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This study presents a novel control framework integrating feedforward (FF) and feedback 

(FB) strategies for the management of nonlinear systems. The intelligent control 

component employs a wavelet neural network (WNN) to construct the FF controller. 

Additionally, the FB loop incorporates H-infinity control, renowned for its robustness and 

resilience. The controller parameters are optimized using Particle Swarm Optimization 

(PSO). The proposed control framework's efficacy is evaluated through its application to 

knee joint motion, assessing both control accuracy and robustness against external 

disturbances. 
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1. INTRODUCTION

All control activities can be classified into two categories: 

FB control and FF control. The FF and FB methods are often 

employed in control structures because of their uncomplicated 

setup and exceptional control capabilities. Nevertheless, each 

of these structures possesses disadvantages and constraints 

that could impact the precision of the entire control system [1-

3]. The use of FF and FB control techniques is often the 

primary approach to addressing this issue and modeling the 

system using robust control, commonly referred to as the FF-

FB control structure. 

The FB control technique is distinguished by its simple 

design and good control performance. Nevertheless, in the 

event that the controlled system has a certain time delay, FB 

controller will not have an immediate impact on the system 

until a specified duration has passed. As a result, the delay in 

the FB controller reaction may negatively impact the overall 

control performance and lead to stability issues [4]. On the 

other hand, the FF controller is capable of anticipating changes 

in the reference signal and promptly applying the appropriate 

action to the controlled system [3]. Furthermore, the FF 

controller often does not need a FB signal, which means it does 

not create stability issues [5]. However, in order to create an 

effective FF controller, it is necessary to have a precise inverse 

model of the system. Obtaining such a model is challenging, 

particularly for complex nonlinear systems. In addition, the FF 

controller does not possess the capability to effectively 

manage unfavorable operating situations that may arise in the 

control system, such as changes in system dynamics 

parameters and unforeseen external disturbances.  

Greater emphasis has been placed on using intelligent 

control approaches that can be directly implemented to address 

the complexity and nonlinearity of the systems. Specifically, 

artificial intelligence approaches may be integrated with 

traditional control strategies to create effective nonlinear 

control systems. Among several control methods, FB and FF 

strategies are often used owing to their easy setup and effective 

control performance. 

Nevertheless, each of these structures has certain 

disadvantages and constraints that might potentially have a 

detrimental impact on the precision of the whole control 

system [3-5]. In order to address this issue, the FF and FB 

control techniques may be merged to provide a more robust 

control framework, often known as the FF-FB control scheme. 

Neural networks perform this task with a high degree of 

accuracy as they do not have a linear structure of neurons [6]. 

In this way, the majority of systems rely on neural networks, 

which are fed by nonlinear data, for complex process control. 

Herein, studies [1, 2] discuss the network models that can be 

used to solve overall control problems by means of neural 

networks. 

The WNN, a type of neural network, refers to SNNs as one 

of the recent trends in the academy. Due to the well-known 

advantage of this technique over the normal artificial neural 

network (ANN), it gives the opportunity to invert nonlinear 

models. Primarily, H-infinity control theory, being a mature 

and robust control theory tool, is widely [3] used to minimize 

the effect of disturbances and address nonlinearities in the 

context of model uncertainty. Precision and stability are the 

main aspects that should be elaborated on in control theory, as 

should how the FB controllers that could provide meticulous 

tracking over a long period of time will be designed and what 

the strategy for dealing with system uncertainties will be. 

Hence, the H-infinity FB controller is designed, which is 

usually the FF control scheme where a single control system 

can satisfy multiple control objectives such as disturbance 

rejection, performance optimization, and stabilization [5, 7, 8]. 

This paper focuses on the creation of an intelligent FF-FB 

system that uses the WNN as the FF and in the FB the H-
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infinity controller is involved. The main idea of the PSO is to 

work out the parameters of the FF and FB controllers. 

The organizational flow of the remaining sections includes 

the following: Section 2 provides the outline and clarifies the 

PSO technique. Section 3 gives the details of designing the FF-

FB control structure considered in this work. Section 5 

presents the results of several evaluation tests and a 

comparative study to demonstrate the effectiveness of the FF-

FB control structure. Finally, the conclusions from this work 

are given in Section 5. 

 

 

2. PARTICLE SWARM OPTIMIZATION (PSO) 

 

The information that is provided by the PSO algorithm 

involves the individual as a particle within the population. 

Each particle traverses an evolving multidimensional 

landscape depending on the velocity that results from the 

influenced personal experience and/or the total swarm 

experience. It has never been applied so effectively in the 

different spheres [9]. In particular, the implementation of the 

PSO algorithm is carried out in the following manner: 

(1) The unidentified variables are called particles, 

constituting the population size represented by n.  

(2) The particles will begin with a stochastic initialization 

and subsequently navigate through a search space to minimize 

an objective function. 

(3) The parameters are calculated by minimising the 

objective function. 

(4) The fitness of each particle is assessed based on the 

objective function to determine the 𝑥𝑝𝑏𝑒𝑠𝑡 (past best position) 

and the 𝑥𝑔𝑏𝑒𝑠𝑡 (global best position) for each particle. These 

two goals are considered in each phase of the computation 

process.  

(5) Each particle is driven towards its prior 𝑥𝑝𝑏𝑒𝑠𝑡 position 

and the previous 𝑥𝑔𝑏𝑒𝑠𝑡 position among particles. As a result, 

the particles are inclined to go towards the more optimal places 

inside the search space [10]. 

The velocity of the 𝑖𝑡ℎ  particle, denoted as 𝑣𝑖 , will be 

computed using the following Eq. (1). 

 

𝑣𝑖(𝑘 + 1) = χ(𝑣𝑖(𝑘) + 𝑐1𝑟1 

((𝑝𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝑥𝑖(𝑘)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘))) 
(1) 

 

where for the 𝑖𝑡ℎ particle in the 𝑘𝑡ℎ iteration, (𝑥𝑖) represents 

the position, (𝑝𝑏𝑒𝑠𝑡𝑖) is the past best position, (gbest) is the 

past global best position of particles, and the acceleration 

coefficients (𝑐1) and (𝑐2) represent the cognitive and social 

scaling characteristics. 

In addition, (𝑟1) and (𝑟2) are two random numbers in the 

range of [0 1] and (χ) is a constriction coefficient given by [11]: 

 

𝜒 =
2

|4 − 𝜙 − √𝜙2 − 4𝜙|
 (2) 

 

where, ϕ = 𝑐1  +𝑐2  ϕ > 4. Consequently, it serves to prevent 

explosions and guarantee convergence. The 𝑖𝑡ℎ particle's new 

position is then computed as follows [12]: 

 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1) (3) 

 

The velocity in the standard PSO is calculated as given [9]: 

 

𝑣𝑖(𝑘 + 1) = 𝑣𝑖(𝑘) + 𝑐1𝑟1((𝑝𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝑥𝑖(𝑘)) 

+𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘)) 
(4) 

 

By multiplying Eq. (4) by (w) where (𝑤 ≥ 0), which is 

defined as the inertia weight factor, the velocity equation 

becomes: 

 

𝑣𝑖(𝑘 + 1) = 𝑤𝑣𝑖(𝑘) + 𝑐1𝑟1((𝑝𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝑥𝑖(𝑘)) 

+𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘)) 
(5) 

 

To this end, previous experimental studies on PSO with the 

inertia weight have shown that a relatively large (𝑤) has a 

stronger global search ability while a relatively small (𝑤 ) 

results in faster convergence [9]. The use of the PSO 

methodology has several benefits. One of them has a 

rudimentary structure that is straightforward to execute. 

 

 

3. CONTROLLER DESIGN  

 

Both the FF and FB control techniques have distinct 

advantages and disadvantages. Particularly, the FB control 

approach is specifically distinguished by utilizing an H-

infinity controller. Nevertheless, in the presence of a specific 

time delay in the controlled system, the FB controller will not 

immediately impact the system until a given duration of time 

has passed. The FB controller is a witness to the response time 

delay in the system, which can threaten performance control 

and stability [1]. On the contrary, the FF controller has an 

advantage as it can be used for anticipating the shifts of the 

reference signal and taking the required action on the 

concerned system immediately, resulting in faster 

convergence [9]. Within this work, the structure of control, 

namely the FB and FF, which is depicted in Figure 1, is 

accomplished this way: it involves the FF technology and the 

FB control technique. This feature gives the stem cell more 

holistic control and makes it more powerful and active. 

 

 
 

Figure 1. Schematic representation of the FF-FB controller 

in the form of a block diagram 

 

The robust intelligent control law for the proposed 

controller is: 

 

𝑢 = 𝑢𝑓𝑓 + 𝑢𝑓𝑏 (6) 

 

where,  

 

𝑢𝑓𝑓 = 𝑓−1(𝑔(𝑥)) (7) 

 

where, 𝑓−1  is a nonlinear function representing the inverse 

system dynamics. ANNs can be trained to acquire the 

nonlinear function of Eq. (7) and 𝑢𝑓𝑏  is the FB H-infinity 
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control action. 

 

3.1 FF controller design 

 

By training a neural network to function as an inverse model 

of the plant, direct inverse control (DIC) is achieved as a 

powerful method to control nonlinear systems. Figure 2 

depicts the DIC's generalized design [13, 14]. 

 

 
 

Figure 2. Direct inverse control 

 

Figure 2 represents the training process of the WNN as an 

FF controller, emphasizing the goal of achieving optimal 

control actions to track the desired reference signal accurately. 

It provides a conceptual overview of how the network learns 

to control the system through iterative optimization of its 

weights.  

The training entails adjusting the WNN weights in order to 

reduce the integral squared error (ISE) criterion, as given 

below: 

 

𝐽 = 0.5 ∗ ∑(𝑒(𝑡))2

𝑁

𝑡=1

 (8) 

 

where, 

 

𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) (9) 

 

In Eq. (8), N denotes the number of time samples, whereas 

r(t) and y(t) in Eq. (9) correspond to the reference signal and 

the plant output, respectively. Nevertheless, a drawback of this 

control method is that the inverse modeling stage does not 

effectively minimize the output error, which refers to the 

discrepancy between the actual system output and the 

command signal. Therefore, the controller created using this 

approach may result in a consistent disparity between the 

desired and real outputs of the system [15]. Hence, to attain a 

desirable level of control precision, the FF controller is 

integrated with the FB controller, which will be further 

discussed in the subsequent section. 

 

3.2 WNN structure 

 

The structure of the proposed WNN for representing the FF 

controller is shown in Figure 3. 

As depicted in Figure 3, the WNN consists of three layers, 

which are explained in the following [16, 17]: 

The first layer, which is the input layer, is responsible for 

directly passing the input variables to the next layer without 

any modification. In this work, the input variables must have 

the following format to exploit the WNN as a FF controller. 

 

𝑦(𝑡 + 1), 𝑦(𝑡), … , 𝑦(𝑡 − 𝑛 + 1), 
𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑚), 𝑟(𝑡) 

(10) 

The mother wavelet, or the wavelet layer, is the second layer. 

Each node in this layer, referred to as a wavelon, receives three 

input variables, as shown in Figure 3, every input node 

possesses an associated weight, including a self-FB weight and 

a FB weight from the output node. These input variables are 

used by the 𝑗𝑡ℎ  wavelon to determine the associated output, 

which is expressed as follows:  

 

𝑧𝑗 = 𝑑𝑗  

(∑ 𝑣𝑗𝑖𝑥𝑖
𝑁𝑖
𝑖=1 + 𝜓𝑗(𝑘 − 1) ⋅ 𝜃𝑗 + 𝑦(𝑘 − 1) ⋅ 𝛽𝑗) − 𝑡𝑗  

(11) 

 

where, the variables dj and tj represent the dilation and 

translation parameters, respectively. 𝑁𝑖  represents the node 

number in the input layer. 𝑣𝑗𝑖  denotes the weight connecting 

the 𝑖𝑡ℎ input node and the 𝑗𝑡ℎ  wavelon. 𝑥𝑖  represents the i-th 

input variable. 𝛹(𝑘 − 1)  represents the network memory, 

which stores past information from the 𝑗𝑡ℎ  wavelon. 

𝛳𝑗 represents the 𝑗𝑡ℎ  adjustable connection at the self-FB, 

which determines the rate of information storage.  𝑦(𝑘 − 1) 

denotes the output of the preceding network. 𝛽𝑗  denotes tghe 

weight parameter connecting output node to the 𝑗𝑡ℎ wavelon. 

 

 
 

Figure 3. Architecture of the WNN 

 

The importance of selecting a suitable wavelet activation 

function is now well acknowledged, since it is considered 

equally crucial as picking the network design and the training 

approach [18]. In order to tackle this problem, a series of tests 

were carried out utilizing various wavelet functions. The 

RASP1 function exhibited superior approximation 

performance compared to other function types. Thus, the 

RASP1 function was utilized for calculating the output of the 

𝑗𝑡ℎ wavelet using the following equation [19]: 

 

𝛹𝑗(𝑧𝑗) =
𝑧𝑗

(𝑧𝑗
2 + 1)2

 (12) 

 

The third layer consists of a single node that generates the 

ultimate output of the WNN structure utilizing the subsequent 

formula: 

 

𝑦 = ∑ 𝑐𝑗𝜓𝑗(𝑧𝑗) + ∑ 𝑎𝑖𝑥𝑖

𝑁𝑖

𝑖=1

𝑁𝑤

𝑗=1

+ 𝑏 (13) 

 

where, 𝑁𝑤  is the number of wavelon layer nodes, 𝑁𝑖 

represents the total number of nodes in the input layer, cj 

denotes the weight connection between the jth wavelon and 
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output node, ai represents the weight that connects the ith input 

node to the output node, and finally, b represents a bias term 

for the output node. Based on the previously presented 

information, it is evident that the WNN structure has several 

adjustable weights, which may be encompassed under the set 

given below:   

 

𝑆 = [𝑣𝑗𝑖𝑑𝑗𝑡𝑗𝑐𝑗𝜃𝑗𝛽𝑗𝑎𝑖𝑏] (14) 

 

To utilize the WNN structure as the FF controller, it is 

necessary to train the weights mentioned in Eq. (14) by 

minimizing the ISE described in Eq. (8).  

 

3.3 FB controller design 

 

The next section delineates the design methodology of the 

FB controller for a system with a structure of [20, 21]: 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵1∆𝑎(𝑡, 𝑥, 𝑢) + 𝐵2𝑢(𝑡); 𝑥(𝑡𝑜) = 𝑥𝑜 

ℎ(𝑡) = 𝐶1𝑥(𝑡) + 𝐷12𝑢(𝑡) 

𝑦(𝑡) = 𝐶2𝑥(𝑡) 

(15) 

 

where,  

𝑥(𝑡) ∈ ℜ𝑛 is a vector of system states. 

∆𝑎(𝑡, 𝑥, 𝑢) ∈ ℜ𝑚 is additive nonlinearity in this system. 

𝑢(𝑡) ∈ ℜ𝑙  is the input of control. 

𝑒(𝑡) ∈ ℜ𝑞 is vector of controlled outputs.  

𝑦(𝑡) ∈ ℜ𝑝 is the output vector of the system. 

𝐴 ∈ ℜ𝑛×𝑛 is the matrix of the system. 

𝐵1 ∈ ℜ𝑛×𝑚 represents the weight matrix of perturbation. 

𝐵2 ∈ ℜ𝑛×𝑙 is the matrix of control. 

𝐶1 ∈ ℜ𝑞×𝑛 is a system state weight matrix. 

𝐷12 ∈ ℜ𝑞×𝑙  is a matrix with weights for regulating the 

inputs to the controller. 

𝐶2 ∈ ℜ𝑝×𝑛 is the weight matrix of the output. 

The schematic representation of the dynamics of a nonlinear 

system in the controlled formulation, as described in Eq. (15), 

is depicted in Figure 4. 

 

 
 

Figure 4. A block diagram illustrating the controllable form 

of a nonlinear system 

 

The typical arrangement of the all-encompassing state FB 

H-infinity control is illustrated in Figure 5. 

 

 
 

Figure 5. The revised default setup of the control problem 

where 𝑀𝑒 represents the plant matrix [21] 

To successfully execute a comprehensive state FB H-

infinity control, it is necessary to have access to all the states 

of the system for FB, which indicates that:  

𝐶2 = 𝐼. 𝐷11, 𝐷21 and 𝐷22 equals zero. 

Thus, the plant matrix M is transformed into: 

 

𝑀𝑒 = [

𝐴 𝐵1 𝐵2

𝐶1 0 𝐷12

𝐶2 0 0
] (16) 

 

The goal is to maintain the internal stability of the system 

so that (𝑇ℎ𝑒∆𝑎
) stays within acceptable bounds, namely below 

a predefined threshold value of γ [20]:  

 

‖𝑇ℎ𝑒∆𝑎
(𝑗𝑤)‖

∞
≤ γ (17) 

 

where, 𝛾  indicates that ∆𝑎(𝑡, 𝑒, 𝑢𝑒)  demonstrates linear 

development and has an upper bound, which the controller 

consistently handles [22]. 

The condition in Eq. (17) implies that [21]: 

 

𝑚𝑖𝑛
𝑢𝑒

𝑚𝑎𝑥
∆𝑎

𝐽(𝑢𝑒, ∆𝑎) < ∞ (18) 

 

and the function cost is [23]: 

 

𝐽𝑝𝑠𝑜(𝛾, 𝜌, 𝐶1) = ∫ 𝑒2(𝑡)𝑑𝑡
∞

0

 (19) 

 

The perturbation ∆𝑎  aims to optimize the cost 

function  𝐽(𝑢𝑒 , ∆𝑎) , whereas the control signal 𝑢𝑒  aims to 

reduce it. 

The Lyapunov quadratic function is employed to derive the 

optimum controller and the worst-case perturbation gain 

matrices values, denoted as 𝐾𝑒 and 𝐾∆, respectively [21]. 

The Lyapunov function and its derivative are defined as [24]: 

 

𝑉(𝑒) = 𝑒𝑇𝑃𝑒𝑒 (20) 

 

�̇�(𝑒) = −𝑒𝑇𝑄𝑒𝑒 (21) 

 

where, the matrices 𝑃𝑒  and 𝑄𝑒 , which are real symmetric 

matrices of size ℜ𝜔×𝜔, define the definiteness of the functions 

𝑉(𝑒)  and �̇�(𝑒) . 𝑃𝑒  must be positively definite, whereas 𝑄𝑒  

must be negatively definite. 

The structure of the optimum control and the worst-case 

perturbation is as follows [25]: 

 

∆𝑎(𝑡, 𝑒, 𝑢𝑒) = 𝐾∆𝑥(𝑡); 𝐾∆ ∈ ℜ𝑚×𝜔 (22) 

 

𝑢𝑒(𝑡) = 𝐾𝑒(𝑡) (23) 

 

Evaluating Eq. (22) and Eq. (23) in Eq. (15), yields:  

 

�̇� = (𝐴 + 𝐵1𝐾∆ + 𝐵2𝐾𝑒)𝑥 (24) 

 

Using assumption 3, the following equation will be obtained: 

 

ℎ𝑒
𝑇ℎ𝑒 = 𝑋𝑇(𝐶1

𝑇𝐶1 + 𝐾𝑒
𝑇𝐾𝑒)𝑥 (25) 

 

Therefore,  

 

𝐽(𝑢𝑒 , ∆𝑎) = ∫ [𝑒𝑇(𝐶1𝑎

𝑇 𝐶1𝑎
+ 𝜌𝐾𝑒

𝑇𝐾𝑒 − 𝛾2𝐾∆
𝑇𝐾∆)𝑒]𝑑𝑡

∞

0

 (26) 
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Now let: 

 

𝑄 = (𝐶1𝑎
𝑇 𝐶1𝑎

+ 𝜌𝐾𝑒
𝑇𝐾𝑒 − 𝛾2𝐾∆

𝑇𝐾∆) (27) 

 

The matrix Q must be positive definite. The optimum 

control law assumes that the system described in Eq. (27) is 

stable. 

In order to get the most efficient cost function, Eq. (27) will 

be replaced with Eq. (18), resulting in: 

 

𝑉̇(𝑥) = −𝑥𝑇(𝐶1𝑎
𝑇 𝐶1𝑎

+ 𝜌𝐾𝑒
𝑇𝐾𝑒 − 𝛾2𝐾∆

𝑇𝐾∆)𝑥 (28) 

 

𝑥𝑇(𝐶1𝑎
𝑇 𝐶1𝑎

+ 𝜌𝐾𝑒
𝑇𝐾𝑒 − 𝛾2𝐾∆

𝑇𝐾∆)𝑥 = −
𝑑

𝑑𝑡
𝑥𝑇𝑃𝑥 (29) 

 

By performing the process of integration on both sides of 

Eq. (27) throughout the interval, we have: 

 

∫ 𝑥𝑇(𝐶1𝑎
𝑇 𝐶1𝑎

+ 𝜌𝐾𝑒
𝑇𝐾𝑒 − 𝛾2𝐾∆

𝑇𝐾∆)𝑥
∞

0

𝑑𝑡 

= − ∫
𝑑

𝑑𝑡
𝑥 𝑇𝑃𝑥

∞

0

𝑑𝑡 

(30) 

 

𝐽(𝑢𝑒, ∆𝑎) = −𝑥(∞)𝑇𝑃𝑥(∞) − (−𝑥(0)𝑇𝑃𝑥(0)) (31) 

 

In order for the system described by Eq. (19) to remain 

stable under the control law, it is necessary that 𝑥(∞) = 0.  

Hence, the most efficient cost function is: 

 

𝐽∗ = −𝑥(0)𝑇𝑃𝑥(0) (32) 

 

The matrix P, is positive definite, represents the evaluation 

of the Lyapunov equation given below: 

 
(𝐴 + 𝐵1𝐾∆ + 𝐵2𝐾𝑒)𝑃𝑇 + 𝑃(𝐴 + 𝐵1𝐾∆ + 𝐵2𝐾𝑒) = −𝑄 (33) 

 

(𝐴 + 𝐵1𝐾∆ + 𝐵2𝐾𝑒)𝑃𝑇 + (𝐴 + 𝐵1𝐾∆ + 𝐵2𝐾𝑒) 

= −(𝐶1𝑎
𝑇 𝐶1𝑎

+ 𝜌𝐾𝑒
𝑇𝐾𝑒 − 𝛾2𝐾∆

𝑇𝐾∆) 
(34) 

 

(𝐴 + 𝐵1𝐾∆ + 𝐵2𝐾𝑒)𝑃𝑇 + 𝑃(𝐴 + 𝐵1𝐾6∆ + 𝐵2𝐾𝑒) 

(𝐶1𝑎
𝑇 𝐶1𝑎

+ 𝜌𝐾𝑒
𝑇𝐾𝑒 − 𝛾2𝐾∆

𝑇𝐾∆) = 0 
(35) 

 

To determine the most efficient control law, it is necessary 

to derive Eq. (35) 𝐾𝑒 and make 𝜕𝑃/𝜕𝐾𝑐𝑖𝑗=0, and we get: 

 

𝐾𝑒 = −
1

𝜌
𝐵2𝑎

𝑇 𝑃𝑒  (36) 

 

As a result,  

 

𝑢𝑒 ∗= 𝐾𝑒𝑥 = −
1

𝜌
𝐵2𝑎

𝑇 𝑃𝑒𝑥 (37) 

 

∆𝑎(𝑡, 𝑒, 𝑢𝑒) = 𝐾∆𝑥(𝑡) =
1

𝛾2
𝐵1𝑎

𝑇 𝑃𝑒 (38) 

 

Now, Eq. (39) is solved, which is known as the H-infinity 

algebraic Riccati equation (HIARE) [26]: 

 

𝑃𝑒𝐴𝑎 + 𝐴𝑎
𝑇𝑃𝑒 + 𝐶1𝑎

𝑇 𝐶1𝑎
 

−𝑃𝑒 (
1

𝜌
𝐵2𝑎

𝐵2𝑎
𝑇 −

1

𝛾2
𝐵1𝑎

𝐵1𝑎
𝑇 ) 𝑃𝑒 = 0𝜔 

(39) 

The purpose of training the WNN structure is to optimize 

the WNN parameters by reducing the discrepancy between the 

reference signal and the system's actual output. In particular, 

multiple changeable parameters in the FF controller need to be 

optimized. The parameters can be represented using the 

following settings: 

 

𝑆 = [𝑣𝑗𝑖𝑑𝑗𝑡𝑗𝑐𝑗𝜃𝑗𝛽𝑗𝑎𝑖𝑏] (40) 

 

For the WNN structure to achieve optimal performance, the 

parameters in Eq. (40) must be optimized using a suitable 

optimization approach. This work utilizes the particle swarm 

algorithm optimizer to determine these parameters.  

The FB controller optimization is employed offline to tackle 

the optimization problem of the design procedure. The goal is 

to find the optimal value of 𝜌 and the optimal values of the 

elements in matrix 𝐶1 , such that the infinity norm of 

‖𝑇𝑒 ∆𝑑
(𝑗𝑤)‖

∞
 is less than or equal to the optimal value of 𝛾. 

The selection of the optimization cost function is as follows: 

 

𝐽𝑝𝑠𝑜(𝛾, 𝜌, 𝐶1) = ∫ 𝑒2(𝑡)𝑑𝑡
∞

0

 (41) 

 

 

4. ILLUSTRATIVE EXAMPLE 

 

The control of a lower limb orthosis is applied at the knee 

joint level for rehabilitation purposes. Specifically, the control 

effort is applied to the system to guarantee the asymptotic 

stability and to make the system follow the desired trajectory 

in the rehabilitation process. 

The efficacy of the suggested controller is demonstrated by 

considering the leg system's dynamic model, seen in Figure 6 

and described by Eq. (39) [27]: 

 

𝐽�̈� = −𝑇𝑔 cos(𝜃) − 𝐴𝑠𝑖𝑔𝑛(�̇�) − 𝐵�̇� + 𝑢 (42) 

 

where, 

𝐽 is the inertial moment of the shank. 

𝜃, 𝜃,̇  and �̈� are the joint angular position, velocity, and 

acceleration, respectively. 

The coefficients A and B represent the torques of solid and 

viscous friction, respectively. 

 

 
 

Figure 6. The dynamic model of the leg system 

 

The values of the parameters are illustrated in Table 1. 

We can obtain the dynamic model by converting the 

dynamic model in terms of 𝑥1 and 𝑥2, where 𝑥1 = 𝜃 and 𝑥2 =

�̇�: �̇�1 = 𝑥2. 
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Table 1. The system parameters 

 
Parameter Value 

Inertia (J) 0.4 Kg.m2 

Solid friction coefficient (A) 0.6 N.m 

Viscous friction coefficient (B) 1 N.m.s.rad−1 

Gravity torque (𝑇𝑔) 5 N.m 

 

�̇�2 = −
𝐵

𝐽
𝑥2 −

𝑇𝑔

𝐽
cos(𝑥1) −

𝐴

𝐽
𝑠𝑖𝑔𝑛(𝑥2) +

1

𝐽
𝑢 

𝑦 = 𝑥1 

(43) 

 

For the following nonlinear system:  

 

�̇�1 = 𝑥2 

�̇�2 = −2.5𝑥2 − 12.5 cos(𝑥1) − 1.5 𝑠𝑖𝑔𝑛(𝑥2) + 2.5𝑢 

𝑦 = 𝑥1 

(44) 

 

The system's open loop response, as described by Eq. (43), 

is depicted in Figure 7. 

 

 
 

Figure 7. Open loop system output (degree) 

 

Figure 8 shows the closed loop response of the system in Eq. 

(41). 

 

 
 

Figure 8. Closed loop desired and actual leg system position 

before applying the controller 

 

Figures 7 and 8 illustrate the response of the nonlinear 

system in both the open-loop and closed-loop configurations 

prior to the deployment of the recommended controller. The 

open-loop instability of the system and the critical closed-loop 

stability need the construction of a controller to stabilize the 

system and achieve the required performance. An additional 

part is required to enhance the control signal. 

 

4.1 FB H-infinity controller design 

 

For the system in Eq. (41), the H-infinity controller design 

is explained as: 

Rearrange the state equation as:  

 

[
�̇�1

�̇�2
] = [

0 1
0 −2.5

] [
𝑥1

𝑥2
] + [

0
1

] 𝑑(𝑡) + [
0

2.5
] 𝑢 (45) 

𝑦 = 𝑥1 

 

where,  

 

𝑑(𝑡) = −5 cos(𝑥1) − 0.6𝑠𝑖𝑔𝑛(𝑥2) (46) 

 

By using optimization, we need to get the optimal values of 

𝜌, 𝛾, and 𝐶1. The optimal values are: 

 

𝛾𝑚𝑖𝑛 = 0.8097 

𝜌 = 0.1005 

𝐶1 = [
4.2105 7.1335
1.8473 3.2656

] 

(47) 

 

We must solve the Riccati equation as in Eq. (39). 

The solution of this Riccati equation is: 

 

𝑃 = [
10.7552  0.8089
0.8089     1.1609

] (48) 

 

The state feedback control gain matrix is given as: 

 

𝐾𝑒 = [−47.9427 − 33.8615] (49) 

 

Following that, the computed gain matrix is substituted in 

the control law defined in Eq. (37) that is applied to the 

primary system dynamics represented by Eq. (43). 

By choosing sin(t) as the reference signal, the state response 

is shown in Figure 9. 

 

 
 

Figure 9. Desired and actual system position after applying 

the FB controller 

 

 
 

Figure 10. Performance of the applied FB H-infinity 

controller 

 

Figure 9 demonstrates the characteristics of the system's 

controlled closed-loop output trajectory, which precisely 

cannot track the trajectory of the command signal r(t)=sin(𝑡). 

This means that an additional control part is required to 

achieve the desired specifications. Figure 10 illustrates the 

behavior of the control input, which is deemed unacceptable 

and ineffective in improving the performance and stability of 

the system. The existing data confirms that the suggested 
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controller can achieve stability in the nonlinear system. 

 

4.2 FF WNN controller 

 

The WNN was trained to represent the FF controller to 

control the dynamics of the nonlinear system expressed in Eq. 

(43). The training signal is 𝑠𝑖𝑛(𝑡) as the reference signal.  

The suggested PSO method has been employed to optimize 

the parameters of the WNN structure . In order to optimize the 

process, a population consisting of 50 agents was used, and the 

maximum number of iterations was established at 500. In 

addition, the MRWNN structure consisted of six wavelons in 

its wavelon layer. Figure 11 demonstrates the effective control 

performance of the FF control technique in accurately 

following the reference signal. The experiment was conducted 

using 500 iterations and 50 particles. 

 

 
 

Figure 11. System position of the controlled system with FF 

the controller 

 

The WNN has effectively managed to regulate the dynamics 

of the nonlinear system, achieving an ISE value of 0.5707. 

Figure 12 depicts the successful reduction of the ISE by 

implementing the suggested PSO algorithm. 

 

 
 

Figure 12. The best ISE against iterations 

 

4.3 The combined FF-FB controller  

 

The effectiveness of the PSO algorithm in minimizing the 

cost function is demonstrated in Figure 13, where the integral 

square error is 0.0012 and 0.123 for two inputs respectively. 

Figure 14 shows that the FF-FB control system achieved the 

desired control target by accurately tracking the required 

signal. The WNN, functioning as the FF controller with H-

infinity as FB, has been effectively trained by accurately 

following the reference signal. The reference signal was a sine 

wave and muli step input. 

FF-FB controller combined WNN and H-infinity controller 

structure as in Eq. (6). 

For the FF optimization process, 50 agents were utilized to 

form each population, and the maximum number of iterations 

was chosen to be 500. In addition, six wavelons were used to 

constitute the wavelon layer in the WNN structure. Then PSO 

algorithm is then used to establish the controller’s optimality. 

Table 2 displays the optimization settings for the PSO 

algorithm. After the optimization process, the obtained 

optimal values and boundaries of the optimized parameters are 

illustrated in Table 3. The HIARE defined in Eq. (39) is then 

solved using the optimal values calculated, and its positive 

definite solution is computed as follows: 

 

 
(a) 1st input 

 
(b) 2nd input 

 

Figure 13. Attitude of the tracking error 

 

 
(a) 1st input 

 
(b) 2nd input 

 

Figure 14. Desired and actual leg system position after 

applying robust intelligent controller 

 

Table 2. List of the pso algorithm settings 

 
Optimization Setting Value 

Problem dimension (𝐝𝐢𝐦) (No. of 

parameters) 

59 (53 for FF and 6 for FB 

controller) 

Size of population 50 

No. of iterations 500 

No. of runs 1 
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Table 3. The optimized parameters’ optimal values and 

bounds 

 
Optimized 

Parameter 

Least 

Bound 

Upper 

Bound 

Optimum 

Value 

γ 1 10 3.0221 

ρ 0.1 1 0.1123 

c11 0 100 97.0483 

c12 0 100 38.2477 

c21 0 100 32.1956 

c22 0 100 29.7672 

 

𝑃 = [
333.4781 22.7490
22.7490 10.7639

] (50) 

 

Then, the optimal gain matrix of the state FB controller has 

been determined using Eq. (36) as follows: 

 

𝐾 = [−186.6044 − 88.2937] (51) 

 

The gains in Eq. (51) are then substituted in the control law 

Eq. (37) to be:  

 

𝑢 = 186.6044 𝑥1 + 88.2937𝑥2 (52) 

 

Afterwards, Eq. (52) is used and combined with 𝑢𝑓𝑓 as in 

Eq. (6) to form the overall control signal, which is then applied 

to the system dynamics described in Eq. (43). Figure 14 

illustrates that the proposed controller effectively endeavors to 

ensure that the system adheres to the desired trajectory. Two 

distinct inputs are used to evaluate the efficacy and robustness 

of the controller. 

Figure 15 illustrates the impact of the control input on the 

system's performance and stability, showing that it is both 

permitted and effective. 

 

 
(a) 1st input 

 
(b) 2nd input 

 

Figure 15. Performance of the applied intelligent robust 

controller signal 

 

In addition, Figure 13 demonstrates the quick disappearance 

of the tracking error norm, demonstrating that the controller 

has successfully fulfilled the asymptotic tracking requirement 

provided in Eq. (8).  

Tests were made to investigate the robustness of the 

MRWNN-based FF-FB control structure to handle the effects 

of external disturbances. To perform this test on a nonlinear 

system with different inputs, a bounded disturbance with a 

magnitude of 30% of the system output was applied. The two 

periods are 150 ≤ 𝑡 ≤ 155  and 250 ≤ 𝑡 ≤ 255 . Figure 16 

reveals that the FF-FB control system has accommodated the 

effects of these unexpected disturbances on leg system 

position by recovering the desired response immediately after 

the influence of each disturbance. Figure 17 illustrates the 

effective control signal applied to the pendulum system to 

reject disturbances. 

 

 
 

Figure 16. Disturbance rejection tests for leg system position 

 

 
 

Figure 17. Performance of the applied control signal 

 

 
(a) 1st input 

 
(b) 2nd input 

 

Figure 18. Leg system position after applying (WNN-H-

infinity) controller 

 

The control performance of the WNN structure is compared 

with other neural network structures, such as the multilayer 
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perceptron (MLP). This network was employed in FF, and the 

FB still in full state H-infinity control. The PSO was used to 

optimize the parameters of all the network and H-infinity 

controllers. For the MLP, six nodes were used in the hidden 

layer. Each of these nodes employs a sigmoidal activation 

function.  

Following the same strategy in the FF-FB design for system 

tracking and decreasing the ISE. Figure 18 shows the system 

response controlled by this structure for two different control 

signal inputs controlled by the FF-FB control structure, where 

the FF controller was the MLP and the FB controller was the 

H-infinity controller.  

The leg system under MLP control is shown in Figure 18 

with its position trajectory, which is not tracking the necessary 

trajectory precisely. This suggests that the closed-loop 

system's stability and performance have not been reached by 

the controller, and this has approved the effectiveness of 

combined WNN and H-infinity controllers. 

 

 

5. CONCLUSION 

 

In this work, a FF-FB control structure was utilized to 

enhance the system's ability to handle nonlinear systems. The 

utilization of the WNN in the FF path represents an intelligent 

control strategy, where WNNs are known for their capability 

to model complex nonlinear systems. The nonlinear H-infinity 

controller in the FB loop suggests an emphasis on robustness 

and tracking. The PSO algorithm was utilized for optimizing 

the weights of the WNN and the parameters of the H-infinity 

controller. The efficacy of the FF-FB control system was 

demonstrated by simulation experiments conducted on a 

nonlinear leg movement model. Specifically, the system was 

evaluated based on control accuracy, the ability to track 

different reference signals, and its robustness against external 

disturbances. The overall conclusion is that the proposed FF-

FB control system, incorporating the intelligent WNN in the 

FF path and the nonlinear H-infinity controller in the FB path, 

is effective in achieving the desired control performance for 

the nonlinear leg movement system. In particular, the control 

system was shown to be robust and accurate in tracking the 

reference signals. The comparative study has clearly 

highlighted the superiority of the FF (WNN)-FB(H-infinity) 

control structure over the MLP-Hinfinity controller. For future 

work, the proposed control approach will be implemented in 

real-time to adaptively control nonlinear control systems. 
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NOMENCLATURE 

 

𝑣𝑖  Velocity of the 𝑖𝑡ℎ particle 

𝐵1 and 𝐵2  
Weight matrices of the perturbation and 

control signals 

𝐶1 and 𝐷12  
Weight matrices for controlling the system 

states and control input 

𝐶2  System output weight matrix 

𝐽𝑝𝑠𝑜(𝛾, 𝜌, 𝐶1𝑎
)  Cost function of the PSO algorithm 

𝐾∆  Gain matrix of the worst-case perturbation 

𝐾𝑒  
Gain matrix of the optimal robust 

controller 

𝑃𝑒  and 𝑄𝑒   Real symmetric positive definite matrices 

𝐴, 𝐵, and 𝐶  System matrices 

𝑟(𝑡)  Desired command input 

𝑢(𝑡)  Control input 
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