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Brain-Computer Interfaces (BCI) have garnered significant attention as a technology that 

enables individuals to interact with their surroundings using brain activity. In the realm of 

BCIs, EEG-based systems offer a non-invasive and cost-effective means of monitoring brain 

activity. This study focuses on EEG-based BCIs and, in particular, aims to recognize Turkish 

vowel articulation intentions from EEG signals in healthy individuals. Turkish vowels, 

specifically 'A,' 'E,' and 'İ,' were chosen for their high frequency of use in the language. The 

study explores two distinct BCI system designs, one employing the Common Spatial 

Patterns (CSP) and Linear Discriminant Analysis (LDA) algorithms and the other utilizing 

the Discrete Wavelet Transform (DWT) and Support Vector Machine (SVM) algorithms. 

The results indicate that the second system, employing DWT and SVM, achieved a higher 

accuracy rate (80.2%) compared to the first system (67.7%), showcasing the superior 

performance of the DWT algorithm. This research could be a significant step towards 

improving the quality of life for individuals with speech impairments. The ability of EEG-

based BCI systems to recognize the intentions of Turkish vowel articulation could aid these 

individuals in expressing their thoughts and intentions. Ultimately, this study contributes to 

the ongoing efforts to harness technology in ways that can significantly improve the lives of 

individuals with speech impairments. 
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1. INTRODUCTION

Various devices, software, and systems are designed to 

enhance the quality of life for individuals, thanks to the 

contributions of scientific advancements. BCI are among these 

technological developments. 

The interpretation and understanding of brain signals using 

external devices and software systems has become one of the 

most popular research areas among researchers over the last 

20 years [1-5]. These systems are known as BCI. Essentially, 

BCIs enable individuals to interact with their surroundings or 

use tools and systems solely through brain activity [2, 5-7]. 

Various methods are preferred for monitoring brain activity in 

BCI systems, including PET, MEG, EEG, NIRS, and fMRI [2, 

8]. 

Due to its low cost and ease of application compared to 

other medical techniques, research on EEG-based BCI 

systems has gained momentum [8]. The invasive method 

involves a medical procedure with a high risk for life. In the 

non-invasive method, a healthier structure is established by 

observing electrical potential differences between neurons 

using electrodes placed on the individual's scalp [9]. This 

study is implemented on an EEG-based BCI system. 

One of the distinguishing features among EEG-based BCI 

systems is the criteria used to evaluate brain signals. In EEG-

based BCI systems, researchers typically perform 

observations of ERP (Event-Related Potential), SCP (Slow 

Cortical Potentials), VEP (Visual Evoked Potentials), and 

Sensory Motor Rhythm [10, 11]. 

• ERP: Electrical potential differences that occur in brain

signals after a stimulus are examined [12, 13]. Different wave 

forms such as P100, N170, and P300 are evaluated in BCI 

systems in the literature. Each of these ERP components is 

examined in brain signals for different purposes [4, 8, 13]. 

Among these components, the P300 component is the most 

frequently used in ERP-based BCIs [12, 14, 15]. P300 spellers 

[4] are the most commonly used application models in the

P300 ERP wave form [3, 13].

• VEP: The overlap between the signal fluctuation

frequency and the stimulus frequency is observed in brain 

signals [16]. VEP-based BCI systems are used for steering 

activities with a limited number of commands, such as 

controlling a toy car [16]. In the literature, various VEP-based 

BCI systems, like c-VEP and SSVEP, exist. In systems with 

complex command sets, it can be challenging for users to 

maintain focus on the stimulus within a limited time [17]. 

• SMR: The changes in the frequencies of brain signals are

examined [18]. SMR observations are often encountered in 

Motor Imagery BCI systems [6, 13, 19]. It is found in areas 

such as helping people with physical movement difficulties 
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and its use in athlete training [20, 21]. 

BCI systems consist of three fundamental steps: 

preprocessing, feature extraction, and classification. During 

preprocessing, tasks like denoising, artifact removal, and the 

isolation of the relevant signal frequencies are conducted [7, 

13, 22]. In the feature extraction step, the focus is on extracting 

the features that are thought to represent the signal in order to 

reduce the size of the signal data from the preprocessing step 

[2, 7]. In the classification step, the signal data is classified 

using an appropriate classification algorithm using the 

extracted signal features. After the classification process, the 

system output is generated [7, 18]. 

As mentioned above, EEG-based BCI systems are 

frequently encountered in the literature due to their ease of 

application and observation compared to other methods. In the 

study of Curtin et al. [12], researchers designed an EEG-based 

BCI system utilizing the P300 component for navigating a 

virtual environment. In this study, participants achieved an 

accuracy rate of 82-89% while navigating virtual mazes using 

the BCI system. In another P300-based study, researchers 

developed a BCI system to empower severely disabled 

individuals to use web browsers [23]. The researchers tested 

their system on 16 MS patients and 5 healthy individuals. As 

a result, MS patients achieved an average accuracy of 84.14%, 

while healthy individuals achieved an average accuracy of 

95.75%. Based on their findings, the researchers concluded 

that their system could be used safely by MS patients [23]. In 

another study, researchers used a P300-based BCI system to 

control a robotic system that can be used to assist severely 

disabled individuals in their daily tasks [14]. In this study, 

researchers used the P300-based BCI system in two different 

tasks [14]. Kapgate used a hybrid BCI system based on SSVEP 

and P300 to control a QuadroCopter in a study conducted in 

2022 [15]. In his study, Kapgate designed three different BCI 

systems: SSVEP BCI, P300 BCI, and SSVEP + P300 Hybrid 

BCI [15]. Magee and Givigi [24] developed a P300-based BCI 

system in 2021 for use in vehicle steering. In this system, 

which uses a genetic algorithm for the classification process, 

they achieved an accuracy rate of 78.3% for single-epoch 

signals and 79.9±5% for multiple-epoch [24]. They also 

achieved an accuracy rate of 88.8±10.1% when they applied 

their system in the real world [24]. 

The study serves as a notable example of VEP-based BCI 

systems [16]. In this study, researchers created a virtual 

keyboard application using a VEP-based BCI system. During 

the testing phase of their virtual keyboard application, all 

participants were able to type the required words in 6-11 

seconds. 

When examining examples of motor imagery MI-based BCI 

systems in the literature, we observe their utilization across 

various applications. An MI-based BCI system was developed 

for gait rehabilitation using PSD for feature extraction and 

LDA for classification [21]. In a test involving five healthy 

individuals within a realistic rehabilitation setting, the system 

achieved a classification accuracy of 0.67±0.07, 

demonstrating its ability to distinguish between various gait 

patterns with a certain degree of accuracy. It introduced an MI-

BCI system designed for six American Sign Language (ASL) 

movements, achieving a 75% classification accuracy, 

indicating its ability to recognize a wide range of hand 

movements [25]. It featured an MI-BCI system utilizing a 

single EEG channel to understand right- and left-hand 

movements, achieving an 87.6% accuracy rate in offline 

testing [26]. It presented a comprehensive overview of MI-

BCI systems, offering insights into various types and 

discussing challenges and limitations within this technology 

[10]. 

This paragraph provides a review of studies relevant to the 

topic at hand. Researchers developed a BCI system to classify 

the motor imagery of the English vowels “a” and “u”. The 

study achieved a classification accuracy rate of 68%-78% [27]. 

In the study of Matsumotoa et al. [28], researchers focused on 

classifying brain signals from imagined speech using SVM 

and restricted Boltzmann machines (RVM). The researchers 

suggested that could provide a starting point for further 

research in this area [28]. Researchers compared classification 

algorithms in BCI systems for imagined speech and mouth 

movement conditions [29]. Participants performed tasks 

involving five vowels, and classification was done in pairs. 

The study found that HMM and KNN algorithms achieved a 

75% success rate in classifying imagined vowels. They also 

noted that the SVM algorithm did not yield promising results 

in the classification of imagined vowels. Researchers focused 

on the classification of two vowels using an EEG-based BCI 

system [30]. The researchers used linear and quadratic 

classification algorithms to achieve an average accuracy rate 

of 77.5%-100%. In the study of Bakhshali et al. [31], 

researchers used the Riemannian distances of CSD matrices of 

signals from imagined speech to classify EEG-based BCI 

systems. The researchers were able to increase the 

classification accuracy rate to 90.25% with their proposed 

method [31]. In the study of Hernández-Del-Toro et al. [32], 

researchers studied the extraction of word fragments in 

continuous EEG recordings. The highest F1 scores obtained 

on three different datasets were 0.73, 0.79, and 0.68 

respectively [32]. 

This study aims to interpret Turkish vowel articulation 

intentions from EEG signals in healthy individuals. The goal 

is to assist individuals with speech difficulties in participating 

more effectively in their daily lives through BCI systems.  

In the literature, speech-related studies are referred to as silent 

speech or speech imagery. In these studies, participants are 

asked to say or imagine a word or vowel silently [30, 31, 33, 

34]. As can be seen from the studies [33-35], researchers have 

achieved different average accuracy rates ranging from 

29.21% to 88.36% using different techniques. Researchers 

achieved an overall accuracy rate of 35.20% for vowels and 

29.21% for words using five vowels and six words [35]. The 

researchers achieved an accuracy rate of 80.7% in classifying 

silently spoken words using EEG using DAN [33]. The 

researchers achieved a maximum accuracy rate of 88.36% in 

classifying EEG signals recorded by imagining five English 

words, and an average of 72.73% and 69.41% using the alpha 

and theta channels, respectively [34]. Among these studies, the 

study of Iqbal et al. [30] partially focused on vowels, while the 

study of Liwicki et al. [35] directly addressed them. Notably, 

most studies in the literature do not mention Broca and 

Wernicke's areas of the brain, which are believed to be 

involved in language data processing [36, 37]. Furthermore, 

no similar study on Turkish vowels was found in the existing 

literature. 
In this study, we designed and compared two systems for 

recognizing Turkish vowel articulation intentions based on 

EEG signals from healthy individuals. The first system, 

utilizing the CSP and LDA algorithms, achieved a 67.7% 

accuracy rate. The second system, employing the DWT and 

SVM algorithms, achieved an accuracy rate of 80.2%. These 

findings indicate the superiority of the DWT algorithm for this 
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task. The study's results represent a promising step toward the 

development of a BCI system aimed at enhancing the daily 

lives of individuals with speech impairments. 

In the study of Bakhshali et al. [31], the researchers 

explored the use of the correntropy spectral density (CSD) 

matrix and Riemannian geometry for EEG signal classification, 

demonstrating improved accuracy compared to other methods. 

It introduces a new matrix and distance metric based on CSD 

matrices. This study is closely related to our work, and the 

researchers obtained an average performance rate of 77.19%. 

The researchers aim to explored EEG's potential for silent 

communication by decoding imagined speech from recorded 

brain waves. EEG signals were recorded at the University of 

California, Irvine (UCI) from 7 volunteer subjects, imagining 

syllables /ba/ and /ku/ were preprocessed and used for 

classification, indicating feasibility in identifying imagined 

speech. The final results show a 72% success rate in 

classifying imagined syllables, with the method generalizing 

well across subjects [38]. 

In 2020, the researchers worked on vowel inference in 

certain CVC (consonant-vowel-consonant) words. The 

accuracy rates of the two systems produced as a result of the 

study were obtained as 72% for RNN and 80% for DBN [39]. 

In one of the earliest studies in this field, the researchers 

introduced a brain-computer interface control scheme for a 

speech prosthesis. They utilized vowel speech imagery 

recorded through electroencephalography, employing 

optimized spatial filters and a nonlinear support vector 

machine. The overall classification accuracy achieved ranged 

from 68% to 78%, indicating substantial potential for its 

application as a speech prosthesis controller [27]. 

The study conducted explored imagined speech in EEG-

based BCIs, aiming to simplify and improve neural network 

models for classifying vowel and word patterns. Using a 

dataset of 15 subjects, the study validates and simplifies a 

convolutional neural network (CNN), achieving lower but still 

competitive accuracy. The findings suggest the potential of 

transfer learning to enhance the effectiveness of neural 

networks in classifying imagined speech. The researchers 

obtained a considerably low success rate as a result of the 

study [40]. 

 

1.1 Brief information and contributions to the literature  

 

BCIs have emerged as a groundbreaking technology, 

allowing individuals to interact with their environment 

through the interpretation of brain activity. Among various 

BCI modalities, Electroencephalography (EEG)-based 

systems have gained prominence due to their non-invasiveness 

and cost-effectiveness in monitoring brain activity. This study 

delves explicitly into the realm of EEG-based BCIs, focusing 

on the recognition of Turkish vowel articulation intentions 

from EEG signals among healthy individuals. 

The chosen Turkish vowels 'A,' 'E,' and 'İ' hold significance 

in this research for their frequent usage in the Turkish 

language. By exploring two distinct BCI system designs and 

employing different algorithmic combinations, the study aims 

to contribute valuable insights into the field. The first design 

utilizes CSP and LDA, while the second design integrates 

DWT and SVM algorithms. 

The subsequent discussion outlines the innovations brought 

forth by this study, encompassing algorithmic performance 

comparisons, the prominence of DWT, and the potential 

applications for individuals with speech disorders. Ultimately, 

this research endeavors to advance the development of BCI 

technology, particularly in the context of aiding those with 

speech impairments. The recognition of Turkish vowel 

articulation intentions through EEG-based BCIs has the 

potential to enhance the lives of individuals facing 

communication challenges significantly. As we delve into the 

subsequent sections, we dissect these contributions in greater 

detail. 

1. Focus on Turkish Vowels: The article endeavors to 

develop an EEG-based BCI system centered on the 

recognition of Turkish vowels, specifically 'A,' 'E,' and 'İ,' 

which are frequently used in the Turkish language. This 

contribution may enhance effective communication tools for 

Turkish speakers, making it a valuable addition to the 

literature. 

2. Algorithm Combinations and Performance Analysis: The 

study compares the utilization of CSP and LDA algorithms in 

the first system with DWT and SVM algorithms in the second 

system. This approach provides valuable insight into 

understanding the impact of different algorithms on the 

performance of EEG-based BCI systems. 

3. Prominence of DWT: The results demonstrate that the 

second system employing DWT and SVM achieves a higher 

accuracy rate compared to the first system using CSP and LDA. 

It suggests a prospective effectiveness of DWT in tasks such 

as Turkish vowel recognition within the literature. 

4. BCI Applications for Individuals with Speech Disorders: 

The research emphasizes the potential use of EEG-based BCI 

systems for individuals with speech disorders. This 

contribution may facilitate the development of future BCI 

applications aiming to enhance the daily lives of individuals 

with speech impairments. 

5. Advancing Quality of Life through Technology: The 

article suggests that the ability of EEG-based BCI systems to 

recognize Turkish vowel articulation intentions could assist 

individuals with speech disorders in expressing their thoughts 

and intentions. This result could be considered a significant 

step towards leveraging technology to improve the quality of 

life for individuals facing speech impairments. 

 

 
 

Figure 1. Steps of the study 
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To sum up, this investigation into Turkish vowel 

recognition makes a meaningful contribution to the 

advancement of EEG-based BCI systems. Additionally, it 

addresses the potential enhancement of the quality of life for 

individuals with speech disorders, thus providing valuable 

insights into the academic discourse. 

We conducted our study by following the steps in Figure 1. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Physical conditions and equipment 

 

The EEG signals of the participants were recorded in a quiet 

environment. The study, conducted with a total of 5 

participants aged between 26 and 52, exhibits a gender 

distribution of 2 females and 3 males. Participants sat 

comfortably in chairs with armrests and received instructions 

for the tasks via a monitor placed in front of them. Since the 

volunteers in the study had not previously undergone such 

recordings, they were provided with instructions on the EEG 

signal recording process after a brief overview of the study. 

The EEG signals were captured and recorded using the 

EMOTIV EPOC+, a mobile EEG recording device from the 

EMOTİV company. The EMOTIV EPOC+ has 14 EEG 

channel sensors, and electrodes in both mastoid areas for 

reference values. The technical specifications of the EMOTIV 

EPOC+ device are as follows: 

• The electrode array has been prepared according to the 

internationally accepted 10-20 system. 

• The recorded electrode points are: AF3, F7, F3, FC5, T7, 

P7, O1, O2, P8, T8, FC6, F4, AF4. 

• The frequency sampling rate can be set to 128 or 256 Hz. 

• The signal measurement sensitivity is 0.51 µV. 

• It has wireless connectivity. 

• The sensors are saline-soaked felt pads. 

• The electrode arrangement has been prepared according 

to the internationally accepted 10-20 system. 

EMOTIV EPOC+ is a portable EEG system with 14 high-

resolution channels, designed for rapid fitting and easy 

measurement in practical research. It’s compatible with 

EMOTIV software and standard data formats, intended for 

research and personal use. The system uses saline-based wet 

sensors for quick setup, supports wireless data transmission at 

128 or 256 Hz, enabling high-resolution brain data recording 

in mobile settings [41]. 

 

2.2 Experimental environment 

 

In the experiment, the participants were asked to: 

• Pronounce three random vowels once each, for a total of 

ten times. 

• Next, imagine pronouncing the same vowels in a random 

order, once each in your mind. 

The letters 'A', 'E', and 'İ' were chosen because they are the 

most frequently used vowels in Turkish [42]. 

Before the experiment, the participants were given the 

following information: 

• Prior to connecting the EEG device, participants received 

instructions on how to perform the motor movements and 

mental simulations related to these actions. 

• After adjusting the EEG device for the individual, they 

were introduced to the experiment environment through a 

PowerPoint presentation. 

 
 

Figure 2. (a) Command preparation notification; (b) 

Command content notification; (c) Command execution 

notification 

 

The experiment procedure is as follows: 

1. Participants are instructed to prepare for a new command 

when the screen in Figure 2(a) is displayed during the 

PowerPoint presentation, which remains on for 1 second. 

2. The screen in Figure 2(b), indicating the command 

content, is then shown for 2 seconds. Participants observe the 

motor movement they are required to perform, and additional 

software marks the location of the next motor movement in the 

EEG signal recording. 

3. When the screen in Figure 2(c) appears, participants have 

3 seconds to execute the command announced in Figure 2(b). 

The transition from Figure 2(b) to Figure 2(c) marks the 

individual's performed or imagined motor movement in the 

EEG signal recording (Figure 2). This process enables more 

precise determination of the beginning and end offsets of the 

signal block related to commands in the EEG recording. 

During the 3-second duration shown on the screen in Figure 

2(c), participants are instructed to perform the given command 

only once. This instruction is provided to participants before 

the registration process begins. The process continues in this 

manner until all commands are executed ten times. Following 

this, for the mental simulation of motor movements, the same 

PowerPoint presentation is restarted, this time with commands 

for mental simulations of the movements, and the process is 

completed. 

The sequence of stimuli presented during recording for a 

single trial is shown in Figure 3, and also trial command 

indicator order is shown in Figure 4. 

 

 
 

Figure 3. Individual EEG signal recording example  

(The red lines indicate the event start time) 

 

 
(a) Trial start indicator; (b) Trial command indicator; (c) 

Trial command execution indicator 

 

Figure 4. Trial order 

 

2.3 System design 

 

In the study, two distinct BCI systems were designed, both 

using the same EEG recordings. Since the preprocessing 

algorithms and techniques are identical in both systems, we 
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provide a general description of the preprocessing stage. 

Subsequently, we separately analyze the feature extraction and 

classification stages of each system. Finally, in the Results 

section, we compare the outcomes achieved by the two 

systems. 
 

2.3.1 Pre-processing 

The preprocessing stage represents the initial step in 

preparing EEG signals for BCI systems. The primary objective 

is to eliminate artifacts and extract the desired frequency signal 

through specific filtering operations. Once the target signal 

frequency for the developed system is determined, 

practitioners often employ techniques such as frequency 

normalization or specialized filters [13]. Commonly used 

techniques in preprocessing include PCA, ICA, adaptive 

filters (common reference or surface Laplacian), frequency 

normalization (e.g., bandpass filters), and CSP [43]. 

Additionally, various other techniques have been applied in 

the preprocessing phase, as observed in the literature. 

In the preprocessing stage of the first system, we initially 

removed the DC offset from the recorded signal by subtracting 

the mean of each channel. Subsequently, we applied a 5th-

order Butterworth IIR filter with a frequency range of 8-30 Hz. 

The results obtained may vary based on changes in filtering 

parameters. 

For this study, the event duration was set at 4 seconds, with 

an event start offset of 0.5 seconds. The impact of altering 

these values is detailed in the following sections. 
 

2.3.2 First system design 

The design of the first system is shown in Figure 5. 
 

 
 

Figure 5. Design of the first system 
 

Feature Extraction. EEG recordings are high-dimensional, 

resulting in significant computational costs. Therefore, prior 

to commencing the classification process, various techniques 

are employed to select relevant features and reduce the 

dimensionality of the EEG data [13]. Commonly used 

techniques for this process in the literature include PCA, CSP, 

GA, and DSLVQ. Notably, PCA and CSP are applied in both 

the preprocessing and feature extraction stages of the system 

[13]. Especially, CSP is widely used because of its competence 

in distinguishing between signal sets that are thought to 

represent classes [7, 44, 45]. PCA is also widely used to 

represent high-dimensional data with smaller data sets. 

The basis of the CSP algorithm constitutes the objective 

function. 
 

𝐽(𝜔) =
𝑤𝑇𝑋1

𝑇𝑋1𝑤

𝑤𝑇𝑋2
𝑇𝑋2𝑤

=
𝜔𝑇𝐶1𝜔

𝜔𝑇𝐶2𝜔
 (1) 

 

where, T transpose, Ci, spatial covariance of class i, Xi, 

[#Channel x #Trial Sample] of class i, w, spatial filters. 

From this relation, we encounter the generalized standard 

eigenvalue and eigenvector problem as follows: 

C1ω = λC2ω (2) 

 

The solution to this problem equation also provides spatial 

filters for EEG signals. In projects utilizing CSP for feature 

extraction, bandpass filters are frequently employed in the 

preprocessing stage to process signals at specific frequencies. 

In this study, the CSP algorithm was employed for feature 

extraction, and the following steps were applied: 

• In the preprocessing stage of the design, a 5th-order 

Butterworth IIR filter was utilized to obtain the 8-30 Hz 

frequency range in EEG recordings. 

• Initially, feature matrices representing each event are 

computed. These matrices comprise 'eigenvalue' vectors, 

which are summarized representations of signal values. 

• Following the identification of root vectors (eigenvalues) 

in the matrices, the number of filters is determined to select 

vectors that enhance the class differentiation of the matrices. 

In the specific system design, the default number of filters is 

set to 2 (Figure 6). 

 

 
 

Figure 6. Example of a filtered feature vector 

 

Classification. In motor imagery (MI)-based BCI systems, 

the classification process results in the generation of 

movements or movement simulations from EEG signals. 

These can encompass hand movements, tongue movements, or 

even word outputs. The choice of classification algorithms in 

MI-BCI systems varies depending on the system designer's 

preferences, as there is no standard algorithm universally 

employed in these systems. 

In MI-BCI systems, common classification algorithms 

include SVM, LDA, KNN, ANN, and others [6]. Recent years 

have seen the emergence of convolutional neural networks 

(CNN) and hybrid algorithms alongside these traditional 

methods [6]. The efficiency of the classification algorithm 

used also varies according to the study. 

LDA is a widely used linear classification algorithm known 

for its computational efficiency and ease of application, 

making it a popular choice in various research studies. It works 

by reducing input dimensionality, enhancing class separation, 

and reducing within-class variance [6]. However, one of the 

primary limitations of LDA is its potential underperformance 

on complex EEG data [6]. Nonetheless, LDA has a significant 

advantage in that its performance remains relatively stable 

even with minor changes in the training data. 

In this study, the classification was performed using the 

LDA algorithm. As previously mentioned, the results section 

provides the outcomes obtained by varying the number of 

training and test data. No fundamental parameter within the 

LDA algorithm structure was altered, ensuring consistency in 

classification accuracy. 

 

2.3.3 Second system design 

Feature Extraction. In the first system design, the CSP 

algorithm was employed for feature extraction, yielding 

promising results. However, in the second system design, the 

DWT algorithm was utilized to enhance performance further. 

The design of the second system is shown in Figure 7. 
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Figure 7. Design of the second system 
 

In signal processing, DWT is widely applied for tasks such 

as noise removal, subwaveform analysis, especially in health-

related signal processing studies, and feature extraction in 

image processing [46]. The DWT algorithm provides a time-

frequency representation of a signal [47], dividing it into low-

frequency and high-frequency components at each level. The 

low-frequency component is used for subsequent level 

operations, and this process continues until the signal is 

divided into subparts according to the specified level. In the 

feature extraction process utilizing the DWT algorithm, a 

maximum level of 9 was determined, following the Nyquist 

sampling rate principle (Eq. (3)). 

 

𝐿 = log2𝑁 (3) 

 

where, L is maximum DWT level, N is trial sample count. 

As known, various regions of the brain have assumed 

specialized roles for the execution of specific functions [43]. 

In the brain, verbal skills are formed as a result of complex 

processes and require the use of different regions. The Broca 

and Wernicke regions on the left side of the brain play a crucial 

role in speech production [36, 37, 48]. In this study, signals 

from electrodes placed near Broca's and Wernicke's areas, 

known for their impact on verbal language skills in the brain, 

were investigated [43, 46, 48]. 

Before the classification step, features extracted using DWT 

were subjected to Sequential Feature Selection, a commonly 

used feature selection method. Initially, the selected feature 

vector length was set to 1/3 of the DWT-based feature vector 

length, which was later increased to 1/2. During feature 

extraction, various scenarios were explored, and system 

performance was enhanced by altering EEG channels, DWT 

bases, and wavelet forms used as band filters in the DWT 

algorithm. 

To ensure the selected features represent the signal sample 

space as best as possible, the k-fold cross-validation (k = 5) 

technique was used. After the final feature vector of the signal 

was obtained, the classification process was started. 

Classification. In the second system design, we employed 

the SVM classification algorithm, another commonly used 

approach in MI-EEG based BCI systems. The SVM algorithm 

utilized the Radial Basis Function (RBF) as the kernel function. 

Of all the acquired signals, 70% of the samples were allocated 

for training the SVM classification algorithm, while the 

remaining 30% of the dataset was reserved as test data to 

assess classification performance. 

 

 

3. RESULTS 

 

In this section, the results of the two system designs that 

have been studied will be presented as a table. In our study, we 

preferred the Accuracy method among the methods of 

Accuracy, Precision, Specificity, Positive Predictive Value, 

and Negative Predictive Value that can be used for 

performance evaluation because of its low calculation cost. 

In this study, different signal processing and classification 

algorithms are compared to improve the performance of EEG-

based BCI systems in recognizing Turkish vowel articulation 

intentions. 

The data in Table 1 show the average and standard deviation 

values of the classification of EEG signals of five participants 

using CSP for feature extraction and LDA for classification 

algorithms. According to the average values, Participant 5’s 

EEG signals are the strongest and most active, while 

Participant 1’s EEG signals are the weakest and most passive. 

According to the standard deviation values, Participant 2’s 

EEG signals are the most variable and inconsistent, while 

Participant 3 and 5’s EEG signals are the most stable and 

consistent. As can be seen from the Table 1, the success of the 

first designed system remained at ~70%. 

 

Table 1. Results from the first system design 

 
 Participant 1 Participant 2 Participant 3 Participant 4 Participant 5  
 50.00 67.50 68.75 58.33 64.75 
 68.75 70.25 62.50 70.25 68.70 
 52.38 47.37 65.00 60.12 58.35 
 66.67 68.43 68.50 69.75 67.85 
 57.15 68.43 58.25 62.65 69.25 

Average 58.99 64.39 64.60 64.22 65.78 

Standard Deviation 8.39 9.56 4.39 5.49 4.50 
Notes: The top 5 Accuracy Rate (%) results from the first system design 

 

Table 2. Result from the second system design 

 

EEG Channels DWT Coefficients Wavelet Form 
Accuracy Rate (%) 

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 

1,3,6,7 5,6,3,4,1 haar 62.50 75.00 65.00 77.00 80.00 

1,2,3,4,5,6,7 3,1,4,5 db3 62.50 62.50 70.00 82.00 70.00 

1,2,3,4,5,6,7 2,1 bior3.3 62.20 87.50 65.00 78.00 80.00 

1,2,3,4,5,6,7 2,1 bior3.7 75.00 37.50 72.50 84.50 75.00 

1,2,3,4,5,6,7 4,2 rbio1.5 75.00 62.50 67.50 79.50 70.00 
  Average 67.44 65.00 68.00 80.20 75.00 
  Standard Deviation 6.90 18.54 3.26 3.05 5 

Notes: The top 5 Accuracy Rate (%) results from the second system design 
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The data in Table 2 show the accuracy rates of the 

classification of EEG signals of five participants using 

different DWT coefficients and wavelet forms. According to 

the average accuracy rates, the Bior3.3 wavelet form showed 

the best performance (74.54%). Bior3.7 wavelet form showed 

the lowest performance (68.80%). There are also significant 

differences in accuracy rates among participants. For example, 

Participant 2 achieved an accuracy rate of 87.50% with the 

Bior3.3 wavelet form and 37.50% with the Bior3.7 wavelet 

form. These results show that the selection of DWT 

coefficients and wavelet forms is essential in the classification 

of EEG signals [49]. 

The results show that the second system, using DWT and 

SVM algorithms, achieved a 12.5% higher accuracy rate than 

the first system, using CSP and LDA algorithms. This result 

reveals that the DWT algorithm is more effective in feature 

extraction of EEG signals and improves the performance of 

BCI systems. 

 

 

4. DISCUSSION 

 

We can discuss the strengths and weaknesses of each 

system design, the possible reasons for the differences in 

accuracy rates, and the implications for future research. 

System 1 uses CSP for feature extraction and LDA for 

classification of EEG signals, using all 14 EEG channels on 

the device. The advantage of this method is that it is easy to 

implement and fast to compute. However, the disadvantage of 

this method is that it does not reflect the complexity and 

diversity of EEG signals sufficiently. Therefore, the accuracy 

rates of System 1 are low and variable.  

System 2 uses a more advanced method for classifying EEG 

signals. System 2 obtains DWT coefficients using some of the 

EEG channels and different wavelet forms (haar, db3, bior3.3, 

bior3.7, etc.). The advantage of this method is that it can 

capture the features and patterns of EEG signals better and test 

the suitability of different wavelet forms. Therefore, the 

accuracy rates of System 2 are high and consistent. However, 

this method requires more parameter selection, and 

computation is slow compared to other methods.  

The possible reasons for the differences in accuracy rates 

may depend on many factors, such as the source, quality, noise, 

sampling frequency, filtering method, classification algorithm, 

number, condition, experience, and skills of the participants of 

EEG signals.  

For future research, we can infer that the selection of DWT 

coefficients and wavelet forms is essential for the 

classification of EEG signals. To better understand how these 

selections affect the performance, we can conduct more 

comprehensive and systematic experiments with different 

EEG channels, different DWT coefficients, different wavelet 

forms, different classification algorithms, and different 

participant groups in our future studies. 

EEGs are very sensitive electrical signals that reflect brain 

activity [50]. Factors that can cause the breakdown of EGG 

signal potentials are Device Setup, Environmental Noise, 

Physiological Noise, and Cognitive Noise. In this study, 

EMOTIV Pro software was used to record EEG data. Thanks 

to the EMOTIV Pro software, errors that may occur during the 

device setup were prevented. The study environment was 

chosen as a laboratory where environmental noise was 

minimized. Participants were informed and relaxed 

beforehand to reduce physiological and cognitive noise. The 

raw data obtained from the EMOTIV Pro software were 

filtered using the MATLAB application to remove 

physiological and cognitive noises. In this way, the quality and 

reliability of EEG data were increased. Although our study has 

a small sample size, our results seem statistically significant 

and consistent.  

 

 

5. CONCLUSION 

 

In this study, our focus was on extracting certain Turkish 

vowels that individuals imagined pronouncing from EEG 

signals using an MI-BCI system. We designed two distinct 

systems, and the results are presented in the Results section. 

As evident from the results, the second system, which 

utilized DWT and SVM, outperformed the first system 

employing CSP and LDA. These results underscore the 

effectiveness of DWT and SVM algorithms as observed in the 

literature. 

Furthermore, the results tables for the second system reveal 

that factors such as EEG channels, DWT parameters, and 

wavelet forms significantly impact the outcomes. Additionally, 

due to the person-specific nature of EEG signals, different 

system configurations yield varying results among different 

individuals. The accuracy of the classification process is also 

influenced by the individuals' prior experiences with the 

system [47]. 

This study stands out in the BCI field as the first to focus on 

Turkish vowels and one of the few targeting the Broca and 

Wernicke areas of the brain.  

We believe that this study can contribute to various areas of 

research aiming at enhancing the quality of life for individuals 

experiencing speech disorders, with the goal of improving 

their overall well-being. These areas can be listed as follows: 

1. Diagnosis and Monitoring of Speech Disorders: 

EEG-based BCI systems can recognize the intentions of 

individuals with speech disorders, aiding in the diagnosis and 

monitoring of speech disorders. 

2. Enhancement of Vocal Communication Skills: 

The study, by advancing techniques in recognizing Turkish 

vowel intentions, holds the potential to enhance vocal 

communication skills for individuals with speech disorders. 

3. Integration with Assistive Devices: 

BCI systems can be integrated with assistive devices, 

providing individuals with speech disorders the means to 

communicate more effectively in their daily lives. 

4. Tailored Solutions to Individual Needs: 

The study may be seen as a step towards personalizing BCI 

systems to meet the specific needs of Turkish-speaking 

individuals with speech disorders. 

5. Low-Cost and Accessible Solutions: 

EEG-based BCI systems are generally more cost-effective, 

offering speech disorder individuals access to more affordable 

technological solutions. 

This study offers a potential application area for improving 

the quality of life for individuals with speech impairments, 

highlighting the importance of BCI technology. Individuals 

with speech impairments can express their thoughts and 

intentions through EEG-based BCI systems, which can 

increase their social communication and participation. 

Therefore, this study provides a significant contribution to the 

efforts of using technology to improve the lives of individuals 

with speech impairments. In future studies, different vowel 

sounds, different brain regions, and different signal processing 
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and classification methods can be used to enhance the 

performance of EEG-based BCI systems further. 
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