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Bipedal locomotion requires a multi-level control strategy for balance and tracking, with 
the zero-moment point (ZMP) serving as a heuristic balance criterion. Maintaining the 
ZMP location within the stability margin indicates stability, but ankle joint actuation 
behavior restrictions are required. This paper focuses on whole-body control of a bipedal 
robot, considering control input limitations. Two dynamical models of bipedal dynamics 
are introduced, integrating center-of-mass (CoM)-based dynamics with joint space 
dynamics. The controlled outputs are the CoM position and joint displacements, while the 
control inputs are the ZMP position and joint torques. Anti-input saturation control is 
considered to ensure safe values for the control inputs, especially for the ZMP and ankle 
joint torque signals. A decentralized adaptive approximation control (DAAC) with a 
saturation compensator is designed. The stability of the proposed controller is proven using 
Lyapunov theory. Simulation experiments are conducted on a planar 6-degrees-of-
freedom (DOF) bipedal robot. The results demonstrate the robustness of the control 
architecture even under a disturbance torque of 10 N.m., ensuring safe stability margins 
for the ZMP and precise tracking for the multi-DOF bipedal system. 
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1. INTRODUCTION

Dynamic mobility of legged robots across difficult terrains
requires considering the robot's dynamics, actuation 
restrictions, and interaction with the environment. Legged 
robots now focus on movement and balancing, with the zero-
moment point (ZMP) or center of pressure (CoP) being crucial 
for balancing [1-4]. The humanoid research community is 
increasingly interested in the complex motion control tasks of 
multi-DOF humanoid robots, particularly those with hyper-
DOF systems. New developments in locomotion control, 
tested on quadrupeds and bipeds, often rely on lower-
dimensional models or quasi-static assumptions, restricting 
the robot's dynamic movement [5, 6]. Optimization-based 
techniques, like non-linear model predictive control (MPC), 
can be used to plan and control movement while accounting 
for the robot's entire dynamics. However, if not warm-started, 
the solver may become trapped in local minima [7, 8]. 

The center of mass (CoM) of a multi-DOF system is a 
promising controllable variable in Cartesian space for mobile 
robots, including biped humanoid robots, requiring a direct 
target location. To address this, a strategy based on whole-
body control (WBC) is used for dynamic movements. Full-
body motion control is based on assigning proper degrees of 
freedom for motion tasks, originating from managing 
redundant manipulators. It addresses tracking performance, 
joint limitations, singular configurations, and self-collision 
avoidance [9]. WBC allows for decoupling control and motion 
planning, executing multiple tasks while maintaining the 
robot's behavior. It uses the robot's entire range of motion and 
degrees of freedom to distribute motion duties across joints, 

optimizing tasks while considering actuation, interaction, and 
system dynamics. WBC uses real-time optimization by 
describing robot dynamics as linear constraints with a convex 
cost function [10-14]. Hirai et al. [15] suggested and 
successfully implemented ZMP modulation control of CoM 
on their real humanoid robots. Position-controllable 
humanoids are proposed in the studies [16, 17], where the 
concept is extended to whole-body motion control. Hyon et al. 
[18] suggested the use of torque-controllable robots and a
resolved acceleration controller for direct acceleration control
of CoM in multi-DOF humanoid robots. By using the
weighted pseudoinverse of the Jacobian from ZMP to CoM,
the redundancy problem was resolved. A novel task space
controller for force-controllable humanoids is proposed in the
study [19]. Caron et al. [20] developed a whole-body
admittance controller that integrates end-effector and CoM
methods, along with quadratic programming wrench
distribution, to improve walking stabilization in linear inverted 
pendulum tracking [21]. Ramuzat et al. [22] compared three
control techniques on the TALOS Humanoid Robot, focusing
on solving locomotion problems such as ascending stairs,
walking on flat and uneven ground, and walking on both. The
first used a hierarchical quadratic program at the velocity level,
the second used a weighted quadratic program called Task
Space Inverse Dynamic (TSID) at the acceleration stage, and
the last used torque level instead.

In light of the above, the limits of the control inputs are often 
integrated with the WBC using quadratic programming 
optimization; however, a few studies have considered bounded 
control (or anti-input saturation) with low-level control for a 
bipedal robot that has fewer computations and is preferred for 
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real-time applications. Robot control input bounds play a 
crucial role in maintaining stability and safety during a robot's 
operation by setting essential limits on the values provided to 
the actuators. These bounds, which consider factors such as 
torque, speed, and environmental restrictions, are crucial for 
regulating the motion of the robot. The maximum and 
minimum values assigned to each actuator are determined 
based on physical constraints and performance requirements. 
Recently, Ghoreishi et al. [23] have proposed an anti-windup 
double hyperbolic sliding mode controller for a three-legged 
robot under torque constraints. Researchers are working on 
developing controllers for actuators with practical limits like 
saturation, dead zone, and hysteresis to improve closed-loop 
system performance and safety. Two approaches include 
changing the control effort signal and building an auxiliary 
system to specify tracking errors, aiming to solve these 
constraints and enhance closed-loop system performance [24-
26]. The contributions of our paper are outlined as follows: 
• It presents an integration of an anti-input saturation

compensator with adaptive control for complex bipedal
robot dynamics, focusing on stabilizing ZMP-based
bipedal locomotion by limiting torque values at ankle
joints.

• It also designs a decentralized adaptive control for high-
DOF bipedal robots, as increasing DOFs complicates the
inherent nonlinear dynamics and makes control tasks
problematic.

The study focuses on modeling a bipedal robot using the
WBC, integrating centroidal dynamics with joint space 
dynamics. Control inputs include ground reaction forces 
(GRFs) and joint torques, while output variables are joint 
states and CoM states. Bounded control is required due to 
constraints on the ankle joints and the GRF values. An anti-
input saturation control is combined with the proposed control 
law. A unified control law is designed for joint tracking and 
compensation of the ZMP error. The control architecture is 
based on the adaptive function approximation technique, 
considering uncertainty in bipedal parameters and dynamics. 
The key idea is that every uncertain term can be represented 
using orthogonal basis functions such as Chebyshev 
polynomials, Fourier series, neural network approximators, 
etc.; see the studies [27-30] for more details. The adaptive law 
for the weighting coefficients is designed using Lyapunov 
theory to ensure stability based on the passivity condition. 
Simulation experiments are implemented on a 6-link bipedal 
robot in the single-support phase of SSP, considering adaptive 
and non-adaptive case studies. The results show the 
effectiveness of the proposed controller. 

The rest of the paper is structured as follows: Section 2 
introduces WBC dynamic modeling. The bipedal robot's 
control over locomotion is thoroughly explained in Section 3. 
Results are presented in Section 4, and conclusions and 
recommendations for further work are made in Section 5. 

2. WHOLE-BODY DYNAMICS

This section integrates Cartesian centroid models with joint
space dynamics to control bipedal locomotion. Two robot 
models have been developed: Model 1, utilizing CoM (trunk) 
dynamics and GRF as control inputs, and Model 2, which 
reformulates centroid dynamics with ZMP locations as input 
signals; refer to Figure 1. The point p is the location of the 
ZMP where the contact force 𝑓𝑓𝑝𝑝 is applied. The base frame is 

assumed to be placed at the CoM (trunk). The base frame can 
be positioned at the fixed-stance foot with more simplified 
dynamics. In Model 1, the floating base frame is positioned at 
the trunk (CoM), while in Model 2, there is a fixed base frame 
at the stance ankle. The (n+6)-DOF dynamics of a bipedal 
model are decoupled for control tasks aimed at complete 
control of bipedal locomotion. The following assumptions are 
imposed [31, 32]. 

Assumption 1: Due to the brief double support phase, the 
gait cycle comprises only a single support phase, SSP. 

Assumption 2: The ZMP location is maintained within the 
stance sole by fixing the stance foot. This assumption is crucial 
to preventing deviations in the ZMP beyond the stability 
margin. 

Assumption 3: There is no variation in the height of the 
trunk (CoM) during locomotion.  
• This assumption aids in designing motion planning and

control tasks through the following:
Decoupling sagittal and frontal plane dynamics using the
linear inverted pendulum model is essential for designing
walking pattern generation.

• Keeping the CoM height constant helps prevent
singularities in the ankle joints.

• It satisfies the passivity condition when applied to linear
CoM dynamics.

Assumption 4: The bipedal robot is governed by floating-
based dynamics, with the CoM as a floating base with 
neglected rotational dynamics. 

Figure 1. A bipedal model in the single contact locomotion 

Remark 1. The main focus of the control problem is to track 
the desired joint trajectories of a bipedal robot while also 
keeping within bounds on ZMP values when tracking the 
desired CoM references. Thus, opting to designate the CoM as 
a floating base is the optimal approach. By designating the 
CoM as a floating base and disregarding rotational dynamics, 
the humanoid system becomes uncoupled, separating the CoM 
dynamics from the joint space dynamics. Selecting a different 
component as a floating base can complicate control and 
motion planning processes. Therefore, if a bipedal system is 
constructed as a coupled system, it will necessitate additional 
efforts in motion planning, stabilization, and low-level control. 
Such tasks are not within the scope of this study. 
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2.1 Model 1 

This model is widely used in the literature and includes 
CoM dynamics combined with link dynamics in joint space 
with base frame positioned at the trunk or the CoM; see, e.g., 
[31]. The equation of motion describing the exact full-body 
dynamics with a single contact point is expressed as [9, 31, 32]. 
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𝑀𝑀11 𝑀𝑀12 𝑀𝑀13
𝑀𝑀21 𝑀𝑀22 𝑀𝑀23
𝑀𝑀31 𝑀𝑀32 𝑀𝑀33
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where, 𝑀𝑀𝑖𝑖𝑖𝑖  is an inertia matrix, 𝑟𝑟𝑐𝑐 = [𝑐𝑐𝑥𝑥 , 𝑐𝑐𝑦𝑦 , 𝑐𝑐𝑧𝑧]𝑇𝑇  is the 
position vector of the floating base, 𝜔𝜔𝑐𝑐 = [𝜔𝜔𝑥𝑥,𝜔𝜔𝑦𝑦 ,𝜔𝜔𝑧𝑧]𝑇𝑇 is the 
angular velocity of the floating base, 𝜂𝜂𝑖𝑖 is an nonlinear vector 
including the Coriolis, centripetal and gravity effect, 𝐼𝐼3 is an 
3×3 identity matrix, 03  is a 3×1 null vector, 𝜃𝜃 ∈ 𝑅𝑅𝑛𝑛  is the 
angular displacement vector of the target biped, 𝜏𝜏 ∈ 𝑅𝑅𝑛𝑛𝑎𝑎 is the 
control joint torques, 𝑛𝑛𝑎𝑎 is the number of actuated joints, 𝐽𝐽 ∈
𝑅𝑅3×𝑛𝑛  is the Jacobian matrix from the floating base to the 
contact point P.  

The following points should be noted: 
• The rotational dynamics of the floating base are considered

in Eq. (1), and hence the system is coupled.
• The system in Eq. (1) is underactuated since 𝑛𝑛𝑎𝑎 < 𝑛𝑛. To

make it clear, assume that the bipedal robot consists of
standard 2 feet, 2 legs, 2 thighs, and a trunk with 2 actuated
ankles, 2 actuated knees, and 2 actuated hips. Thus, we
have 7 links with 6 actuators making the bipedal system is
underactuated.

• Under Assumption 2, the dynamics of stance foot can be
neglected making the system fully actuated in the SSP.

• Under Assumptions 3 and 4, the CoM acceleration in the
z-axis is set to zero with neglected rotational dynamics, and 
hence Eq. (1) reduces to a (n+2) dimension system with
decoupled dynamics. Thus Eq. (1) becomes under
Assumptions 1-4.
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The following benefits arise from the decoupling of the 
CoM dynamics from the joint space robot dynamics in Eq. (2): 
• By ignoring the stance foot's dynamics, the system in Eq.

(2) is fully actuated.
• The CoM dynamics and the joint space dynamics are easily

treated separately. Therefore, the studies [27-30, 33, 34]
focuses on CoM dynamics (or linear inverted pendulum
mode) for motion planning and stabilization, while joint
space dynamics in Eq. (2) are useful in modeling and
controlling the bipedal robot.

• Keep in mind that the controlled output variables are the
CoM and the joint states, while the control input signals
are the GRF and the joint torques.

2.2 Model 2 

This model focuses on the bipedal robot as a rooted system 
at the neglected dynamics stance foot, similar to setting the 
floating base frame at the grounded stance foot. It includes 
ZMP-CoM dynamics and the robot's joint space dynamics, 
expressing the following mathematical relationship between 
ZMP position and CoM [33, 34]. 
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momentum about the CoM. Eq. (3) is important in stabilization 
control of bipedal locomotion and it is similar to the first two 
equations in Eq. (2) related to the CoM dynamics. Eq. (3) can 
be reformulated in a matrix form as 
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Incorporating Eq. (4) with the bipedal model in joint space 
dynamics, considering single point contact, i.e., the SSP, 
yields 
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The following points should be noted, despite the 
similarities between Eqs. (2) and (5): 
• In Eq. (2) the control inputs are the GRF vector and joint

torques, while in Eq. (5) the control input signals are made
up of the ZMP position vector and the joint torques.

• The first two equations of (5) are highly nonlinear due to
the presence of centroid torques, while this is not the case
in Eq. (2).

• By simple manipulation, we can find a mathematical
relation between the ZMP and the ground reaction forces,
and hence the Eqs. (2) and (5) are mathematically
equivalent.

• The key is to stabilize and control bipedal locomotion. We
prefer the modeling in Eq. (5) since it includes the CoM-
ZMP dynamics that are important in the stabilization task.

3. CONTROL DESIGN

The WBC aims to maintain the balance of a bipedal robot
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during environmental interaction. It divides motion tasks into 
trunk (CoM) tasks and lower-limb tasks. The trunk task uses 
Cartesian-based dynamics and control to stabilize trunk 
orientation and CoM location. The lower-limb task controls 
the trajectory of the swing foot using joint space dynamics to 
position the foot with sufficient clearance from the ground. In 
the following, a decentralized adaptive control based on 
passivity is described in detail to stabilize and track the bipedal 
motion. Recalling Eqs. (2) and (5), which can be expressed in 
a unified form as 

𝐷𝐷�̈�𝑞 + 𝐶𝐶�̇�𝑞 + 𝑔𝑔 = 𝑢𝑢 (6) 

with nomenclature defined in (2) and (5). The system in (6) 
has the following properties and assumptions. 

Property 1. Uniform bounds apply to the gravity vector, the 
Coriolis, centrifugal, and inertia matrices. 

These bounds on physical parameters can be determined 
using a CAD/CAM model for the bipedal robot or using one 
of the system identification approaches; see the study [33] for 
more details. 

Property 2. If 𝐶𝐶(𝑞𝑞, �̇�𝑞)  is specified using the Christoffel 
symbols then The matrix 𝑁𝑁 = �̇�𝐷 − 2𝐶𝐶  is a skew-symmetric 
matrix. 

Control input signals in Eq. (2) are subjected to the 
following constraints: 
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A decoupled formulation of Eq. (6) is as follows: 
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For uncertain dynamics, the following control law is chosen: 
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where, 𝜇𝜇𝑖𝑖  is a positive feedback gain, 𝜆𝜆𝑖𝑖  is a time constant 
parameter, 𝛾𝛾𝑖𝑖 is a sliding term gain and the subscripts r and d 

stands for the required and desired references. To estimate the 
uncertainty in Eq. (10), adaptive control based on FAT is 
utilized. The uncertainty is estimated using an orthogonal 
polynomial approximator, presuming that the uncertain 
dynamic matrices and vectors are functions of time. Thus, the 
control law in Eq. (11) becomes  
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where, 𝑤𝑤(.) ∈ 𝑅𝑅𝑛𝑛𝑜𝑜  and 𝜓𝜓(.) ∈ 𝑅𝑅𝑛𝑛𝑜𝑜  represents the weighting 
coefficients and orthogonal basis function vectors, 
respectively, with 𝑛𝑛𝑜𝑜  denoting the number of basis function 
terms. The following closed-loop dynamics result from 
deducting Eq. (11) from Eq. (9): 
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where, 𝜀𝜀𝑖𝑖  is error in the approximation. Achieving stable 
closed-loop dynamics requires the selection of the following 
updated adaptive laws. 
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where, 𝛺𝛺(.) ∈ 𝑅𝑅𝑛𝑛𝑜𝑜×𝑛𝑛𝑜𝑜 is the adaptation's positive-definite gain 
matrix. The stability of the suggested control structure is 
demonstrated by the following theorem. 

Theorem 1. Given 𝛽𝛽𝑑𝑑𝑖𝑖 = 𝛽𝛽𝑖𝑖 , the dynamics of the bipedal 
subsystems in (9), the control laws in Eq. (10), the 
corresponding closed-loop dynamics in Eq. (12), and the 
associated update adaptive laws in Eq. (13) are all stable in 
light of Barbalat's lemma [27]. 

Proof. 
Consider the following non-negative function, 𝑉𝑉𝑖𝑖, for the ith 

subsystem: 
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Calculating the time derivative of Eq. (14) and inserting Eq. 
(12) into it yields
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Combining the adaptive laws in Eq. (13) with the passivity 

740



property results in 

iiiiiiii ssssV εγµ +−−= )sgn(2
 (16) 

Assume that 𝛾𝛾𝑖𝑖 ≥ |𝜀𝜀𝑖𝑖| + 𝜎𝜎𝑖𝑖, it leads to 

02 <−−≤ iiiii ssV σµ (17) 

Eq. (17) is asymptotically stable according to Barbalat’s 
lemma. 

Remark 2. The control input vector in Eq. (6) consists of 
ZMP coordinates and joint torques. To maintain stable and 
balanced locomotion, the ZMP location within the stance foot 
is crucial; otherwise, the bipedal system may become unstable. 
Hence, the ZMP bounds are set based on the foot dimension 
with a safety margin. Ankle joint torque significantly 
influences the robot's balance during locomotion as it directly 
correlates with the ZMP location; hence, the torque must be 
restricted to guarantee safe motion. Refer to pages 98 of the 
study [32] and the study [35] for further information.  

4. SIMULATION RESULTS AND DISCUSSIONS

The section conducts some simulation experiments to
validate the proposed control architecture on a planar 6-link 
bipedal robot shown in Figure 2, using physical parameters 
from Table 1.  

The simulation experiments utilized the 
MATLAB/SIMULINK 2023b package with a fixed time step 
size of 0.01s employing the Dormand-Prince (RK8) formula 
offering eighth-order accuracy. There are two options for 
ground-foot contact. One approach involves establishing a 

compliant contact between the stance foot and ground using a 
mass-spring-damper model, necessitating an assessment of 
ground stiffness and damping as outlined in the studies [36-
38]. Alternatively, a simplified model assumes the bipedal 
robot is affixed to the massless stance foot, disregarding ankle 
height. In this scenario, the ground interacts with the bipedal 
robot through the actuated ankle joint, a technique adopted in 
our simulations. One-level control is intended to stabilize 
bipedal locomotion, which is an intriguing point. The desired 
gait patterns are 0° for the swing foot and 90° for the legs, 
thighs, and trunk links. When examining the sagittal plane 
alone, this position satisfies the equilibrium for bipedal motion. 
For simulation, two scenarios are chosen: Scenario 1 addresses 
tracking control and stabilization, taking input saturation into 
account, and Scenario 2 makes the assumption of an arbitrary 
disturbance force in the presence of an input saturation 
compensator. An impulse torque of 10 N.m. is applied to the 
bipedal model to perturb the dynamic response of the bipedal 
system.  

Table 1. Physical specifications of the bipedal robot 

Components Moments of Inertia 
[kgm2] 

Lengths 
[m] 

Masses 
[kg] 

Foot 0.016 0.3 2 
Shank 0.06 0.45 3.6 
Thigh 0.06 0.45 3.7 
Trunk 0.145 0.45 10 

The following assumptions are imposed in the simulation: 
• The bipedal robot is planar with a constant hip height.
• A direct transmission motor is applied at each joint with a

high gear ratio.
• A sufficient number of orthogonal basis polynomials is

used such that the approximation error could be ignored.

Figure 2. The CoM position error and the ZMP control inputs considering three simulation scenarios 

Figures 3 and 4 show the CoM position error and the ZMP 
position signals, respectively. The ZMP position is considered 
here as a control input with boundary limits based on the size 
of the stance foot. The period of the swing phase is taken as 
0.5 seconds. It should be noted that the position error for the 
CoM will be larger in the presence of a disturbance torque with 
a larger value for control inputs. However, the availability of 
saturation compensators solves the problem of ensuring the 
ZMP limits within the stable region. The disturbance force 

causes an unrealistic shift in the ZMP location, indicating that 
the system is beyond the stability margin and unstable. 
However, the position error of the CoM approaches zero after 
0.4 s; see Figure 3. Nonetheless, bounded control is crucial for 
stabilizing the system. The position error with the saturated 
control inputs for the biped joints is depicted in Figures 3 and 
4 respectively. The position error asymptotically approaches 
zero in the steady-state region. In fact, the tracking position 
error is increased by the use of the anti-input saturation 
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compensator. Nonetheless, its presence is crucial in achieving 
stable locomotion, as the constrained ankle torque values are 
relevant to ZMP stability. The CAD-CAM model proves to be 
beneficial in offering a comprehensive insight into the 
system's dynamic response and certain physical parameters of 
the target system. In our simulation tests, the joint torque 
limitations are arbitrarily chosen to assess the efficiency of our 

proposed controller, ranging from -150 to 150 N.m. Several 
key factors influence the control input limits, including foot 
size, ground incline, and the CoM location of the target bicycle, 
determined by system configurations and modeling. These 
factors impact the ZMP limit, ankle torque values, as well as 
the robot's speed.  

Figure 3. Position error for biped joints considering three scenarios 

Figure 4. Control inputs considering three scenarios. The limits on the joint actuators are set to 150 N.m. to -150 N.m. 
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The following important points should be noted: 
• The period of the SSP is rather short, and hence the control 

law should be fast to approach the desired references. 
• Integrating an anti-saturation compensator into the control 

law may increase the position error. 
• The limits of control inputs should be considered in bipedal 

locomotion since the ankle joint correlates with the 
location of the ZMP within a specific stable region. 

 
 
5. CONCLUSIONS  

 
This paper discusses the development of a decentralized 

adaptive approximation control that addresses saturation 
problems in control inputs. The key idea is to design a unified 
control based on whole-body dynamics, integrating ZMP-
CoM dynamics with the bipedal multibody system. Further 
work is needed to address the multi-phase gait cycle and solve 
discontinuous dynamic responses. The integration of a 
saturation compensator with the control law enhances balance 
and safe locomotion. The human locomotion system is seen as 
a valuable model for biped robots due to its similarities. Recent 
advancements in biped robotics are centered on achieving 
robotic walking that closely mimics human gait. Human gait 
consists of two main phases: stance (DSP) and swing (SSP). 
Foot rotation is a key characteristic of human walking, 
involving heel-strike and toe-off movements as primary 
phases. This ability enables biped robots to reproduce human 
gait patterns, enhancing their walking efficiency and safety. 
Toe-off and heel-strike actions can modify the system's degree 
of freedom (DOF), leading to either under- or over-actuation. 
Consequently, a complete gait cycle is characterized by three 
phases: full actuation, under-actuation, and over-actuation 
when comparing DOF values with actuated joints. The 
challenge with multi-phase locomotion is the discontinuous 
dynamic response during walking phases due to variations in 
configurations and dynamical behaviors for each phase. 
Implementing whole-body dynamics with a floating-base 
dynamic model represented by the trunk proves to be a robust 
approach for multi-contact modeling. Thus, upcoming 
research will concentrate on whole-body motion planning and 
control while considering the entire gait cycle. It is essential to 
conduct a comparative analysis between floating-base 
dynamics and conventional methods that employ a discrete 
model for each walking sub-phase. 
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NOMENCLATURE 

(𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦, 𝑐𝑐𝑧𝑧) the coordinates of the floating base 
CoM center of mass 
CoP center of pressure 
DAAC a decentralized adaptive approximation control 
DOF degrees of freedom 
DSP double support phase 
FAT function approximation technique 
GRF ground reaction force 
MPC model predictive control 
SSP single support phase 
WBC whole body control 
𝑐𝑐𝜃𝜃 a Coriolis and centripetal matrix related to 

the joint space dynamics 
𝑓𝑓𝑝𝑝 a ground reaction force ∈ 𝑅𝑅3 applied to point 

p 
H an inertia sub-matrix associated with joint 

space dynamics 
𝐼𝐼𝑛𝑛×𝑛𝑛 an identity matrix  
M an inertia matrix associated with com 

dynamics 
𝑀𝑀𝑖𝑖𝑖𝑖 an inertia sub-matrix 
n number of degrees of freedom 
𝑛𝑛𝑜𝑜 number of terms of an orthogonal basis 

function 
𝑛𝑛𝑎𝑎 number of actuated joints 
𝑂𝑂𝑛𝑛×𝑛𝑛 a null matrix 
p position vector of the ZMP coordinates 
𝑉𝑉𝑖𝑖 Lyapunov function  

𝑟𝑟𝑐𝑐  a positive vector ∈ 𝑅𝑅3 of a floating base 
𝑠𝑠𝑖𝑖 a sliding velocity variable 
𝑢𝑢𝑖𝑖 control input for subsystem i 
𝑤𝑤(.) weight-coefficient vector ∈ 𝑅𝑅𝑛𝑛𝑜𝑜  
ZMP zero moment point 

Greek symbols 

𝛼𝛼𝑖𝑖 a control tolerance parameter 
𝛽𝛽𝑖𝑖 a control input signal without saturation 
𝜀𝜀𝑖𝑖 modeling error 
𝜂𝜂𝑖𝑖 a nonlinear term vector including Coriolis, 

centripetal and gravity effects 
𝜆𝜆𝑖𝑖 a time constant gain 
𝜏𝜏𝑐𝑐𝑖𝑖   a rate of angular momentum component 

about the COM 
𝜓𝜓𝑖𝑖  an orthogonal basis function vector ∈ 𝑅𝑅𝑛𝑛𝑜𝑜  
𝜔𝜔𝑐𝑐 angular velocity vector ∈ 𝑅𝑅3  of a floating 

base 
𝜃𝜃 angular displacement vector ∈ 𝑅𝑅𝑛𝑛  of the 

biped joints 
𝜏𝜏 a joint torque vector ∈ 𝑅𝑅𝑛𝑛𝑎𝑎 

(.)Ω  an adaptation positive gain matrix oo nnR ×∈

Subscripts 

c floating base 
d desired reference 
r required filtered reference 
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