class imbalance. To 

achieve this, we propose a cost-sensitive error function, the 

mean loss across the training set: 

 

𝐸((𝜃, 𝜉)) =
1

𝑀
∑ℓ(𝑑(𝑖), 𝑦𝜃,𝜉

(𝑖))

𝑀

𝑖=1

  (4) 

 

where, ξ denotes class-sensitive costs, M and N denote is the 

numbers of training features and output layer neurons, y 

designates the predicted output, and 𝑑 ∈ {0,1}1×𝑁 denotes the 

desired output when ∑ 𝑑𝑛𝑛 = 1. We will describe a single data 

instance and not directly address y dependence on parameters 

(θ; ξ). The optimization goal is to find ideal parameters (θ∗; 
ξ∗) for the lowest cost E∗, as the error increases as the 

prediction system performs catastrophically in training. 

 
(𝜽∗, 𝝃∗) = 𝑎𝑟𝑔min

𝜃,𝜉
𝐸 (𝜃, 𝝃) (5) 

 

In Eq. (4), the loss function ℓ (.) is any variant of the three 

Cost-Sensitive (CS) losses:  

(i) This MSE loss minimizes the squared error between 

expected output and ground-truth.  
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𝑙(𝑑, 𝑦) =
1

2
∑(𝑑𝑛 − 𝑦𝑛)

2

𝑛

 (6) 

 

where, yn represents the previous layer output: 

 

𝑦𝑛 =
1

1 + 𝑒𝑥𝑝(−𝑜𝑛𝜉𝑝,𝑛)
 (7) 

 

(ii) The hinge loss function exploits margins among classes, 

expressed as: 

 

𝑙(𝑑, 𝑦) = −∑𝑚𝑎𝑥(0,1) − (2𝑑𝑛 − 1)𝑦𝑛
𝑛

 (8) 

 

where, yn is the “previous layer output” and ξ is the cost. 

 

𝑦𝑛 = 𝑜𝑛𝜉𝑝,𝑛 (9) 

 

(iii) The CE loss function exploits the prediction's accuracy, 

as shown by: 

 

𝑙(𝑑, 𝑦) = −∑(𝑑𝑛𝑙𝑜𝑔𝑦𝑛)

𝑛

 (10) 

 

where, yn includes the “class-dependent cost” (ξ) and is 

associated to the output through the “soft-max function”. 

 

𝑦𝑛 =
𝜉𝑝,𝑛𝑒𝑥𝑝(𝑜𝑛)

∑ 𝜉𝑝,𝑘𝑘 𝑒𝑥𝑝(𝑜𝑛)
 (11) 

 

3.8 Cost-sensitive classifier 

 

The ability of cost-sensitive classifiers to distinguish 

between treatments for majority and minority classes is their 

most significant benefit. They also assess the financial costs of 

misclassification. As stated in the study [35], the negative 

(majority) and positive (minority) classes are represented by 

the values 0 and 1, respectively. The rows represent the current 

classes, while the columns represent the predicted classes. The 

letters TP and TN indicate correctly classified samples as 

positive and negative, while FP and FN indicate incorrectly 

classified samples as positive and negative. From the 

confusion matrix, the accuracy and geometric mean were 

determined as follows: Eqs. (12) and (13). 

 

𝐺𝑚𝑒𝑎𝑛 = √
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
×

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (12) 

 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (13) 

 

The estimated risk is shown in Eq. (14) according to the 

least expected cost principle. 

 

𝑅(𝑖|𝑆) =∑𝑃(𝑗|𝑆)𝐶(𝑗, 𝑖)

𝑗

  (14) 

 

In Eq. (14), 𝑅(𝑖|𝑆)denotes estimated risk of classifying for 

the posterior probability is 𝑃(𝑗|𝑆) and the misclassification 

cost is denoted as C (j, i). 

Also, posterior probability calculation is always challenging. 

Thus, empirical risk in mathematical form, such as Eqs. (15) 

and (16). 
 

�̂�𝒍(𝒐) = 𝑬𝑺,𝒀[𝒍] =
1

𝑛
∑𝑙(𝐶, 𝑑(𝑖), 𝑜(𝑖))

𝑛

𝑖=1

 (15) 

 

𝐶 = {
𝐶𝑝,𝑞 = 1, 𝑝 = 𝑞

𝐶𝑝,𝑞 = 𝐼𝑅, 𝑝 ≠ 𝑞
 (16) 

 

The relevant class labels are represented by Y. The total 

number of multivariate time series occurrences is given by n. 

When the projected class q matches the actual class p, the cost 

will be set as the imbalance ratio. The network's loss function 

is represented by l (). 
 

3.9 Proposed cost-sensitive learning strategy 
 

Cost-sensitive models are useful for text and image spam 

classification by accounting for the specific costs associated 

with misclassifications. They help address the imbalance 

between false positives and false negatives in spam 

classification. By customizing the loss function to reflect these 

costs, the model can minimize overall costs rather than 

focusing solely on accuracy. Cost-sensitive learning allows the 

model to adapt to new types of spam by considering the 

specific costs of misclassifying unseen instances. Adjusting 

the classification threshold based on the trade-off between 

false positives and false negatives can help minimize the cost 

of misclassifications in spam classification. 

If a penalty for cost-sensitive misclassification entails using 

an imbalanced ratio, this may help alleviate the overall class 

imbalance problem. Nonetheless, the fixed cost matrix could 

not account for the uneven dissemination such as trained CNN 

data. As a result, the proposed system used a misclassification 

cost weight that could be updated iteratively and changed 

dynamically. This was constructed for uneven dissemination 

of both trained data and minibatches. The previously stated 

convolutional classifiers were modified, utilizing the cost-

sensitive learning technique to deal with ITSC concerns. 

The nth training instance's cross-entropy loss could be 

expressed as follows: 
 

𝐿𝑂𝑆𝑆(𝜃) = 𝜆 × 𝑑𝑛 × (−𝑙𝑛(𝑦𝑛)

+ (1 − 𝑑𝑛) × (−𝑙𝑛(1 − 𝑦𝑛))) 
(17) 

 

where, 𝜽 denotes weight parameters.  

The cost of misclassification is assigned a cost value. The 

desired output, denoted by dn, and the predicted output, 

denoted by yn, are both listed in the nth training instance. The 

global loss optimization is represented by Eqs. (18)-(20). 
 

𝐸(𝜃) =
1

𝑛𝑝𝑜𝑠
∑ 𝐿𝑂𝑆𝑆𝑝𝑜𝑠
𝑛𝑝𝑜𝑠

𝑖=1

(𝜃𝑝𝑜𝑠, 𝜆𝑛
𝑝𝑜𝑠
)

+
1

𝑛𝑛𝑒𝑔
∑ 𝐿𝑂𝑆𝑆𝑛𝑒𝑔(𝜃𝑛𝑒𝑔 , 𝜆𝑛

𝑛𝑒𝑔
)

𝑛𝑝𝑜𝑠

𝑖=1

 

(18) 

 

𝜆𝑛 =

{
 
 

 
 𝐼𝑅𝑛𝑜𝑟𝑚𝑎𝑙 × 𝑒𝑥𝑝 (−

𝐺𝑚𝑒𝑎𝑛
𝑏𝑎𝑡𝑐ℎ

2
)

× 𝑒𝑥𝑝 (
𝐴𝑐𝑐𝑏𝑎𝑡𝑐ℎ

2
)

1, 𝑖𝑓 𝑛𝜖 𝑝𝑜𝑠 

, 𝑖𝑓 𝑛𝜖𝑛𝑒𝑔 (19) 
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(𝜃∗) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐸(𝜃) (20) 

 

𝐼𝑅𝑛𝑜𝑟𝑚𝑎𝑙  denotes the overall imbalance ratio. The local 

metrics 𝐺𝑚𝑒𝑎𝑛
𝑏𝑎𝑡𝑐ℎ and 𝐴𝑐𝑐𝑏𝑎𝑡𝑐ℎare updated after each minibatch. 

For input training unbalanced temporal sequence sets, a 

random shuffle method was utilized to allocate minibatches 

from scrambled time series data. This strategy avoided 

minibatch deficits in minority data and improved classifier 

generalization. 

 

 

4. RESULTS AND DISCUSSIONS 

 

This paper examines the proposed technique on Spambase 

and ISH datasets using the Python IDE on a Google Colab with 

an Intel I5 CPU and 8GB of RAM. This section showcases 

cost-sensitive models that enhance the accuracy of spam and 

ham text and image classification. The section demonstrated 

improvement using metrics such as accuracy, sensitivity, 

recall, precision, F1-score, AUC, and processing time, along 

with Receiver Operating Characteristics (ROC). Accuracy is a 

statistic used to judge how well a classifier works, as stated in 

Eqs. (21)-(24). 

 

𝐴𝑐𝑐 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 (21) 

 

𝑃𝑟𝑒 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (22) 

 

𝑒𝑛 𝑜𝑟 𝑅𝑒𝑐 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (23) 

 

𝐹1 = 2 ∗
(𝑃𝑟𝑒 × 𝑆𝑒𝑛 )

(𝑃𝑟𝑒 + 𝑆𝑒𝑛 )
 (24) 

 

where, FP stands for false positive, FN stands for false 

negative, TP stands for true positive, and TN denotes true 

negative. Tables 2 and 3 list classification results with Cost-

insensitive for different models for the ISH and Spambase 

datasets, respectively. All four-performance metrics, accuracy, 

precision, recall, and F1-score, are calculated. 

 

Table 2. Classification results with cost-insensitive for 

different models for the ISH dataset 

 
Model Acc Pre Rec F1 

LR 0.9688 0.9688 0.9688 0.9688 

RF 0.9668 0.9668 0.9668 0.9668 

DT 0.9668 0.9668 0.9668 0.9668 

KNN 0.9649 0.9649 0.9649 0.9649 

GaussianNB 0.9668 0.9669 0.9668 0.9668 

AdaBoost 0.9746 0.9746 0.9746 0.9746 

LSVM 0.9688 0.9688 0.9688 0.9688 

RSVM 0.9532 0.9540 0.9532 0.9532 

 

In general, cost-sensitive models can achieve better 

performance than cost-insensitive models in terms of these 

metrics. This is because cost-sensitive models consider the 

cost of different types of errors, while cost-insensitive models 

do not. Figure 7 shows the performance comparison with cost-

insensitive for eight different models for the ISH dataset, in 

which AdaBoost is showing the highest accuracy, precision, 

recall, and F1-score of 97.46%. 

 
 

Figure 7. Performance comparison with cost-insensitive for 

different models for the ISH dataset 

 

Table 3. Classification results with cost-insensitive for 

different models for the Spambase dataset 

 
Model Acc Pre Rec F1 

LR 0.9732 0.9357 0.9784 0.9691 

RF 0.9678 0.9688 0.9672 0.9684 

DT 0.9678 0.9678 0.9682 0.9687 

KNN 0.9658 0.9665 0.9684 0.9653 

GaussianNB 0.9675 0.9678 0.9687 0.9684 

AdaBoost 0.9789 0.9777 0.9789 0.9798 

LSVM 0.9699 0.9741 0.9741 0.9699 

RSVM 0.9656 0.9602 0.9601 0.9600 

 

Figure 8 shows the performance comparison with cost-

insensitive for eight different models for the Spambase dataset, 

in which AdaBoost is showing the highest accuracy, precision, 

recall, and F1-score of 97.98%. 
 

 
 

Figure 8. Performance comparison with cost-insensitive for 

different models for the Spambase dataset 

 

Tables 4 and 5 list classification results with Cost-sensitive 

for different models for the ISH and Spambase datasets, 

respectively. All four-performance metrics-accuracy, 

precision, recall, and F1-score, are calculated. 
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Table 4. Classification results with cost-sensitive for 

different models for the ISH dataset 

 
Model Acc Pre Rec F1 

LR 0.9746 0.9746 0.9746 0.9746 

RF 0.9785 0.9786 0.9785 0.9785 

DT 0.9668 0.9668 0.9668 0.9668 

KNN 0.9805 0.9805 0.9805 0.9805 

GaussianNB 0.9668 0.9670 0.9668 0.9668 

AdaBoost 0.9785 0.9785 0.9785 0.9785 

LSVM 0.9805 0.9805 0.9805 0.9805 

RSVM 0.9805 0.9805 0.9805 0.9805 

DT [36] 0.85 - - - 

CNN [37] 0.92 - - - 

NN [38] 0.96 - - - 

 

Figure 9 shows the performance comparison with cost-

sensitive for eight different models for the ISH dataset in 

which RSVM is showing the highest accuracy, precision, 

recall, and F1-score of 98.05%. 

 

 
 

Figure 9. Performance comparison with cost-sensitive for 

different models for the ISH dataset 

 

Table 5. Classification results with cost-sensitive for 

different models for the Spambase dataset 

 
Model Acc Pre Rec F1 

LR 0.9777 0.9786 0.9784 0.9753 

RF 0.9788 0.9789 0.9791 0.9791 

Improved DT 0.9777 0.9888 0.9858 0.9759 

KNN 0.9874 0.9853 0.9844 0.9833 

GaussianNB 0.9732 0.9725 0.9744 0.9432 

AdaBoost 0.9820 0.9813 0.9823 0.9845 

LSVM 0.9845 0.9855 0.9866 0.9866 

RSVM 0.9899 0.9887 0.9893 0.9893 

GA+LR [39] 0.89 - - - 

LR [40] 0.93 - - - 

LR + Gradient Boost 

Tree [41] 
0.95 - - - 

 

GA+LR: Genetic algorithm+ Logistic regression 

Figure 10 shows the performance comparison with cost-

sensitive for eight different models for the Spambase dataset, 

in which RSVM is showing the highest accuracy of 98.99%, 

precision of 98.87, recall of 98.93, and F1-score of 98.93%. 

Figures 11 and 12 show the ROC curves obtained with and 

without the cost-sensitive approach for the ISH dataset using 

the examined ML and DL models. Clearly, the curves 

corroborate our earlier conclusions about the superiority of the 

CNN-RSVM model's performance. 

 
 

Figure 10. Performance comparison with cost-sensitive for 

different models for the Spambase dataset 

 

 
 

Figure 11. ROC curve for hybrid models with cost-

insensitive 

 

 
 

Figure 12. ROC curve for hybrid models with cost-sensitive 

 

 

5. CONCLUSIONS AND FUTURE SCOPE 

 

This paper addresses the issue of classifying text and images 

as spam using various classification models with a hybrid 

model based on CNN being presented for detecting spam. The 

study utilized various machine learning algorithms like SVM, 
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KNN, NB, DT, LR, RF, and AB to identify text and image 

spam based on the collected data. To address the challenge of 

class imbalance, issue in real-world datasets, a cost-sensitive 

deep CNN approach was proposed. However, we use cost 

functions that were analyzed, and class-specific cost estimates 

were derived for each case. Experimental evaluation of the 

proposed methodology demonstrated that the CNN-RSVM 

model outperformed other methods in text and image spam 

classification. The evaluation results showed that the CNN-

RSVM model achieved an accuracy, precision, recall, F1-

score, and area under the curve (AUC) of 98.05%, indicating 

its effectiveness. Obtaining labeled datasets that contain both 

text and image data for email spam classification might be 

challenging. In the same way, both text and image data can be 

computationally expensive, especially for large datasets. This 

can lead to longer training times and higher resource 

requirements. The remarkable performance of transformer-

based architectures like BERT and RoBERTa in text 

classification tasks opens new avenues for their application in 

email spam filtering. Leveraging these advanced models in the 

future holds the promise of significantly enhancing the 

accuracy and efficiency of spam detection systems. 

Leveraging large-scale pre-trained VLMs (such as ViT-BERT 

or LXMERT) can enable effective feature extraction and 

understanding of image content within spam emails. As VLMs 

continue to evolve, they may become more adept at 

recognizing subtle visual cues indicative of spam content, 

thereby improving the accuracy of image spam filtering.  
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