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Diabetes is characterized by elevated levels of glucose in the blood, which can lead to 

complications like Diabetic Macular Edema (DME), causing permanent vision loss. A novel 

HET-EYE-NETS which is built on the ensemble transfer learning networks with extreme 

feedforward model for the prediction of DME is proposed. The proposed algorithm pre-

processes the color optoelectronic retinal images and classifies the severity of DME by the 

three-stage pipeline model. In the first stage, DME is segmented by the U-Nets, features of 

segmented DME are extracted by AlexNet layers and finally severity is predicted by the 

extreme learning feedforward layers. The extensive experimentation is carried out using 

IDRiD and MESSIDOR database images. During this process, performance measures like 

precision, recall, F1-score, specificity, and accuracy are computed and analyzed. In addition, 

data augmentation is employed to address the issue of data imbalance problem in IDRiD 

and MESSIDOR database images. The proposed HET-EYE-NETS model achieved an 

average accuracy of 99.1%, precision of 99.2%, recall of 99% and F1-score of 0.9920. 

Results proved that proposed HET-EYE-NETS model outperforms existing learning 

models, demonstrating its potential for early diagnosis of DME. 
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1. INTRODUCTION

Diabetes is a major health threat which affects up to 7.2% 

of the population world-wide and this will increase up to 650 

million by the end of 2040 [1, 2]. Among the diabetics, one 

third of all diabetics develop Diabetic Retinopathy (DR) and 

the most complicated stage of DR is Diabetic Macular edema 

(DME). DME typically manifests itself when the retinal 

vessels are impacted by the accumulation of fluid [3, 4] and 

causes vision loss. It affects nearly 2.8% of the population 

which is estimated to increase even to 10% of the total global 

population. DME affects around 26.7 million individuals, and 

it is anticipated that this figure will increase to almost 50 

million by 2025 [5-8]. 

Despite having effective screening for early diagnosis of 

DME in developed countries, avoiding the false prediction of 

DME has always been a challenge for diagnosticians. Because 

of the limited number of ophthalmologists available in 

developing nations, it is difficult to keep up with the constantly 

growing DME cases [9, 10]. Also, in developing nations, the 

provision of appropriate and timely treatment at an affordable 

cost is another problem in the healthcare industry. Under these 

circumstances, automated diagnosis frameworks can lower the 

diagnostic costs and reduce the workloads of ophthalmologists. 

These systems can also be able to manage the lack of 

ophthalmologists by restricting referrals to just those cases that 

require immediate evaluation. To reduce DME cases, it will be 

essential to reduce the time to diagnosis and effort that 

ophthalmologists spend on diagnosis. 

Propelled by the above challenges, several imaging 

diagnosis systems have been developed based on 

Optoelectronic retinal images using machine and deep 

learning algorithms [11-20]. A two-stage method is used to 

identify and classify the severity of DME using colour fundus 

images [11]. A supervised learning technique is used to carry 

out the process of DME detection. The feature extraction 

strategy captures the global characteristics and differentiates 

the DME and normal images. 

A unique model is discussed in the study of Lee et al. [12] 

to accomplish automated image analysis by combining deep 

neural networks with machine learning. Optical Coherence 

Tomography (OCT) provides deep and rich data when 

combined with labels produced from the electronic medical 

record. The diagnosis of DR based on Convolutional Neural 

Networks (CNN) is discussed in the study of Perdomo et al. 

[13]. It combines images of the eye fundus with the location 

of exudates for the automated classification of DME. A deep 

CNN for the classification of DR is discussed in the study of 

He et al. [14]. The classification of DR, DME, and multi-label 

are carried out by three different CNNs independent of one 

another. All CNN’s features are fused for effective 

classification. 

A neural network system based on recurrent attention 

mechanisms is described in the study of Shaikh et al. [15] 

which helps reduce the computations of processing overhead 

required when executing convolution filter operations on high-
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resolution images. Two different medical images are 

employed for the classification tasks: brain tumor 

classification using magnetic resonance imaging and 

predicting the severity of DME using fundus images. 

A novel cross-disease attention module (AM) is developed 

in the study of Li et al. [16] to classify DME and DR. It is 

accomplished by investigating the intrinsic link between 

diseases by using image-level supervision. The disease-

specific AM allows for the selective learning of relevant 

characteristics for diseases, and their internal relationships are 

captured using the disease-dependent AM.  

An efficient framework to correctly locate and classify 

disease lesions is discussed in the study of Nazir et al. [17]. In 

contrast to the current DR and DME classification methods, 

the system can successfully classify low-intensity and noisy 

images by extracting representative key points from such 

images. Retinal fundus and OCT images are used to create an 

automated framework to classify DR and normal in the study 

of Hassan et al. [18]. It utilizes deep ensemble learning where 

a deep CNN is used to identify the input OCT and fundus 

images. Subsequently, the second layer extracts the essential 

feature descriptors required for the classification. 

The automatic detection of AMD and DME is described in 

the study of Kaymak and Serener [19] using a deep learning 

technique. It classifies the input image into wet or dry AMD, 

DME, and healthy. The effectiveness of Iowa Detection 

Programme for automated DR detection using publicly 

available fundus images is discussed in the study of Abràmoff 

et al. [20].  

These automated diagnosis frameworks can decrease the 

cost and workloads, as well as the shortage of 

ophthalmologists. Also, these methods play a pivotal role in 

reducing the DME cases and reducing the clinician’s efforts. 

But these methods need its improvisation in terms of achieving 

accurate segmentation, more subtle feature extraction along 

with the high-speed classification layers that can act as 

potential tool for high certainty DME diagnosis systems to be 

used by the ophthalmologists across the globe. 

Motivated by this challenge, HET-EYE-NETS model 

which automatically analyses the fundus images is developed 

for the prediction of DME. Pre-processing on the images is 

performed in three stages such as morphological filtering, 

pixel intensive testing and image enhancement. The IDRiD 

and MESSIDOR database images are enhanced using 

augmentation techniques to address class imbalance problem, 

hence improving the HET-EYE-NETS model’s performance. 

After pre-processing, the images are fed to a three-stage 

pipeline architecture. In the 1st stage, the DME region is 

segmented from the fundus images, and in the 2nd stage, image 

features are extracted and finally detect the DME using high 

speed classification layers. 

The HET-EYE-NETS model is completely built on the 

principle of transfer learning ensembled with high accurate 

Extreme Learning Machines (ELM). It is the first of its kind 

model used for an early diagnosis of the DME from 

optoelectronic retinal images. 

 

 

2. MATERIALS AND METHODS 
 

The HET-EYE-NETS model is a hybrid transfer learning-

based system for DME classification. It consists of three 

important modules: data preprocessing, U-Net based macular 

segmentation, and classification by ELM. Figure 1 shows the 

architecture of HET-EYE-NETS using optoelectronic retinal 

images for the prediction of DME. 

 

2.1 Image datasets  

 

To build robust and accurate classification models, it is 

important to have a uniform distribution of the datasets. Class 

imbalance is a common problem in image/signal datasets. It 

significantly impacts the model’s performance when training 

the network and often creates an overfitting problem for 

smaller datasets. To address this issue, data augmentation is 

employed in which each image undergoes a series of 

transformations such as flips, jittering, scaling, and rotation, 

producing a uniform arrangement of data to train the network. 

The proposed HET-EYE-NETS model uses two publicly 

available datasets, IDRiD [21] and MESSIDOR [22]. The 

specifications of these databases are given in Table 1 and 

Table 2 respectively. 

 

 
 

Figure 1. Architecture of HET-EYE-NETS model  
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Table 1. Specification of images in the IDRiD database 

 
Specification Description 

No. of images 516 

Source of 

Images 

Images captured at an eye clinic in Nanded, 

Maharashtra, India 

Resolution 

Used 
4288×4288 

Grade-1 Images 41 

Grade-0 Images 242 

Grade-2 Images 243 

 

Table 2. Specification of images in the MESSIDOR database 

 
Specification Description 

No. of images 1200 

Source of 

Images 

laboratory of medical information processing, 

Paris, France 

Resolution 

Used 
1440×960, 2240×1488, 2304×1536 

Grade-1 Images 75 

Grade-0 Images 974 

Grade-2 Images 151 

 

2.2 Data preparation 

 

Pre-processing plays an important role in enhancing the 

accuracy of the training model by minimizing background 

noise. It removes the different noise levels in the images, thus 

making data more consistent for training. Since the image 

datasets mentioned above have different resolutions, a pre-

processing technique is adopted to create the standardized 

datasets. The proposed model has three pre-processing 

techniques. First, the morphological filtering technique, which 

filters background noises, is employed. In the second stage, 

intensive testing is applied on fundus images to remove the 

inconsistent and noisy pixels. Finally, image histogram 

methods to enhance the image quality are adopted. 

 

2.3 HET-EYE-NETS 

 

The proposed methodology works on the three different 

pipelined stages. Macular segmentation is the first stage, 

followed by feature extraction maps and classification of 

different macular grades. This research proposes the ensemble 

layers of transfer learning based on CNN for effective 

segmentation and feature extraction. 

 

2.3.1 Transfer learning mechanism 

Various studies have established that transfer learning-

based CNN is better than traditional CNN training from 

scratch. Transfer learning is used in image classification [23], 

skin cancer diagnosis [24], brain cancer diagnosis [25], and 

lung cancer diagnosis [26]. Training from scratch suffers from 

computational overhead and complexity when larger datasets 

are involved. In the medical field, expert annotation is also an 

expensive issue. To overcome these problems, transfer 

learning is adopted to train CNN effectively. In transfer 

learning, CNN first learns features in one setting and uses the 

same settings in another task. For effective segmentation and 

feature extraction, the proposed methodology uses an 

ensemble of U-Nets and AlexNet. 

 

2.3.2 Macular U-Net segmentation 

In HET-EYE-NETS model, the U-Net network segments 

macular from the eye images. U-Net captures local and global 

characteristics using an encoder-decoder architecture. The 

encoder gathers contextual information, whereas the decoder 

provides precise localization. It enables hierarchical feature 

learning and the skip connections in U-Net helps to preserve 

fine-grained details. U-Net has lower parameter count than 

other deep learning networks. Due to its popularity and 

effectiveness in various computer vision applications, the 

proposed system employs U-Net for macular segmentation.  

The working of U-Nets can be divided into two components. 

The first approach is the contracting path, which employs a 

conventional CNN architecture. Every block in the contracting 

route is comprised of two consecutive 3×3 convolution filters, 

which ae then followed by a Rectified Linear Unit (ReLU) unit 

and a pooling layer. This pattern is repeated several times to 

enhance the effectiveness of the training. The unique 

characteristic of this framework is the use of an extension 

route in which 2×2 up-convolution is employed to up samples 

the feature maps. Then, the feature maps in the contracting 

path are cropped and merged onto the up sampled feature map. 

Next, there are two consecutive 3×3 convolution filters and 

ReLU activation. Finally, 1×1 convolution filters are used to 

reduce the feature maps to the desired channels and then the 

segmentation results are generated. Cropping is used to 

eliminate extraneous contextual information and to segment 

the objects from the surrounding overlapping area. In this 

work, U-Net is used to separate the macular regions. It has 

advantages for image segmentation in smaller datasets and 

effectively mitigating the issue of overfitting. Figure 2 shows 

the U-Net framework used for macular segmentation. 

 

 
 

Figure 2. U-Net framework used for macular segmentation 
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2.3.3 Feature extraction 

The inputs to the feature extraction layers are the segmented 

images from the U-Net framework. In the second stage, 

AlexNet extracts the feature maps from the segmented images. 

AlexNet success in the ImageNet challenge marked a 

significant breakthrough in the deep learning revolution. The 

parallel processing capabilities allow the model to be trained 

more efficiently than other architectures. Also, the model 

generalization is improved by local response normalization by 

AlexNet across local groups of neurons and incorporated 

ReLU function. It generally comprises of 5 convolutional 

layers and 3 Fully connected layers. The primary subtleties of 

each layer in the network are shown in Figure 3. 

 

2.3.4 Feedforward layers classification layers 

In the third stage, extracted feature maps are used to train 

the model to classify the different grades of the macular 

images. The proposed methodology uses ELM [27] for the 

high-speed and accurate classification of different grades. 

ELM employs a single hidden layer, which does not 

necessarily need to be tuned. It utilizes the kernel function to 

achieve high precision, resulting in improved performance. 

They have low training error and improved approximation. 

ELM is mainly used in classification tasks due to its utilization 

of auto-tuning for biases, weights and non-zero activation 

functions.  

In ELM, the hidden layer’s neurons must use an activation 

function (for instance, the sigmoid function) that is 

differentiable, while the output layer’s activation function of 

the output layer remains linear. In ELM, it is not necessary to 

tune the hidden layers’ weight and they are assigned randomly 

including the bias weights. The presence of hidden nodes is 

significant in this case. However, it is not necessary to adjust 

them, and the parameters of the hidden neuron may be 

generated in advance, that is, before handling the training set 

data. The working principle of ELM is discussed in the study 

of Wang et al. [28]. A single-hidden layer ELM is defined in 

Eq. (1). 
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where, x is the input features. The output hidden layer ( )(xh ) 

and output weight vector (  ) are defined in Eq. (2), and Eq. 

(3) respectively. 
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To determine the ELM’s target vector, the output hidden 

layer in Eq. (3) is redefined in Eq. (4) 
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Eq. (5) represents the minimal non -linear least square 

method used by the ELM. 
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where, H is the Moore−Penrose generalized inverse and the 

above Eq. (5) can also be rewritten as 
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Hence, the output function can be defined in Eq. (7) 
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The different grades of images are classified based on the 

mathematical Eq. (7). At the output layer, sigmoid function is 

used to classify DME images. The ELM parameters for the 

HET-EYE-NETS architecture are shown in Table 3. 

 

Table 3. ELM parameters 

 
Parameters Setting 

#Input neurons #Number of features 

# hidden layers 1 

Hidden weights 
-50 (lower bound) 

50 (upper bond) 

Hidden biases 
-50 (lower bound) 

50 (upper bond) 

#Output neurons #Number of classes 

Activation function 
Sigmoid (output layer) 

ReLU (hidden layers) 

 

The abovementioned hyperparameters are applied to train 

the ELM model to achieve optimized prediction of DME. The 

output matrix H of hidden layer's is generated using the 

randomly selected biases and weights, along with the 

activation functions. Also, the '  matrix is computed using 

the training data. Finally, 'HT = gives the classification of 

DME.  

 

 
 

Figure 3. AlexNet framework used for feature extraction 
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3. RESULTS AND DISCUSSION 
 

To evaluate the HET-EYE-NETS’s performance, standard 

performance measures have been employed. The performance 

metrics such as precision, recall, F1-score, specificity, and 

accuracy are calculated using the mathematical expression as 

presented in Table 4.  

 

Table 4. Computation of performance metrics 

 
Performance Metrics Mathematical Expression 

Sensitivity or recall 
FNTP

TP

+
 

Precision 
FPTP

TN

+
 

F1-Score 
RecallPrecision

RecallPrecision

+


 

Specificity 
FPTN

TN

+
 

Accuracy 
FNTPFPTN

TPTN

+++

+
 

 

In the above Table 4, TN is True Negative values, TP is 

True Positive values, FN is False Negative values and FP is 

False Positive. Within the scope of this investigation, 5-fold 

cross-validation is used to generalize the HET-EYE-NETS 

model’s performance and to evaluate the classification 

measures. Both datasets are partitioned into five equal-sized 

sets while ensuring that each set represents the independent 

data by preserving random seeds across the iteration. Four 

partitions are employed for training, and for testing, the 

remaining partition is used. These five steps are iterated for 

two datasets for which average classification performance is 

evaluated. 

Due to class imbalance in both datasets, data augmentation 

is utilized to balance the number of images in each category. 

As the images in Grade-1 category is less than 100, the 

application of data augmentation with different rotation and 

flipping processes increases to 600 images per category. The 

complete algorithm was implemented using Tensor flow 2.1 

backend with Keras libraries, which runs on the PC with i9 

CPU, 16 GB RAM which operates at 3.4 GHZ, and NVIDIA 

TITAN GPU. This study is based on the three-stage HET-

EYE-NETS, which uses the ELMs as a key classification 

mechanism. It is found that the HET-EYE-NETS model has 

uniform performance in classifying DME images into different 

grades of severity. Tables 5 and 6 show the performance 

metrics calculated for the HET-EYE-NETS model using 

different datasets. Figure 4 shows the accuracy and loss curves 

of the U-Net framework used for the macular segmentation for 

IDRiD dataset. 

To prove the excellence of HET-EYE-NETS system, their 

performances are compared with different learning models 

using different datasets. Tables 7-12 present the comparative 

analysis between HET-EYE-NETS system and existing 

algorithms using IDRiD and MESSIDOR datasets to classify 

the severities of DME images. 

Tables 7-12 show that the proposed algorithm has shown 

uniform and high performances when handling the different 

datasets. Also, it has been proved that HET-EYE-NETS 

system has outperformed other existing algorithms for 

classifying severity levels of DME. The inclusion of data 

preprocessing techniques and three-stage working 

mechanisms have made the proposed algorithm exhibit 

superior performances from the other algorithms even greater 

than the hybrid learning mode –DMENETS. 

 

Table 5. Performance metrics of the HET-EYE-NETS model on the IDRiD dataset sets 

 

Classification Mode 
Performance Analysis 

Accuracy Precision Recall Specificity F1-Score 

Normal 0.991 0.992 0.991 0.992 0.991 

Grade-1 0.992 0.9923 0.992 0.9923 0.992 

Grade-2 0.9912 0.9937 0.9912 0.9924 0.9924 

 

Table 6. Performance metrics of the HET-EYE-NETS model on the MESSIDOR datasets 

 

Classification Mode 
Performance Analysis 

Accuracy Precision Recall Specificity F1-Score 

Normal 0.9920 0.9930 0.9929 0.994 0.9922 

Grade-1 0.9918 0.9927 0.9928 0.9936 0.9926 

Grade-2 0.9921 0.9928 0.9920 0.9941 0.9924 

 

 
 

Figure 4. Macular segmentation’s accuracy and loss curves of the U-Net frameworks 
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Table 7. Performance comparison of different algorithms using IDRiD datasets for Grade 0 detection 

 

Algorithms 
Performance Analysis 

Accuracy Precision Recall Specificity F1-Score 

ResNETS-50 0.89 0.873 0.867 0.873 0.869 

VGGnets-19 0.91 0.92 0.91 0.90 0.91 

U-Nets 0.85 0.856 0.84 0.834 0.84 

DenseNETS 0.82 0.83 0.821 0.85 0.823 

SqueezeNETS 0.83 0.84 0.789 0.801 0.82 

GoogleNETS 0.867 0.863 0.864 0.872 0.865 

AlexNETS 0.867 0.873 0.828 0.865 0.857 

Conventional CNN 0.80 0.789 0.782 0.778 0.790 

DMENETS 0.95 0.954 0.955 0.9567 0.9598 

HET-EYE-NETS 0.9912 0.992 0.991 0.992 0.9919 

 

Table 8. Performance comparison of different algorithms using IDRiD datasets for Grade 1 detection 

 

Algorithms 
Performance Analysis 

Accuracy Precision Recall Specificity F1-Score 

ResNETS-50 0.89 0.873 0.867 0.873 0.869 

VGGnets-19 0.921 0.91 0.90 0.90 0.903 

U-Nets 0.862 0.820 0.84 0.82 0.820 

DenseNETS 0.800 0.821 0.800 0.802 0.801 

SqueezeNETS 0.80 0.84 0.789 0.801 0.820 

GoogleNETS 0.780 0.863 0.864 0.872 0.792 

AlexNETS 0.899 0.873 0.867 0.882 0.88 

Conventional CNN 0.79 0.789 0.780 0.77 0.785 

DMENETS 0.953 0.963 0.962 0.9578 0.967 

HET-EYE-NETS 0.9912 0.992 0.991 0.992 0.9919 

 

Table 9. Performance comparison of different algorithms using IDRiD datasets for Grade 2 detection 

 

Algorithms 
Performance Analysis 

Accuracy Precision Recall Specificity F1-Score 

ResNETS-50 0.884 0.872 0.870 0.873 0.870 

VGGnets-19 0.918 0.919 0.91 0.90 0.915 

U-Nets 0.872 0.863 0.84 0.834 0.832 

DenseNETS 0.80 0.828 0.821 0.85 0.83 

SqueezeNETS 0.823 0.845 0.789 0.801 0.799 

GoogleNETS 0.878 0.822 0.864 0.872 0.8734 

AlexNETS 0.842 0.819 0.828 0.865 0.834 

Conventional CNN 0.782 0.778 0.782 0.778 0.785 

DMENETS 0.960 0.972 0.955 0.9567 0.9689 

HET-EYE-NETS 0.9912 0.992 0.991 0.992 0.9919 

 

Table 10. Performance comparison of different algorithms using MESSIDOR images for normal detection 

 

Algorithms 
Performance Analysis 

Accuracy Precision Recall Specificity F1-Score 

ResNETS-50 0.82 0.834 0.842 0.812 0.802 

VGGnets-19 0.89 0.845 0.888 0.884 0.866 

U-Nets 0.823 0.856 0.832 0.810 0.820 

DenseNETS 0.759 0.7679 0.789 0.745 0.723 

SqueezeNETS 0.803 0.812 0.82 0.802 0.806 

GoogleNETS 0.845 0.8456 0.878 0.854 0.893 

AlexNETS 0.822 0.873 0.828 0.865 0.857 

Conventional CNN 0.745 0.789 0.782 0.778 0.770 

DMENETS 0.9566 0.954 0.9534 0.9543 0.9523 

HET-EYE-NETS 0.9912 0.992 0.991 0.992 0.9919 

 

Table 11. Performance comparison of different algorithms using MESSIDOR images for Grade 1 detection 

 

Algorithms 
Performance Analysis 

Accuracy Precision Recall Specificity F1-Score 

ResNETS-50 0.82 0.834 0.842 0.812 0.802 

VGGnets-19 0.89 0.845 0.888 0.884 0.866 

U-Nets 0.823 0.856 0.832 0.810 0.820 

DenseNETS 0.759 0.7679 0.789 0.745 0.723 

SqueezeNETS 0.803 0.812 0.82 0.802 0.806 
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GoogleNETS 0.845 0.8456 0.878 0.854 0.893 

AlexNETS 0.822 0.873 0.828 0.865 0.857 

Conventional CNN 0.745 0.789 0.782 0.778 0.770 

DMENETS 0.9566 0.954 0.9534 0.9543 0.9523 

HET-EYE-NETS 0.9912 0.992 0.991 0.992 0.9919 

 

Table 12. Performance comparison of different algorithms using MESSIDOR images for Grade 2 detection 

 

Algorithms 
Performance Analysis 

Accuracy Precision Recall Specificity F1-Score 

ResNETS-50 0.82 0.834 0.842 0.812 0.802 

VGGnets-19 0.89 0.845 0.888 0.884 0.866 

U-Nets 0.823 0.856 0.832 0.810 0.820 

DenseNETS 0.759 0.7679 0.789 0.745 0.723 

SqueezeNETS 0.803 0.812 0.82 0.802 0.806 

GoogleNETS 0.845 0.8456 0.878 0.854 0.893 

AlexNETS 0.822 0.873 0.828 0.865 0.857 

Conventional CNN 0.745 0.789 0.782 0.778 0.770 

DMENETS 0.9566 0.954 0.9534 0.9543 0.9523 

HET-EYE-NETS 0.9912 0.992 0.991 0.992 0.9919 

 

 

4. CONCLUSION AND FUTURE SCOPE 
 

A HET-EYE-NETS system is developed for screening 

DME using optoelectronic retinal images in this research. It 

consists of a three-stage pipeline system to achieve high 

performance. The novel ensemble transfer learning 

mechanism is used for effective segmentation and extracting 

features maps. To achieve the highest accuracy, ELM-based 

classification layers detect different severity grading. The 

proposed algorithm overcomes the overfitting problems and 

fairly solves the classification problems due to the different 

imaging systems. Extensive experimentation is conducted on 

using IDRiD and MESSIDOR database images and compared 

with existing learning models. Results demonstrate that the 

HET-EYE-NETS system has performed better than existing 

learning models and proves resilient to various noisy images 

and resolutions independent of any image acquisition in terms 

of precision, recall, F1 score, specificity and accuracy. The 

HET-EYE-NETS differs from other architectures by 

combining two architectures to extract features by AlexNet 

from the segmented region by U-Net architecture.  

In the future, the proposed methodology could be verified 

on real-time datasets obtained from medical institutions, and 

the interpretability of the proposed model needs improvisation 

to ensure an accurate screening of DME from raw 

optoelectronic retinal images. There are many challenges such 

as data privacy and security, data standardization, 

interoperability, data quality, and ethical considerations 

associated when using real-time datasets. Also, it is necessary 

to address the following challenges: secure data sharing 

protocols, data governance and standards, interoperability 

standards and data quality assurance. The following strategies 

can be implemented to improve model interpretability. Feature 

engineering, and decision boundaries can provide a more 

intuitive understanding of the HET-EYE-NETS's behavior. 

 

 

REFERENCES  

  

[1] Ciulla, T.A., Amador, A.G., Zinman, B. (2003). Diabetic 

retinopathy and diabetic macular edema: 

Pathophysiology, screening, and novel therapies. 

Diabetes Care, 26(9): 2653-2664. 

https://doi.org/10.2337/diacare.26.9.2653 

[2] Alagirisamy, M. (2021). Micro statistical descriptors for 

glaucoma diagnosis using neural networks. International 

Journal of Advances in Signal and Image Sciences, 7(1): 

1-10. https://doi.org/10.29284/ijasis.7.1.2021.1-10 

[3] Zhang, X.W., Thibault, G., Decencière, E., Marcotegui, 

B., Laÿ, B., Danno, R., Cazuguel, G., Quellec, G., 

Lamard, M., Massin, P., Chabouis, A., Victor, Z., 

Erginay, A. (2014). Exudate detection in color retinal 

images for mass screening of diabetic retinopathy. 

Medical Image Analysis, 18(7): 1026-1043. 
https://doi.org/10.1016/j.media.2014.05.004 

[4] Zheng, Y.F., He, M.G., Congdon, N. (2012). The 

worldwide epidemic of diabetic retinopathy. Indian 

Journal of Ophthalmology, 60(5): 428-431. 

https://doi.org/10.4103/0301-4738.100542 

[5] Sivaprasad, S., Oyetunde, S. (2016). Impact of injection 

therapy on retinal patients with diabetic macular edema 

or retinal vein occlusion. Clinical Ophthalmology, 

10(2016): 939-946. 

https://doi.org/10.2147/OPTH.S100168 

[6] Davidson, J.A., Ciulla, T.A., McGill, J.B., Kles, K.A., 

Anderson, P.W. (2007). How the diabetic eye loses 

vision. Endocrine, 32(1):107-116. 

https://doi.org/10.1007/s12020-007-0040-9 

[7] Wilkinson, C.P., Ferris III, F.L., Klein, R.E., Lee, P.P., 

Agardh, C.D., Davis, M., Verdaguer, J.T. (2003). 

Proposed international clinical diabetic retinopathy and 

diabetic macular edema disease severity scales. 

Ophthalmology, 110(9): 1677-1682. 

https://doi.org/10.1016/S0161-6420(03)00475-5 

[8] Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, 

C.M., Ng, E.Y.K., Laude, A. (2013). Computer-aided 

diagnosis of diabetic retinopathy: A review. Computers 

in Biology and Medicine, 43(12): 2136-2155. 
https://doi.org/10.1016/j.compbiomed.2013.10.007 

[9] De Souza, N., Cui, Y., Looi, S., Paudel, P., Shinde, L., 

Kumar, K., Berwal, R., Wadhwa, R., Daniel, V., 

Flanagan, J., Holden, B. (2012). The role of optometrists 

in India: An integral part of an eye health team. Indian 

Journal of Ophthalmology, 60(5): 401-405. 

https://doi.org/10.4103/0301-4738.100534 

[10] Thomas, R., Paul, P., Rao, G.N., Muliyil, J.P., Mathai, A. 

(2005). Present status of eye care in India. Survey of 

Ophthalmology, 50(1): 85-101. 

1221



 

https://doi.org/10.1016/j.survophthal.2004.10.008 

[11] Deepak, K.S., Sivaswamy, J. (2012). Automatic 

assessment of macular edema from color retinal images. 

IEEE Transactions on Medical Imaging, 31(3): 766-776. 

https://doi.org/10.1109/TMI.2011.2178856 

[12] Lee, C.S., Baughman, D.M. Lee, A.Y. (2017). Deep 

learning is effective for the classification of OCT images 

of normal versus age-related macular degeneration. 

Ophthalmol Retina, 1(4): 322-327. 
https://doi.org/10.1016/j.oret.2016.12.009 

[13] Perdomo, O., Otalora, S., Rodríguez, F., Arevalo, J., 

González, F.A. (2016). A novel machine learning model 

based on exudate localization to detect diabetic macular 

edema. Lecture Notes in Computer Science, 1: 137-144. 

https://doi.org/10.17077/omia.1057 

[14] He, J., Shen, L.L., Ai, X.F., Li, X.C. (2019). Diabetic 

retinopathy grade and macular edema risk classification 

using convolutional neural networks. In 2019 IEEE 

International Conference on Power, Intelligent 

Computing and Systems (ICPICS), Shenyang, China, pp. 

463-466. 

https://doi.org/10.1109/ICPICS47731.2019.8942426 

[15] Shaikh, M., Kollerathu, V.A., Krishnamurthi, G. (2019). 

Recurrent attention mechanism networks for enhanced 

classification of biomedical images. In 2019 IEEE 16th 

International Symposium on Biomedical Imaging (ISBI 

2019), Venice, Italy, pp. 1260-1264. 

https://doi.org/0.1109/ISBI.2019.8759214 

[16] Li, X.M., Hu, X.W., Yu, L.Q., Zhu, L., Fu, C.W., Heng, 

P.A. (2019). CANet: Cross-disease attention network for 

joint diabetic retinopathy and diabetic macular edema 

grading. IEEE Transactions on Medical Imaging, 39(5): 

1483-1493. https://doi.org/10.1109/TMI.2019.2951844 

[17] Nazir, T., Nawaz, M., Rashid, J., Mahum, R., Masood, 

M., Mehmood, A., Ali, F., Kim, J., Kwon, H.Y., Hussain, 

A. (2021). Detection of diabetic eye disease from retinal 

images using a deep learning based Centernet model. 

Sensors, 21(16): 5283. 

https://doi.org/10.3390/s21165283 

[18] Hassan, B., Hassan, T., Li, B., Ahmed, R., Hassan, O. 

(2019). Deep ensemble learning based objective grading 

of macular edema by extracting clinically significant 

findings from fused retinal imaging modalities. Sensors, 

19(13): 2970. https://doi.org/ 10.3390/s19132970 

[19] Kaymak, S., Serener, A. (2018). Automated age-related 

macular degeneration and diabetic macular edema 

detection on OCT images using deep learning. In 2018 

IEEE 14th International Conference on Intelligent 

Computer Communication and Processing (ICCP), Cluj-

Napoca, Romania, pp. 265-269. 

https://doi.org/10.1109/ICCP.2018.8516635 

[20] Abràmoff, M.D., Lou, Y., Erginay, A., Clarida, W., 

Amelon, R., Folk, J.C., Niemeijer, M. (2016). Improved 

automated detection of diabetic retinopathy on a publicly 

available dataset through integration of deep learning. 

Investigative Ophthalmology & Visual Science, 57(13): 

5200-5206. https://doi.org/10.1167/iovs.16-19964 

[21] Porwal, P., Pachade, S., Kamble, R., Kokare, M., 

Deshmukh, G., Sahasrabuddhe, V., Meriaudeau, F. 

(2018). Indian diabetic retinopathy image dataset 

(IDRiD): A database for diabetic retinopathy screening 

research. Data, 3(3): 25. 
https://doi.org/10.3390/data3030025 

[22] Decencière, E., Zhang, X., Cazuguel, G., Lay, B., 

Cochener, B., Trone, C., Gain, P., Ordonez, R., Massin, 

P., Erginay, A., Charton, B., Klein, J.C. (2014). 

Feedback on a publicly distributed image database: The 

Messidor database. Image Analysis and Stereology, 

33(3): 231-234. https://doi.org/10.5566/ias.1155 

[23] Bichri, H., Chergui, A., Hain, M. (2023). Image 

classification with transfer learning using a custom 

dataset: Comparative study. Procedia Computer Science, 

220(1): 48-54. 

https://doi.org/10.1016/j.procs.2023.03.009 

[24] Hosny, K.M., Kassem, M.A., Foaud, M.M. (2018). Skin 

cancer classification using deep learning and transfer 

learning. In 2018 9th Cairo International Biomedical 

Engineering Conference (CIBEC), Cairo, Egypt, pp. 90-

93. https://doi.org/10.1109/CIBEC.2018.8641762 

[25] Veni, N., Manjula, J. (2022). Modified visual geometric 

group architecture for MRI brain image classification. 

Computer Systems Science and Engineering, 42(2): 825-

835. https://doi.org/10.32604/csse.2022.022318 

[26] Sajja, T.K., Devarapalli, R.M., Kalluri, H.K. (2019). 

Lung cancer detection based on CT scan images by using 

deep transfer learning. Traitement du Signal, 36(4): 339-

344. https://doi.org/10.18280/ts.360406 

[27] Huang, G.B., Zhu, Q.Y., Siew, C.K. (2006). Extreme 

learning machine: Theory and applications. 

Neurocomputing, 70(1-3): 489-501. 
https://doi.org/10.1016/j.neucom.2005.12.126 

[28] Wang, B.T., Huang, S., Qiu, J.H., Liu, Y., Wang, G.R. 

(2015). Parallel online sequential extreme learning 

machine based on MapReduce. Neurocomputing, 149: 

224-232. https://doi.org/10.1016/j.neucom.2014.03.076

 

1222




