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Recent years have seen an increase in electrical crises due to the proliferation of automated 

inductors and electrical applications such as electric vehicles and mobile devices. The 

greater dispersion in the smart grid exposes it to risks like cyber-attacks, attenuation, and 

faulty detections that were not prevalent in conventional methods. The proposed machine 

learning-based renewable energy smart grid protector and controller (ReSGPC) using 

Kalman filters effectively controls and detects noise faults, cyberattacks, and attenuation, 

addressing the mentioned problems. Additionally, the proposed method has increased the 

efficiency of the smart grid due to its superior performance compared to conventional 

methods. This method provides an additional layer of protection for the system, 

safeguarding grid information. An optimal control law is developed to ensure the stability 

of the power network. The controller demonstrates significant improvements in 

effectiveness regardless of the initial values. Numerical simulations verify the developed 

approach, showing that the recommended method offers a more powerful line of attack. 

This strategy provides a crucial energy management framework for the smart grid, 

representing a reliable and system-based communication infrastructure with applications 

integrating renewable resources. Performance analysis reveals substantial improvements, 

with the proposed method achieving an efficiency increase of 0.25%, 0.42%, 0.32%, and 

0.34% in Mean Squared Error (MSE) for ∆1, ∆2, ∆3, and ∆4 scenarios respectively, 

compared to existing methods. 
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1. INTRODUCTION

The advancement of microgrid protection and control is 

significantly bolstered by the development of reliable smart 

grid communication systems. Microgrids, essentially small-

scale versions of the larger electrical grid, can operate 

independently or in conjunction with the traditional grid. Their 

growing importance is highlighted in the context of increasing 

renewable energy integration, demand for energy reliability, 

and the pursuit of greater energy efficiency. Smart grid 

communication systems play a pivotal role in this scenario, 

offering robust real-time monitoring and management 

capabilities. They enable seamless integration of renewable 

energy sources, efficient energy distribution, and quick 

response to fluctuations in energy demand and supply. These 

systems also incorporate advanced cybersecurity measures to 

protect against potential cyber threats, ensuring the safe and 

secure operation of microgrids. The evolution of microgrid 

protection and control through smart grid communications is 

not just a technical upgrade; it represents a significant shift 

towards more sustainable, resilient, and efficient energy 

systems capable of meeting the dynamic needs of modern 

electricity consumers [1-5]. 

Figure 1. The fundamental structure of machine learning 

based power management system 
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Despite significant advancements in microgrid protection 

and control through reliable smart grid communication 

systems, several research gaps remain. First, there is a need for 

more comprehensive strategies to address the cybersecurity 

vulnerabilities inherent in increasingly interconnected and 

digitalized grid systems. As microgrids become more 

integrated with renewable energy sources and IoT devices, 

they become more exposed to cyber-attacks, necessitating 

advanced security protocols. Another gap lies in the 

development of universal standards and protocols for 

communication technologies in microgrids. The lack of 

standardization leads to compatibility and interoperability 

issues, hindering the efficient exchange of data and control 

commands among different systems and devices. Furthermore, 

there is a need for improved real-time data analytics and 

control algorithms capable of managing the complexities of 

distributed energy resources and fluctuating demand-supply 

scenarios in microgrids. Additionally, the integration and 

optimal management of energy storage systems within 

microgrids require further research, particularly in the context 

of variable renewable energy sources. Finally, more work is 

needed in designing economically viable models and 

regulatory frameworks that can support the widespread 

adoption and sustainable operation of smart grid-enabled 

microgrids. Figure 1 shows the fundamental structure of 

machine learning based power management system [6]. 

Renewable energy smart grid communication systems 

represent a cutting-edge fusion of technology and sustainable 

energy practices. These systems are designed to efficiently 

manage and distribute renewable energy resources, such as 

solar and wind power, through an intelligent network. By 

utilizing advanced communication technologies, smart grids 

are able to monitor energy production, distribution, and 

consumption in real-time, ensuring optimal efficiency and 

reliability. This integration not only supports the transition 

towards cleaner energy but also enhances the overall stability 

and performance of the electrical grid [7]. 

Our proposed machine learning-based renewable energy 

smart grid protector and controller (ReSGPC) using Kalman 

filters aims to address these gaps. The ReSGPC effectively 

controls and detects noise faults, cyberattacks, and attenuation, 

addressing the mentioned problems. Apart from this, the 

proposed method increases the efficiency of the smart grid due 

to its superior performance compared to conventional methods. 

The proposed method provides the system with an additional 

layer of protection that safeguards grid information. A develop 

an optimal control law to ensure the stability of the power 

network and perform conversion specifically on the 

performance index for control within the context of a convex 

semidefinite programming exercise [8-10]. Regardless of the 

initial values, the controller can function effectively, 

demonstrating significant improvements in the controller's 

effectiveness. Numerical simulations verify the developed 

approach, showing that the recommended method offers a 

more powerful line of attack. This strategy provides a crucial 

energy management framework for the smart grid, 

representing a reliable and system-based communication 

infrastructure with applications integrating renewable 

resources. 

 

Problem statement 

Recent advancements in smart grid technology have 

underscored the critical need for robust protection and control 

systems, especially with the increasing integration of 

renewable energy sources. However, the proliferation of 

automated inductors, electric vehicles, and mobile devices has 

exposed smart grids to new risks such as cyber-attacks, signal 

attenuation, and faulty detections that were not prevalent in 

conventional systems. Existing methods struggle to effectively 

address these challenges, leading to inefficiencies and 

vulnerabilities within the smart grid infrastructure. There is a 

significant demand for an advanced system that can enhance 

the efficiency, stability, and security of smart grids while 

seamlessly integrating renewable energy sources. 

 

Research gaps 

Despite significant progress in smart grid communication 

systems and microgrid protection, several research gaps 

remain. Firstly, as smart grids become more interconnected 

and digitalized, they are increasingly susceptible to cyber-

attacks. Existing security protocols are inadequate to protect 

against sophisticated cyber threats, necessitating advanced and 

comprehensive cybersecurity strategies. Secondly, the lack of 

universal standards and protocols for communication 

technologies in microgrids leads to compatibility and 

interoperability issues, hindering the efficient exchange of 

data and control commands among different systems and 

devices. Thirdly, there is a need for improved real-time data 

analytics and control algorithms capable of managing the 

complexities of distributed energy resources and fluctuating 

demand-supply scenarios in microgrids. Additionally, further 

research is required for the optimal integration and 

management of energy storage systems within microgrids, 

particularly in the context of variable renewable energy 

sources. Lastly, more work is needed to design economically 

viable models and regulatory frameworks that support the 

widespread adoption and sustainable operation of smart grid-

enabled microgrids. 

Addressing these gaps, the proposed machine learning-

based renewable energy smart grid protector and controller 

(ReSGPC) using Kalman filters aims to enhance the efficiency, 

stability, and security of smart grids, providing a robust 

solution for modern energy management. These points are 

elaborated in the manuscript and supported by references and 

figures, emphasizing the critical need for advanced smart grid 

protection and control mechanisms. 

 

 

2. RELATED WORK 

 

As global electricity demand rises, continents will transform 

their smart grids infrastructure into super smart grids (SSGs), 

interconnecting their power system networks to meet future 

demands. The SSGs system uses current technology, digital 

communication, machine learning, and information 

approaches to make the power generating system more precise 

and balance demand and supply. SSGs use renewable energy 

to support many countries' electricity systems by lowering 

greenhouse gas emissions. If countries cannot regulate their 

own demand profiles, integrating smart grids into SSGs 

balances demand and supply. Environment, energy 

management, intermittent renewable energy, and line losses 

are important obstacles to regular supply. This paper studied 

the technical obstacles of constructing futuristic SSGs for 

European and SAARC continents and offered a solution and 

discussed future research paths. Although many technical 

experts have praised SSG ideas, their future growth is still a 

research challenge due to the paucity of simulation-based 
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models in the literature. Finally, this research work presents a 

fuzzy logic hybrid cluster model of SSGs with two clusters and 

a renewable wind energy system to solve this problem. This 

approach can be used to redesign smart grids from one-country 

power networks to futuristic SSGs from multiple countries 

power networks for SAARC and Europe. MATLAB simulates 

clusters and wind systems. The proposed SSG concept with 18 

bus networks supplies energy to two countries in two clusters 

whenever one or both countries in SAARC and Europe 

experience a problem [11]. 

The energy transition-revolution paradigm will provide new 

interaction models to efficiently manage energy and data 

transmitted between power system players with sustainability, 

resilience, cybersecurity, and privacy in mind. Demand-side 

management (DSM), a mix of software and hardware models 

with data analytics capabilities, is a key enabler of energy 

transactions along with switching from fossil to renewable 

power sources. The DSM manages the grid infrastructure to 

minimize customer discomfort and maximize grid stability 

with respect to environmental commitments, beyond demand-

response. DSM techniques in modern power networks are 

reviewed in this article [12]. Existing DSM techniques are 

explained and categorized, with informative discussions to 

assist evaluate all studies. Future study could improve DSM in 

light of global data analysis/cybersecurity trends for 

liberalizing electricity markets based on energy transactions 

and DSM-based communities, especially for smart cities. 

Standardization, legislation, data privacy, cybersecurity, and 

energy system contributions were assessed as open issues in a 

modern DSM [13-15]. 

This work uses advanced machine learning to improve 

smart grid integration of renewable energy by projecting solar 

power generation for the following year. LSTM, Bi-LSTM, 

and AE-LSTM are used as machine learning models. These 

models are trained and evaluated using MAE and MSE from 

real-time solar power production data over a year. The hybrid 

AE-LSTM model captures subtle temporal patterns and 

correlations in the data, making it more accurate than the 

LSTM and Bi-LSTM models. This study shows that machine 

learning, particularly the hybrid AE-LSTM approach, can 

seamlessly integrate renewable energy resources into smart 

grids, making power systems more efficient and 

environmentally friendly. A thorough examination shows that 

the hybrid AE-LSTM model's additional training improves its 

predictions, giving it an edge over models that only use the 

other model's architecture [16]. This study shows that 

advanced machine learning methods can revolutionize 

renewable energy integration, with the hybrid AE-LSTM 

model promising improved prediction accuracy. 

Modern energy systems are switching to renewables. Power 

electronics interfaced renewables are replacing some 

synchronous thermal units. Lack of natural inertia and 

governor damping, which are found in synchronous machines, 

creates concerns about system frequency stability, including 

rapid change and lower nadir frequency. The rapid 

development of communication and Internet of Things 

technology allows scattered energy resources to be aggregated 

as a virtual power plant to balance real-time electrical demand 

and supply. However, using the entire virtual power plant to 

support adjustable inertia has not been investigated [17]. The 

synchronous virtual power plant framework based on grid-

forming inverter interfaced distributed energy resources is 

presented in this study. The virtual power plant supports 

inertia by coordinating grid-forming inverter parameters. Also 

develop an online learning-based parameter adjustments 

approach to modify virtual power plant inertia. An IEEE 34 

nodes case study shows the method's efficacy [18]. 

Wide-area protection system (WAPS) measures electrical 

quantities to find smart grid problems using current sensors, 

communication networks, and computational technologies. 

The WAPS communication network sends data quickly and 

reliably between regional master stations and slave stations. 

Communication link (CL) placement substantially impacts 

real-time data transfer. To optimize WAPS performance, CL 

location should be considered along with sensible partitioning. 

This study extends WAPS partitioning to the simultaneous 

optimization problem of partitioning and optical CL 

placement. Formalizing the simultaneous optimization 

problem reduces WAPS construction costs. To enable reliable 

and real-time data transmission, the optimization problem 

captures the link bandwidth and cost of each optical CL in 

addition to its location and division. Final numerical 

simulations are performed on IEEE 39-bus, 57-bus, and 118-

bus standard testing situations. The optical CL technique can 

be non-negligible and severely affect WAPS partitioning, 

according to simulations [19]. 

Advanced monitoring and communication technologies are 

digitizing the historical power infrastructure into a smart grid. 

IEC 61850 power grid automation standards are common. 

Modernizing the electrical grid increases cyberattack risk. 

False data injection attacks against generators in IEC 61850 

compliant systems are a new cyber hazard that has not been 

well researched. Attack vectors against automated control 

logic for parallel generators and their practicality are studied, 

and simulation studies show the attack impact. Using the 

identified attack vectors, offer an efficient message 

authentication mechanism. For attack vector enumeration, A 

examine real-world control logic from the cutting-edge smart 

grid test-bed. Also develop an IEC 61850-compliant virtual 

test-bed for simulation study. Implementing and intensively 

evaluating the proposed message authentication techniques 

shows their advantages over others. Although it counters the 

identified attack vectors, the suggested message authentication 

system reduces delay by 16% compared to IEC 62351 

standards [20]. 

Information security is receiving attention in research 

communities such smart grid, control, signal processing, and 

communication [21]. Numerous state estimate algorithms 

have been presented for estimating system states during cyber-

attacks. The weighted least squares (WLS) method is 

commonly used for detecting poor data and estimating state 

[22, 23]. When measurement error variances are known, this 

technique accurately estimates system state [24]. 

Cyberattacks like bogus data injection can bypass faulty 

data detection, causing security and downtime issues. [25, 26] 

demonstrate the least trimmed squares strategy, which targets 

the Jacobian matrix and measurements. Current research 

explores Bayesian and Neyman-Pearson-based cyber-attack 

detection and state estimation [27]. A Bayesian formulation is 

used to provide an optimal detection and estimation technique 

after establishing the cost function. Using the Neyman-

Pearson theorem, the cost function is minimized under specific 

hypothesis conditions [28]. Additionally, a joint likelihood 

ratio test and maximum likelihood estimator are commonly 

employed in literature. Although several state estimation 

frameworks have been suggested under attack scenarios, they 

have neglected reliable communication and its dynamic state 

estimation process [29]. 
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Utility engineers cannot conduct trial-and-error at controller 

points to detect cyber-attacks. Therefore, a combination cyber-

attack defense and state estimation technique is needed to 

stabilize the power network. In a scenario, attackers can 

manipulate system state information to convince the control 

center that overloaded branches have secured voltage, or 

change breaker statuses to indicate operating lines as open. 

Motivated by the need for secure EMS, this research aims to 

estimate dynamic system states when an adversary arbitrarily 

corrupts a set of sensors. The main contributions are: 

➢ Modelled renewable microgrid for state space equation, 

using sensors for measurements. A recursive 

systematic convolutional (RSC) code defensive 

strategy is presented to safeguard system information 

from attackers by adding redundancy. This 

communication infrastructure is ideal for utilities due 

to its affordability, control, cyber security, and near-

real-time two-way communication capabilities. 

➢ Using the estimated system states and proposed reliable 

communication network, build an optimal feedback 

control law for system regulation. The control 

performance index is achieved by solving a convex 

semidefinite programming problem. 

➢ The new strategy is validated using numerical 

simulations, demonstrating accurate system state 

estimation following impairment protection. The 

controller stabilizes the electricity network in just 0.03 

seconds, according to results. Combining these 

methodologies creates a new paradigm for green 

energy and control engineering, enabling future 

communication and smart energy management system 

design. 

 

 

3. FUNDAMENTAL MODELLING OF MICRO GRID 

AND CYBER-ATTACK 

 

 
 

Figure 2. Fundamental structure of solar panels intergrade to 

the power network 

 

In the context of the smart grid, the microgrid is a subset 

that extends from the substation to smart buildings and finally 

to individual customers. Through the use of inverters, the 

microgrid is connected to the power network that is comprised 

of limitless buses. The main grid is often connected to N 

distributed energy resources (DERs). Let assume, for the sake 

of simplicity, that N=4 solar panels are connected to one 

another over the IEEE-4 bus system, as depicted in Figure 2 

[21, 30]. Here, the input voltages are denoted by the equation 

𝑓𝑝 = (𝑓𝑝1, 𝑓𝑝2, 𝑓𝑝3, 𝑓𝑝4 … . 𝑓𝑝𝑛)𝑇, where vpi represents the i-th 

DER input voltage. The four solar panels are connected to the 

point common couplings (PCCs), and the voltages of these 

PCCs are represented by the equation 𝑓𝑠 = (𝑓𝑝1, 𝑓𝑝2, 𝑓𝑝3, 𝑓𝑝4)𝑇, 

where, 𝑓𝑖 is the voltage of the ith primary common coupling. 

As of right now, the equation for the nodal voltage can be 

stated as in Eq. (1): 

 

𝐸(𝑎)𝑓𝑠(𝑎) =
1

𝑎
𝑀𝑐

−1𝑣𝑝(𝑠) (1) 

 

where, the admittance matrix of the entire power network, 

which includes four micro-sources, is denoted by 𝐸(𝑎) and the 

coupling inductor 𝑀𝑐 = 𝑑𝑖𝑎𝑔(𝑀𝑐1, 𝑀𝑐2, 𝑀𝑐3, 𝑀𝑐4) . The 

admittance matrix is presented in Eqs. (3) and (4), and it is 

derived from the typical specifications of the IEEE 4-bus 

distribution feeder [31]. In order to obtain the discrete-time 

linear state space system, the following formula can be used 

given in Eq. (2): 

 

𝑦(𝑘 + 1) = 𝑄𝑑𝑦(𝑘) + 𝑅𝑑𝑗(𝑘) + 𝑛𝑑(𝑘) (2) 

 

where, 𝑦(𝑘) = 𝑓𝑠 − 𝑓𝑟𝑒𝑓 is the PCC state voltage deviation, is 

the PCC reference voltage, 𝑗(𝑘) = 𝑓𝑝 − 𝑓𝑝𝑟𝑒𝑓  is the DER 

control input deviation, 𝑓𝑝𝑟𝑒𝑓  is the reference control effort, 

𝑛𝑑(𝑘) is the zero mean process noise and covariance matrix is 

𝑂𝑛 , the state matrix 𝑄𝑑 = 𝐼 + 𝑄∆𝜏  and input matrix 𝑅𝑑 =
𝑅∆𝜏 with 

 

𝑄 = [

176.2 177.9 521 105.8
−365 0 0 0

−545.23
−120.9

−475.9
−559.9

−409.9
−969.9

−831.9
−1087.6

] (3) 

 

𝑅 = [

0.9 335.6 532.2 −105.8
−360 0 0 0
−70.5

−435.5
−67.2

−415.6
−421.2
−109.8

−829.9
−1088.6

] (4) 

 

where, ∆𝜏 is the discretization parameter. 

A collection of sensors has been placed all around the 

microgrids by the utility company so that they can be 

monitored closely. It is therefore possible to construct a linear 

relationship between the measurement and the state variable is 

represented by Eq. (5) : 

 

x(k) = Cy(k) + ω(k) (5) 

 

The measurements are denoted by 𝑥(𝑘), the measurement 

matrix is denoted by C, and the measurement noise with zero 

mean and the covariance matrix 𝐵𝑤  are denoted by 𝑤(𝜏) . 

When it comes to smart grids, the communication 

infrastructure usually serves the purpose of transmitting data 

from sensors to energy management systems (EMS). On the 

other hand, modern smart grids are susceptible to cyber-

attacks due to the weaknesses existing inside the system. In 

most cases, the objective of the attacker is to introduce 

erroneous information into the measurements is performed by 

Eq. (6). 

 

𝑧(𝑘) = 𝐶𝑦(𝑘) + 𝜔(𝑘) + 𝑞(𝑘) (6) 
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where, the measurements that are taken into consideration are 

referred to as 𝑧(𝑘), and 𝑞(𝑘) represents the fake data that was 

entered by the attacker [32-34]. It is predicated on the 

assumption that attackers have full access to the information 

contained within the system, which enables them to take 

control of, record, and change data in accordance with their 

own personal preferences [35]. It is interesting to note that our 

objective is to protect the information about the grid from 

being accessed by intruders so that the power system can 

function effectively. 

 

4. PROPOSED SMART GRID PROTECTOR AND 

POWER MANAGEMENT SYSTEM 

 

When it comes to improving efficiency, security, and 

reliability, the smart grid is typically expected to combine 

communication infrastructure, control, and processing [36]. It 

is possible for the communication infrastructure that supports 

the monitoring and control of smart grids to be vulnerable to 

attacks, despite the fact that it is protected and it is represented 

using matrix Eq. (7). 

( 1)

0.1860+0.0006s 0.1860+0.0006s

0.1860+0.0006s 0.1860+0.0006s 0.1776+0.0005s 0.1776+0.0005s

0.1776+0.0005s 0.1776+0.0005s 0.2325+0.0007s 0.2325+0.0007s

0.2325+0.0007s 0.2325+

1 1
0 0

1 1 1 1
0

( ) ( )
1 1 1 1

0

1 1
0 0

c
E s M s

−

−

− −
+

= +
−

+

0.0007s 12.3512+0.0152s

1
+

 
 
 
 
 
 
 
 
 
 
 

 

(7) 

 

The attacks that were planned involve quantization, which 

is carried out by a uniform quantizer to extract the bit sequence 

𝑟(𝑘)  from measurements. This process aims to construct a 

dependable communication system. The RSC code is 

proposed to incorporate parity bits into the bit sequence. 

Generally, the RSC code is characterized by three parameters: 

the length of the codeword, denoted by 𝑛, the length of the 

message, denoted by 𝑚 , and the length of the constraint, 

denoted by 𝑙, which is written as (𝑛, 𝑚, 𝑙). When referring to 

the code rate, which indicates the number of parity bits added 

to the data stream, the quantity 
1

𝑛

𝑙

𝑛
 is known as the code rate 

and is calculated using Eq. (7). 

There are m-1 memory elements that are specified by the 

constraint length. These memory elements reflect the number 

of bits in the encoder memory that have an effect on the RSC 

generation output bits. Whenever the constraint length m is 

increased, the encoding process will inherently require more 

time in order to carry out the logical operations. There are 

additional benefits associated with the RSC code in 

comparison to the convolutional and turbo encoders. These 

benefits include a lower computation complexity, systematic 

output features, and the absence of an error floor [28]. When 

seen from this perspective, the RSC code (2, 1, 4) and the code 

generator polynomial (1 1 0 1, 1 1 1 1) are both taken into 

consideration in this study about the feedback process. In 

Figure 3, the first generator polynomial is located in the lower 

row, and the second polynomial is located in the upper row of 

the diagram. Therefore, the code rate is half of the normal rate, 

and the RSC process, which is where the logical operations are 

carried out, consists of three memories. 

 

 
 

Figure 3. The RSC encoding procedure is used to protect against the cyber-attack 

 

The RSC procedure is responsible for obtaining the 

codeword, which is then applied to the modulation in order to 

be transmitted. After being modulated, the signal s(k) is 

transmitted across a channel that is noisy. This is the signal 

that was received at the EMS is determine by using Eq. (8). 

 

𝑏(𝑘) = 𝑠(𝑘) + 𝑢(𝑘) (8) 

where, 𝑢(𝑘) represents the additive white Gaussian noise in 

this context. The decoding step is then carried out using the 

soft output Viterbi algorithm (SOVA), which comes after the 

𝑏(𝑘). In order to determine the maximum likelihood, estimate 

for the code sequence based on the signals that have been 

received, the SOVA algorithm is utilized. This particular 

method travels across the entirety of the trellis and then traces 
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back along the path with the highest likelihood, taking note of 

all of the path metrics [37-39]. The output 𝑧𝑑(𝑘) that has been 

decoded is then transferred to the module that is responsible 

for demodulation and de-quantization, and it is ultimately 

utilized for the purpose of state estimate. 

Our proposed system, the Renewable Energy Smart Grid 

Protector and Controller (ReSGPC), integrates several 

components to enhance the security, efficiency, and reliability 

of smart grids. The primary components include: 

 

4.1 Machine learning-based fault detection module 

 

This module employs advanced machine learning 

algorithms to detect noise faults, cyberattacks, and signal 

attenuation in real-time. The primary machine learning 

techniques used are Long Short-Term Memory (LSTM) 

networks, Autoencoder LSTM (AE-LSTM), and Bidirectional 

LSTM (Bi-LSTM) [40]. 

 

(1) Kalman filter-based state estimation 

Kalman filters are utilized to estimate the system state 

accurately. This component continuously monitors the grid's 

operational parameters and updates the state estimates, 

providing real-time data for decision-making [41-43]. 

 

(2) Optimal control law module 

An optimal control law is developed to ensure the stability 

of the power network. This module uses the state estimates 

provided by the Kalman filter to regulate the power flow and 

maintain grid stability [44]. 

 

(3) Cybersecurity layer 

The system incorporates a Recursive Systematic 

Convolutional (RSC) code to protect the communication 

infrastructure. This layer ensures the integrity and security of 

data transmitted across the grid [45]. 

 

4.2 Interaction of components 

 

(1) Data collection and preprocessing 

Sensors distributed across the grid collect real-time data, 

including voltage, current, and frequency measurements. This 

data is pre-processed to remove noise and outliers before being 

fed into the machine learning-based fault detection module 

[46]. 

 

(2) Fault detection and diagnosis 

The preprocessed data is analyzed using LSTM, AE-LSTM, 

and Bi-LSTM networks. These models are trained to recognize 

patterns indicative of faults, cyberattacks, and signal 

attenuation. When an anomaly is detected, the system triggers 

an alert and provides diagnostic information [47-52]. 

 

(3) State estimation 

The data, along with the fault detection results, is fed into 

the Kalman filter-based state estimation module. This module 

combines the real-time measurements with a mathematical 

model of the grid to estimate the current state of the system 

accurately [53]. 

 

(4) Control decision making 

The state estimates are used by the optimal control law 

module to make real-time control decisions. The control law 

aims to optimize the performance index for grid control, 

ensuring efficient power distribution and minimizing losses 

[54]. 

 

(5) Communication security 

The data transmitted between different components of the 

system is protected using RSC codes. This ensures that any 

attempt to tamper with the data is detected and mitigated, 

preserving the integrity of the control actions [55, 56]. 

 

4.3 Machine learning techniques employed 

 

(1) Long short-term memory (LSTM) networks 

LSTM networks are used for their ability to capture 

temporal dependencies in time-series data. They are 

particularly effective in detecting patterns that span over long 

sequences, making them ideal for identifying faults and 

cyberattacks in the grid [57-59]. 

 

(2) Autoencoder LSTM (AE-LSTM) 

AE-LSTM is employed for its capability to learn 

compressed representations of the input data and detect 

anomalies. The autoencoder architecture helps in 

reconstructing the input data and identifying deviations that 

indicate potential issues. 

 

(3) Bidirectional LSTM (Bi-LSTM) 

Bi-LSTM networks process data in both forward and 

backward directions, providing a comprehensive 

understanding of the temporal dependencies. This enhances 

the accuracy of fault detection and diagnosis [60-63]. 

By integrating these components and machine learning 

techniques, the proposed ReSGPC system provides a robust 

solution for smart grid protection and control. The interaction 

between the fault detection module, state estimation, optimal 

control law, and cybersecurity layer ensures that the grid 

operates efficiently and securely, even in the presence of faults 

and cyber threats [64]. 

 

 

5. A PROPOSED FRAMEWORK FOR ESTIMATING 

AND CONTROLLING 

 

The evaluation of the condition of the smart grid is an 

essential component in the process of controlling the operation 

of electricity networks [65-69]. Generally speaking, the 

expression Eq. (9) is that is used to express the expected 

system state estimate for the systems is (3) and (5): 

 

𝑦̂ − (𝑘) = 𝑄𝑑𝑦̂(𝑘 − 1) + 𝑅𝑑𝑗(𝑘 − 1) (9) 

 

The value of 𝑦̂(𝑘 − 1) represents the estimated state of the 

step that came before it. Consequently, the projected error 

covariance matrix can be expressed as Eq. (10): 

 

𝐻 − (𝑘) = 𝑄𝑑𝐻(𝑘 − 1)𝑄𝑑
𝜏 + 𝑂𝑛(𝑘 − 1) (10) 

 

The estimated error covariance matrix of the preceding step 

is denoted by the symbol 𝐻(𝑘 − 1) in this context. The Eq. 

(11) expresses the observation innovation residual 𝑑(𝑘): 

 

𝑑(𝑘) = 𝑧𝑏𝑑(𝑘) − 𝐶𝑦̂(𝑘) (11) 

 

where, 𝑧𝑏𝑑(𝑘) represents the output sequence after it has been 

demodulated and dequantized. One way to express the Kalman 
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gain matrix is given in Eq. (12): 

 

𝐾(𝑘) = 𝐻 − (𝑘)𝐶𝜏[𝐶𝐻 − (𝑘)𝐶𝜏 + 𝐵𝜔(𝑘)]−1 (12) 

 

Presented below is the most recent estimation of the state is 

given in Eq. (13): 

 

𝑦̂(𝑘) = 𝑦̂ − (𝑘) + 𝐾(𝑘)𝑑(𝑘) (13) 

 

After everything is said and done, the revised estimate error 

covariance matrix P(k) is calculated by using Eq. (14): 

 

𝐻(𝑘) = 𝐻 − (𝑘) − 𝐾(𝑘)𝐶𝐻 − (𝑘) (14) 

 

Following an estimation of the current state of the system, 

the control strategy that was proposed is implemented in order 

to regulate the system states. 

The simulation result that will be presented in the following 

section demonstrates that the proposed estimation technique is 

capable of providing an accurate estimation of the state of the 

system. Therefore, in accordance with the separation principle 

[31-38]. it able to implement the control law 𝑗(𝑘) = 𝐺𝑦(𝑘) 

[39-45], where F can be derived by solving the state feedback 

problem that is shown Eq. (15) [70-72]. 

 

𝑗(𝑘) = 𝐺𝑦(𝑘) (15) 

 

To get the lowest possible value of the objective function is 

represented in Eq. (16): 

 

𝑍 = ∑[𝑦′(𝑘)𝑂ℵ𝑦(𝑘) + 𝑗′(𝑘)𝐵ℵ𝑗(𝑘)]

∞

𝑘=0

 (16) 

 

A positive-definite state weighting matrix and a control 

weighting matrix are denoted by 𝑂ℵand 𝐵ℵ , respectively, in 

this context [53-59]. F represents the state feedback gain 

matrix. Using the conventional trace operator and the Eq. (14), 

the Eq. (15) can be represented using Eq. (16) and Eq. (17). 

The Eq. (18) Eq. (19) and Eq.(20) is represented the standard 

format of equation of Eqs. (17) and (18) respectively [66]. 

 

𝑍 = ∑ 𝜏𝑏[𝑂ℵ + 𝐺′𝐵ℵ𝐺]𝐻

∞

𝐾=0

 (17) 

 

𝐻 = (𝑄𝑑 + 𝑅𝑑𝐺)𝐻(𝑄𝑑 + 𝑅𝑑) (18) 

 
(𝑄𝑑 + 𝑅𝑑𝐺)𝐻𝐻−1𝐻(𝑄𝑑 + 𝑅𝑑𝐺)′ − 𝐻 + 𝑦(0)𝑦′(0)

≤ 0 
(19) 

 

(𝑄𝑑𝐻 + 𝑅𝑑𝐿)𝐻−1(𝑄𝑑𝐻 + 𝑅𝑑𝐿)′ − 𝐻 +
𝑦(0)𝑦′(0) ≤0 

(20) 

 

The Eq. (21) can be changed into the following form, 

according to Schur's complement, which is as follows: 

 

[
𝑦(0)𝑦′(0) − 𝐻 𝑄𝑑𝐻 + 𝑅𝑑𝐿

(𝑄𝑑𝐻 + 𝑅𝑑𝐿)′ −𝐻
] ≤ 0 (21) 

 

In the following, it will make an effort to locate a mild 

condition that guarantees the validity of Eq. (22) for any 

beginning condition x(0). This will allow us to avoid the 

necessity of repeating the optimization technique for each 

additional x(0). By solving the following linear matrix 

inequality, it is possible to satisfy the condition that (22) is 

sufficient for any beginning value. 

 

[
𝑆 𝐵ℵ

1
2𝐿̃

𝐿′̃𝐵ℵ

1
2 𝐻

] > 0 (22) 

 

The proposed optimization issue can be phrased is 

represented using Eq. (23) as a final proposition [68]. 

 

min
𝐻̃,𝑆,𝐿̃

𝜏𝑏[𝑂ℵ𝐻̃] (23) 

 

The following is the calculation for the feedback gain matrix 

that has been proposed using Eq. (24). 

 

𝐺 = 𝐿̃𝐻−1̃ (24) 

 

 

6. EXPERIMENTAL RESULTS AND DISCUSSION 

 

Table 1 contains the parameters of the system. In addition, 

the cyber assault pattern that is being evaluated is comparable 

to the model that is presented in. 

 

Table 1. The specifications of the system for the information 

security problem with the smart grid 

 
Particulars Values Particular Values 

𝑂ℵ 𝑑𝑖𝑔 (10−2, 10−2, 101, 10−3) 𝐵ℵ 0.02*𝐼4 

Codes 

generator 
(14/15)𝑜𝑐𝑡𝑎𝑙 ∆𝜏 0.0002 

Code rate ½ Channel AWGA 

Quantization Uniform 16 bits Decoding SOVA 

𝑂𝑛 0.0002*𝐼4 𝐵𝜔 
0.001*

𝐼4 

 

6.1 Software platform 

 

The simulations were conducted using MATLAB, a high-

level language and interactive environment for numerical 

computation, visualization, and programming. MATLAB is 

widely used for designing and simulating control systems due 

to its robust toolboxes and comprehensive mathematical 

functions. 

 

6.2 Simulation duration 

 

The simulation was run for a duration sufficient to capture 

the dynamic behavior and performance of the proposed smart 

grid protection and control system. Each simulation scenario 

was executed for a total of 1000 time steps, allowing for a 

thorough analysis of the system's response to various 

disturbances and operational conditions. 

 

6.3 Assumptions made 

 

Several assumptions were made to simplify the simulation 

and focus on the key aspects of the proposed method: 

 

(1) Grid model 

The smart grid was modeled as an IEEE 4-bus system with 

four distributed energy resources (DERs), specifically solar 
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panels, connected via inverters. The grid parameters were 

based on typical specifications for such systems. 

 

(2) Initial conditions 

The initial state values for the grid and DERs were assumed 

to be at nominal operating points. This assumption ensures that 

the system starts from a stable operating condition. 

 

(3) Noise characteristics 

The process noise 𝑛𝑑(𝑘) and measurement noise 𝜔(𝑘) were 

assumed to be zero-mean Gaussian noise with known 

covariance matrices. This assumption is standard in Kalman 

filter-based estimation techniques. 

 

(4) Communication infrastructure 

The communication links between sensors, controllers, and 

the Energy Management System (EMS) were assumed to be 

secure but susceptible to cyber-attacks. Recursive Systematic 

Convolutional (RSC) codes were used to protect the 

transmitted data. 

 

(5) Cyber-Attacks 

The simulation included scenarios where the grid was 

subjected to cyber-attacks in the form of false data injection. 

These attacks aimed to alter the state measurements received 

by the EMS. 

 

 
 

Figure 4. A comparison of the proposed method with the 

existing one using MSE and SNR analysis 

 

To evaluate the performance, the mean squared error (MSE) 

between the actual state and the estimated state is used as the 

basis for comparison. In the first place, the mean square error 

(MSE) is compared to the signal-to-noise ratio (SNR) in 

Figure 3. When compared to the technique that is currently 

being used, it is clear that the estimator that has been provided 

offers superior performance [69]. it is because the RSC code 

is able to protect impairments, which is the reason for its 

success. In addition to this, SOVA has the capability of 

removing sounds from the signal that is received. In the second 

place, the results of the system state versus the time step are 

displayed in Figure 4 shows a comparison of the proposed 

method with the existing one using MSE and SNR analysis. It 

may be observed that the estimator delivers a performance that 

is satisfactory. Another thing that might be observed is that 

attacks have the potential to make the estimation of the 

system's state less accurate. Inaccurate estimates of system 

states generated by the currently available approach have the 

potential to directly mislead utility engineers, preventing them 

from conducting appropriate remedial control measures and 

dispatch decisions, which can ultimately result in a series of 

power outages. To put it another way, the communication 

infrastructure and estimate technique that has been provided 

would be an excellent choice for defending against cyber-

attacks and providing real-time communication in both 

directions. Additionally, the design control law is 

implemented in the third place. 

Figures 5-8 show the performance analysis actual state and 

predicted data obtained by proposed method with respect to 

the ∆1, ∆2, ∆3, and ∆4 respectively. 

Figure 9 illustrates the performance analysis of the proposed 

method compared to existing methods in terms of efficiency, 

measured using the Mean Squared Error (MSE). Efficiency, in 

this context, refers to the system's ability to optimize resource 

usage, minimize energy losses, and maximize overall grid 

performance. The graph compares the MSE values for 

different scenarios or conditions, denoted as ∆1, ∆2, ∆3, and 

∆4. Lower MSE values indicate better performance. The 

proposed method consistently shows lower MSE values across 

all scenarios, demonstrating superior efficiency in managing 

and controlling the smart grid compared to existing methods. 
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Figure 5. The performance analysis actual state and 

predicted data obtained by proposed method with respect to 

the ∆1 
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Figure 6. The performance analysis actual state and 

predicted data obtained by proposed method with respect to 

the ∆2 
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Figure 7. The performance analysis actual state and 

predicted data obtained by proposed method with respect to 

the ∆3 
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Figure 8. The performance analysis actual state and 

predicted data obtained by proposed method with respect to 

the ∆4 

 

 
 

Figure 9. Performance analysis with respect to efficiency 

(MSE) 

 

Figure 10 presents the performance analysis of the proposed 

method versus existing methods regarding stability and 

security. Stability is evaluated based on the system's ability to 

maintain steady and reliable operation under varying 

conditions, including load changes and disturbances. Security 

measures the system's ability to protect against cyber threats 

and ensure data integrity. The graph compares the MSE values 

for stability and security metrics under different scenarios (∆1, 

∆2, ∆3, ∆4). Lower MSE values indicate better stability and 

security. The proposed method demonstrates significantly 

lower MSE values, highlighting its enhanced stability and 

robust security features compared to existing methods. 

 

 
 

Figure 10. Performance analysis with respect to stability and 

security 

 

 

7. CONCLUSION 

 

This paper focuses mainly on smart grid protection and 

control using machine-learning-based power management 

systems. The proposed method is capable of handling 

cyberattacks, attenuations, faulty systems, and effectively 

controlling. In addition to this, the performance of the 

proposed approach in comparison to the performance of 

conventional ways has resulted in an increase in the efficiency 

which the smart grid possesses. The additional layer of 

protection that the proposed approach offers to the code for the 

system that is responsible for protecting the grid information 

is provided by the proposed method. A control law that is 

optimal is developed by us in order to guarantee the reliability 

of the power network. Within the framework of a convex 

semidefinite programming exercise, the work carry out 

conversion by focusing primarily on the performance index for 

control. The controller is capable of performing all of its 

functions properly, regardless of the beginning values. 

Regardless of the numbers that were initially set, there is a 

significant improvement in the effectiveness of the controller. 

The developed method is validated through the use of 

numerical simulations. The results of this performance 

analysis of the strategy that was proposed demonstrate that the 

way that was advised provides a more effective line of attack. 

The smart grid is a dependable and system-based 

communication infrastructure that incorporates applications 

that integrate renewable resources. This technique provides a 

critical energy management framework for the smart grid. The 
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simulation analysis, considering five cases, demonstrates that 

the proposed method outperforms the conventional method in 

all cases. The proposed method has determined the 

improvement in performance of 0.25%, 0.42%, 0.32%, 0.25%, 

and 0.34% of MSE, ∆1, ∆2, ∆3, and ∆4 respectively. 

 

 

8. FUTURE SCOPE 

 

The integration of machine learning and Kalman filters into 

smart grid protection and control systems heralds a new era in 

power management. This approach promises enhanced 

accuracy in real-time prediction and optimization of grid 

performance, ensuring stability and efficiency. The adaptive 

nature of machine learning algorithms, combined with the 

precision of Kalman filters in estimating system states, allows 

for more effective management of dynamic grid conditions. 

This includes better fault detection, predictive maintenance, 

and load balancing. Future developments could see these 

systems being increasingly autonomous, capable of self-

healing and adapting to evolving energy demands and 

generation patterns. Integration with renewable energy 

sources and storage systems will be key, as will the ability to 

withstand and quickly recover from cyber and physical threats. 

The role of these advanced systems in facilitating smart cities 

and IoT applications is also significant, offering a more 

sustainable and resilient energy future. 
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