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The article examines the problem of atmospheric air pollution in the industrial city of 

Ust-Kamenogorsk, Kazakhstan. Due to the problem of inaccuracy of data on the 

concentration and volume of emissions from sources, as well as on changes in harmful 

substances during photochemical reactions in atmospheric air, the inverse problem of the 

source is constructed. Conjugate equations were used to simulate the spread of harmful 

impurities. The numerical realization of the inverse problem is carried out by the iterative 

Landweber method. Data from automated stations for monitoring the distribution of 

pollutants in the environment are used as additional information. The numerical 

calculation was carried out using the example of the distribution of pollutants in the 

atmospheric air of the industrial city of Ust-Kamenogorsk. The visualization of the 

simulation results is presented. The application of the developed model allows us to get 

a more accurate idea of the impact of industrial facilities on air quality and serves as the 

basis for decision-making in the field of regional environmental policy. 
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1. INTRODUCTION

In the modern world, air quality problems have a serious 

impact on people's lives, especially in industrialized cities. The 

lack of clear data and analysis of air pollution in Central Asia, 

in particular in Kazakhstan, is becoming the focus of attention 

of many environmental researchers. 

Assanov et al. [1] analyzed the air quality in the cities of 

Kazakhstan, evaluated the data of the national air pollution 

monitoring network, including the total suspended particles 

(TSP), NO2, SO2 and O3. Excess mortality rates associated 

with PM2.5 exposure have been calculated using the Global 

Exposure Mortality Model (GEMM). On average, in 2015-

2017, the weighted concentrations in the cities of Kazakhstan 

amounted to 157, 51, 29 and 41 μm/m3 for TSP, NO2, SO2 and 

O3, respectively. The results indicate 8,134 deaths of the adult 

population per year associated with PM2.5 in 21 cities of 

Kazakhstan. The death rate varies according to the natural 

norm in different cities, which underlines the need to take 

measures to improve air quality and develop environmental 

policies. 

Kenessary et al. [2] highlights the problem of air pollution 

in Kazakhstan caused by various sources, such as industrial 

enterprises and motor transport. The researchers conducted air 

quality monitoring in 26 cities of the country, revealing high 

levels of pollution, especially in cities with intensive industry. 

The analysis of data taken from stationary observation posts 

showed that the air contains dangerous substances such as 

suspended particles and heavy metals exceeding permissible 

standards. This poses a threat to public health, contributing to 

the development of acute and chronic diseases. 

In addition, there is a shortage of monitoring stations in 

some cities, which underlines the need to expand the spatial 

coverage of the air quality monitoring network in the cities of 

Kazakhstan [1]. 

The result of Kerimray et al.’s work [3] focuses on industrial 

emissions in Kazakhstan, especially in its industrial cities, 

revealing an increase in emission limits in many enterprises. 

Eight of the fourteen cities had high levels of air pollution in 

2019. There is a shortage of monitoring stations, highlighting 

the need to improve the monitoring network. The researchers 

recommend the introduction of strict emission standards for 

coal-fired power plants and heavy industry enterprises, and an 

update of national air quality standards is also required. 

In Assanov et al.’s work [4], researchers from the industrial 

city of Ust-Kamenogorsk (Kazakhstan) first identified the 

sources of air pollution using data from 2017 to 2021. 

Analyses of data on Eastern, Central and Northern Kazakhstan 

showed two categories of pollution - in the cold and warm 

seasons. The concentrations of NO2 and SO2 exceed the 

established norms by 2-3 times. The reasons for this 

phenomenon are the use of coal in the energy sector, especially 

in winter, and the impact of the metallurgical industry. This 

highlights the need for strict standards and measures to reduce 

the impact of industrial sources on air quality. 

Today, researchers are trying to develop better models for 

analyzing and predicting air pollution, given its dynamic and 

complex nature. Modern software applications can be used to 

solve complex problems that are nonlinear and messy. 

A number of air pollution research and analysis methods can 
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be distinguished, including statistical methods and correlation 

analysis [1-5], the use of artificial intelligence and machine 

learning methods [6-8], chemical analytical approaches [9], as 

well as mathematical modeling using systems of atmospheric 

boundary layer equations. 

With the growing demand for more accurate air quality 

assessment systems, mathematical modeling is becoming a 

key tool to overcome the limitations of traditional methods. Its 

advantages include increased accuracy, the ability to work 

with spatial data and information from various sources. 

Mathematical modeling also makes it possible to more 

effectively analyze the impact of various factors on air quality 

and predict its changes in different conditions [10, 11]. 

Lukyanets et al. [12] presents the results of modeling the 

process of distribution of industrial emissions in the 

atmosphere. Using a system of differential diffusion equations, 

the model allows calculating the concentration level of 

aerosols, gases and small particles along the normal from the 

emission source. A theory of impurity scattering has been 

developed to study the patterns of radiation propagation. The 

mathematical model, limited by the interaction of particles, 

was tested for adequacy by comparing it with air monitoring 

data in cities including Almaty, Ust-Kamenogorsk, Pavlodar, 

Atyrau, Krasnodar, Chelyabinsk, Beijing and Shanghai. The 

results show a statistically significant excess of the critical 

levels of SO2 concentration in Atyrau and NO2 content in 

Shanghai. 

An urgent task in the field of science today is the problem 

of preserving environmental sustainability. This issue is 

caused by the intensive development of industry, which is 

accompanied by an increase in industrial emissions that 

negatively affect the environment. Regulation of the level of 

atmospheric pollution involves control over the intensity of 

emissions of harmful substances. Nevertheless, even with an 

extensive network of ground-based observation stations, it is 

not always possible to fully meet the information needs of 

environmental services. An effective solution to this problem 

can be the use of mathematical modeling methods [13, 14]. 

Currently, there are mathematical models for analyzing 

atmospheric processes. When using these models, the 

distribution of atmospheric impurities is usually divided into 

two main types of tasks. In the first type, termed "direct" 

problems, the task involves determining the distribution of 

impurity concentration based on known characteristics of 

impurity sources and surface air layer parameters. The second 

type involves solving "inverse" problems, which entail 

determining the type, coordinates, and intensity of the 

corresponding sources by utilizing data on impurity 

concentration collected at different observation points and 

considering the meteorological conditions [15]. 

In the process of solving problems related to the 

environmental aspect, difficulties arise concerning not only 

the assimilation of measurement data, but also the 

identification of zones of influence of pollution sources on 

various territories. Initially, conjugate equations were used to 

estimate the "value" of particles in calculations of nuclear 

reactors. Later, this method was developed by Marchuk and 

his scientific group to solve specific problems of atmospheric 

dynamics. Solving the related problem allows us to identify 

areas of integration that have a significant impact on the 

territory under consideration. The basics of this approach are 

described in Sasaki’s study [16]. The variational approach has 

also been used to solve problems of atmospheric dynamics [17, 

18]. A fully developed variational algorithm was used in the 

study by Yu and Malanotte-Rezzoli [19] within the framework 

of a nonlinear hydrothermodynamic model. The use of related 

equations and variational methods for solving environmental 

problems is described in the monograph by Marchuk [14]. 

The theory of inverse problems is a dynamically developing 

field within the framework of modern mathematics. Although 

the exploration of inverse problems began relatively recently, 

notable progress has already been made in this field. Within 

the framework of the theory of inverse problems, several 

directions have been identified, explained both by various 

fields of its applications and by types of mathematical 

formulations of inverse problems [16]. Currently, a significant 

number of formulations and methods for solving inverse 

problems have been developed, including those related to 

impurity transfer problems. 

In studies [20, 21], two problems of environmental 

protection are considered. The first is related to the theory of 

control and optimization aimed at minimizing environmental 

damage, and the second concerns numerical modeling of the 

dynamics and transformation of atmospheric gaseous 

pollutants and aerosols. The parameters of the wind field and 

turbulence are calculated on the basis of a three-dimensional 

mesoscale hydrodynamic model. 

In Yu et al.’s study [22], the inverse problem of source 

reconstruction for the convective diffusion equation with 

constant coefficients in a rectangular region is considered. 

Algorithms based on Tikhonov's regularization method are 

proposed to solve this problem. Numerical calculations and 

their analysis are carried out. 

In Kochergin’s work [23], the conjugate problem for the 

passive impurity transfer model is considered, influence 

functions for various regions of the Black Sea are constructed. 

The obtained results of the integration of the conjugate 

problem are compared with satellite data on the concentration 

of the tracer under study in the surface layer of the Black Sea. 

Panasenko and Starchenko’s research [24] is devoted to 

solving inverse problems in the field of ecology, where the 

main requirement is to determine the parameters of an 

instantaneous or permanent source of pollution based on the 

measured values of the impurity concentration and the known 

state of the surface air layer. The paper formulates 

mathematical problem statements and proposes algorithms for 

the numerical solution of conjugate equations using the finite 

volume method and explicit difference schemes. Special 

emphasis is placed on the construction of an algorithm focused 

on the use of supercomputer computing technology. This 

approach assumes an efficient and scalable solution to 

complex inverse problems for estimating atmospheric 

pollution parameters. 

In Kochergin and Kochergin’s work [25], a model of 

passive impurity transfer in the Sea of Azov is considered. 

Based on it, a variational algorithm for identifying the constant 

power of the pollution source is implemented. A test example 

of searching for the optimal power value of a source consistent 

with measurement data is shown. 

Penenko et al. [26] compared two approaches to the inverse 

problem of modeling the chemical composition of the 

atmosphere: one based on available measurements, the other 

based on data obtained during the modeling process. 

Numerical experiments show that the use of simulation data 

can be more efficient, despite the limited measurements. 

A combined numerical model of atmospheric 

thermohydrodynamics and photochemical transport of 

pollutants is described by Aloyan et al. [27]. This model is 
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used to study the complex relationships between chemical and 

thermohydrodynamic processes in the atmosphere of urban 

areas, with a main focus on photochemical transformations. 

The paper presents preliminary numerical results concerning 

the direct problem of concentrations and distribution of ozone, 

as well as other important chemical pollutants in the 

atmosphere. 

In modern practice, ready-made application packages are 

widely used to assess the quality of atmospheric air. These 

packages are integrated software packages designed to analyze 

various atmospheric parameters. It is important to note that 

these packages are mainly designed to solve direct tasks by 

providing information about current concentrations of 

pollutants in the air. The basic principle of operation of these 

packages is the analysis of extensive statistical data obtained 

from a network of monitoring stations. 

Onishi et al. [28] examined the relationship between 

subjective health symptoms and aerosol data obtained from the 

Model of aerosol species in the global atmosphere 

(MASINGAR) provided by the Japan Meteorological Agency. 

The purpose of this study is to apply these data to predict the 

health effects of atmospheric pollutant transport. The results 

obtained indicate an existing relationship between the 

proportion of participants and the surface concentrations of 

each aerosol type under consideration, calculated using 

MASINGAR. 

Using ready-made application packages provides certain 

advantages. First of all, they provide operational data, which 

is a key element for instant response to changes in atmospheric 

conditions. Secondly, they provide ease of use and 

implementation, which makes it possible to effectively apply 

in real time. 

Oxley et al. [29] presents a package of an integrated 

assessment model, which is designed to support the formation 

of policies for the management of air pollutants and 

greenhouse gases. This package provides integrated modeling 

tools capable of quickly and realistically displaying various 

emission scenarios and their environmental impacts. 

Nevertheless, despite their advantages, ready-made 

application packages have their limitations. They are mainly 

focused on solving direct problems and, as a rule, do not 

include an in-depth analysis of the factors influencing the 

formation of pollutants. In addition, their accuracy and spatial 

coverage may be limited based on the distribution of 

monitoring stations. 

On the other hand, there is a growing interest among 

researchers in creating and using more complex models based 

on mathematical modeling and methods of inverse problems. 

These approaches allow for a deeper study of the processes of 

diffusion and transport of pollutants in the atmosphere. 

Mathematical models are not only able to predict current 

concentrations, but also to analyze the effects of pollution 

sources, which is important for developing effective strategies 

to reduce emissions. 

Tong et al.’s work [30] assesses the risks associated with 

dust, emphasizing their importance for human health and 

safety and the environment in the Pan-American region. The 

sources of dust emissions, its characteristics and health effects, 

including asthma and infections, are analyzed. Dust also 

affects ecosystems and economies, highlighting the need for 

coordinated measures to mitigate its harmful effects, such as 

surveillance, soil conservation measures and disease 

surveillance. 

Kulmala et al. [31] examined the importance of turbulence 

in atmospheric processes and its effect on major atmospheric 

phenomena such as precipitation, chemical reactions and the 

formation of aerosol particles. The authors discuss the need for 

a deep understanding of these processes to combat air 

pollution and climate change, and also consider the practical 

aspects of using this knowledge to develop effective strategies 

to improve environmental quality. 

In this paper, the issues of transport of pollutants in the 

atmospheric air of industrial cities are considered with the 

specification of the concentration of emissions from 

manufacturing enterprises. Data on the concentration and 

volume of pollutant emissions from manufacturing plants are 

sometimes inaccurate or change during photochemical 

reactions. Due to these factors, the problem posed relates to 

large systems and is solved as an inverse problem using the 

theory of conjugate equations. Solving the inverse problem 

leads to a gradient iterative method for clarifying emissions 

from sources. 

The level of concentration and volume of emissions from 

pollution sources are specified on the basis of observed data 

from automated monitoring stations (AMS) on the distribution 

of pollutants in the environment. This approach provides a 

more accurate and complete understanding of the impact of 

industrial facilities on air quality and provides a basis for 

support and decision-making in the field of regional 

environmental policy. 

The numerical implementation of the proposed algorithm 

for solving the inverse problem was carried out using the 

example of the spread of pollutants in the atmospheric air of 

the city of Ust-Kamenogorsk, with the clarification of 

emissions data from industrial enterprises of the mining and 

metallurgical industry. These data are being clarified using the 

AMS readings established in the city of Ust-Kamenogorsk. 

The model also takes into account the transformation of 

impurities in the atmosphere. 

The relevance of the proposed approach is to clarify the 

volume and concentration of emissions from industry. 

 

 

2. PROBLEM FORMULATION 

 
When analyzing the processes of single pollution 

propagation, a mathematical model is usually used, which is 

described by a nonstationary partial differential equation of the 

parabolic type. This equation includes convective and 

diffusive terms, as well as components describing the process 

of self-decomposition of matter. With the specified 

meteorological parameters and the results of measurements of 

the impurity concentration at 𝑛 points, the goal is to determine 

the emission power of the atmospheric impurity source. 

To solve the inverse problem for the model of transport of 

pollutants in the atmospheric air of the city of Ust-

Kamenogorsk, taking into account emissions from point 

sources, data from automated monitoring stations are used. 

Since simple interpolation using available data is not enough, 

this approach does not take into account meteorological data 

and the nature of the underlying surface. 

The transfer equation is considered, for which the initial 

territory of the city is reduced to a dimensionless area. In the 

dimensionless computational domain 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1,
0 ≤ 𝑡 ≤ 𝑇: 

 
𝜕𝜑𝑞

𝜕𝑡
+ 𝑢

𝜕𝜑𝑞

𝜕𝑥
+ 𝜐

𝜕𝜑𝑞

𝜕𝑦
= Δ𝜑𝑞 + 𝛼𝑞𝜑𝑞 + 𝛽𝑞 + 𝑓𝑞 (1) 
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𝜑𝑞(𝑥, 𝑦, 0) = 𝜑0(𝑥, 𝑦) (2) 

 
𝜑𝑞(0, 𝑦, 𝑡) = 0, 𝜑𝑞(1, 𝑦, 𝑡) = 0, (3) 

 
𝜑𝑞(𝑥, 0, 𝑡) = 0, 𝜑𝑞(𝑥, 1, 𝑡) = 0, (4) 

 
where, 𝑢, 𝑣  are the components of wind speed, 𝜑𝑞  is the 

concentration of impurities, the power of pollution sources, is 

given as follows: 

 

𝑓𝑞 = ∑ 𝑄𝑗𝛿(𝑟 − 𝑟𝑗)

𝑚

𝑗=1

,  

 
where,  𝑟𝑗  is the radius vector of the location of pollution 

sources, 𝛿(𝑥) is the Dirac delta function, 𝑄𝑗  is the power of 

sources, 𝑚  is the number of pollution sources, ∆𝜑𝑞 =
𝜕

𝜕𝑥
(

𝜕𝜑𝑞

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕𝜑𝑞

𝜕𝑦
). 

Additional information for solving this problem is data on 

the values of pollutants from AMS, which have the following 

form: 

 

𝑝𝑞 = ∑ 𝑔𝑖𝛿(𝑟 − 𝑟𝑖),

𝑛

𝑖=1

  

 

where, 𝑟𝑖 is the radius vector of the AMS location, 𝑔𝑖  is the 

values of pollutants in the AMS, 𝑛 is the number of AMS. 

The presented mathematical model takes into account the 

dynamics of atmospheric processes and the transfer of 

multicomponent gas impurities, including their 

transformations. Therefore, Eq. (1) take into account the 

processes of photochemical transformation and formation of 

harmful impurities as in Danaev et al.’s study [32]. The 

dynamics of the formation of chemical reactions are described 

using equations of chemical kinetics that comply with the laws 

of conservation of mass and number of particles.  

In fractions of the concentration of a harmful substance 𝑞 in 

the impurity, the coefficients 𝛽𝑞 are the constant of the rate of 

formation of the substance, 𝛼𝑞  is the constant of the rate of 

decrease, they are determined experimentally and presented 

for various chemical reactions in Danaev et al.’s study [32]. 

The most priority pollutants for the industrial city under 

consideration are presented below, since data on these 

substances come from AMS, and these substances are also the 

most characteristic for this city. 

 
𝑑𝜑𝐶𝑂

𝑑𝑡
= 𝑘60𝜑𝐶𝐻2𝑂 − 𝑘65𝜑𝐶𝑂 − 𝑘141𝜑𝐶𝑂 + 𝑓𝑐𝑜  

 
𝑑𝜑𝑆𝑂2

𝑑𝑡
= −𝑘6𝜑𝑆𝑂2

− 𝑘93𝜑𝑆𝑂2
− 𝑘115𝜑𝑆𝑂2

− 𝑘116𝜑𝑆𝑂2
− 𝑘139𝑘137𝜑𝑆𝑂2

−𝑘140𝑘137𝜑𝑆𝑂2
− 𝑘147𝜑𝑆𝑂2

− 𝑘148𝜑𝑆𝑂2
− 𝑘149𝜑𝑆𝑂2

−𝑘150𝜑𝑆𝑂2
− 𝑘151𝜑𝑆𝑂2

− 𝑘152𝜑𝑆𝑂2
+ 𝑘62𝜑𝐶𝐻2𝑂 + 𝑓𝑆𝑂2

  

 
𝑑𝜑𝑁𝑂2

𝑑𝑡
= 𝑘7𝜑𝑁𝑂 + 𝑘24𝜑𝑁𝑂 + 𝑘26𝜑𝑁𝑂 + 𝑘32𝜑𝑁𝑂 + 𝑘51𝜑𝑁𝑂 + 𝑘70𝜑𝑁𝑂

+𝑘72𝜑𝑁𝑂 + 𝑘91𝜑𝑁𝑂 + 𝑘117𝜑𝑁𝑂 + 𝑘126𝜑𝑁𝑂 + 𝑘130𝜑𝑁𝑂 + 𝑘36𝜑𝑁𝑂3

+ 𝑘136𝜑𝑁𝑂 + 𝑘10𝜑𝑁𝑂3
+ 𝑘32𝜑𝑁𝑂3

+ 𝑘33𝜑𝑁𝑂3
+ 2𝑘37𝜑𝑁𝑂3

+𝑘43𝜑𝐻𝑁𝑂3
+ 𝑘151𝜑𝑁𝑂3

+ 𝑘155𝜑𝑁𝑂3
− 𝑘8𝜑𝑁𝑂2

− 𝑘9𝜑𝑁𝑂2

−𝑘27𝜑𝑁𝑂2
− 𝑘28𝜑𝑁𝑂2

− 𝑘29𝜑𝑁𝑂2
− 𝑘36𝜑𝑁𝑂2

− 𝑘145𝜑𝑁𝑂2
+ 𝑓𝑁𝑂2

  

 

 

The above differential equations are solved by the Euler 

method, the difference forms of which on the (𝑛 + 1)-th layer 

in time are represented as: 

 

𝜑𝐶𝑂
𝑛+1 =

𝜑𝐶𝑂
𝑛 +𝜏𝛽𝐶𝑂+𝜏𝑓𝐶𝑂

1−𝜏𝛼𝐶𝑂
, 

 
where, 𝛼𝐶𝑂 = −(𝑘65 + 𝑘141), 𝛽𝐶𝑂 = 𝑘60𝜑𝐶𝐻2𝑂. 

 

𝜑𝑆𝑂2
𝑛+1 =

𝜑𝑆𝑂2
𝑛 +𝜏𝛽𝑆𝑂2+𝜏𝑓𝑆𝑂2

1−𝜏𝛼𝑆𝑂2

, 

 
where,  
𝛼𝑆𝑂2

= −(𝑘6 + 𝑘93 + 𝑘115 + 𝑘116 + 𝑘139𝑘137 + 𝑘140𝑘137 +

𝑘147 + 𝑘148 + 𝑘149 + 𝑘150 + 𝑘151 + 𝑘152), 

𝛽𝑆𝑂2
= 𝑘62𝜑𝐶𝐻2𝑂. 

 

𝜑𝑁𝑂2
𝑛+1 =

𝜑𝑁𝑂2
𝑛 +𝜏𝛽𝑁𝑂2+𝜏𝑓𝑁𝑂2

1−𝜏𝛼𝑁𝑂2

, 

 
where,  

𝛼𝑁𝑂2
= −(𝑘8 + 𝑘9 + 𝑘27 + 𝑘28 + 𝑘29 + 𝑘36 + 𝑘145), 

𝛽𝑁𝑂2
= 𝑘7𝜑𝑁𝑂 + 𝑘24𝜑𝑁𝑂 + 𝑘26𝜑𝑁𝑂 + 𝑘32𝜑𝑁𝑂 + 𝑘51𝜑𝑁𝑂 + 𝑘70𝜑𝑁𝑂

+𝑘72𝜑𝑁𝑂 + 𝑘91𝜑𝑁𝑂 + 𝑘117𝜑𝑁𝑂 + 𝑘126𝜑𝑁𝑂 + 𝑘130𝜑𝑁𝑂 +
𝑘136𝜑𝑁𝑂 + 𝑘10𝜑𝑁𝑂3

+ 𝑘32𝜑𝑁𝑂3
+ 𝑘33𝜑𝑁𝑂3

+ 𝑘36𝜑𝑁𝑂3
+ 2𝑘37𝜑𝑁𝑂3

  

+𝑘43𝜑𝑁𝑂3
+ 𝑘151𝜑𝑁𝑂3

+ 𝑘155𝜑𝑁𝑂3
. 

The values of the stoichiometric coefficients 𝑘𝑞 were taken 

in Kulmala et al.’s study [31]. 

 
2.1 Minimization of objective functional 

 
In this part of the work, in order to obtain a more realistic 

picture of pollution, the following algorithm was used to 

assimilate data from the effective use of the pollutant transfer 

model and monitoring data obtained from automated 

monitoring stations. 

Let's consider the inverse problem, in which it is required to 

determine the source based on data received from the 

monitoring system. The essence of the inverse problem is to 

minimize the target Lagrange functional. 

 

𝐿(𝑓𝑞) = ∫ 𝑑𝑡 ∫ [
𝜕𝜑𝑞

𝜕𝑡
+ 𝑢

𝜕𝜑𝑞

𝜕𝑥
+ 𝜐

𝜕𝜑𝑞

𝜕𝑦
− Δ𝜑𝑞 − 𝛼𝑞𝜑𝑞 − 𝛽𝑞

Ω

𝑇

0

− 𝑓𝑞] 𝜑∗𝑑Ω

+ ∑ 𝜆𝑖 ∫ 𝑑𝑡 ∫(𝑝𝑞 − 𝜑𝑞)
2

𝛿(𝑟 − 𝑟𝑖)

Ω

𝑇

0

𝑛

𝑖=1

𝑑Ω, 

(5) 

 
where, 𝜆𝑖  is the preference coefficient. 

To minimize the target functional (5), we define the first 

increment of the functional. This is achieved by considering 

the problem with a small perturbation with respect to Eqs. (1)-

(4). Let's set the increment 𝑓𝑞 + 𝛿𝑓 and enter the following 

notation 𝛿𝜑𝑞 = �̃�𝑞 − 𝜑𝑞 . 

 
𝜕�̃�𝑞

𝜕𝑡
+ 𝑢

𝜕�̃�𝑞

𝜕𝑥
+ 𝜐

𝜕�̃�𝑞

𝜕𝑦
= Δ�̃�𝑞 + 𝛼𝑞�̃�𝑞 + 𝛽𝑞 + 𝑓𝑞 + 𝛿𝑓𝑞 

(6) 

 
�̃�𝑞(𝑥, 𝑦, 0) = 𝜑0(𝑥, 𝑦) (7) 
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�̃�𝑞(0, 𝑦, 𝑡) = 0, �̃�𝑞(1, 𝑦, 𝑡) = 0, (8) 

 

�̃�𝑞(𝑥, 0, 𝑡) = 0, �̃�𝑞(𝑥, 1, 𝑡) = 0, (9) 

 

From the problem (6) – (9), we subtract the problem (1) – 

(4) and get the statement of the problem for 𝛿𝜑𝑞 . 

 
𝜕𝛿𝜑𝑞

𝜕𝑡
+ 𝑢

𝜕𝛿𝜑𝑞

𝜕𝑥
+ 𝜐

𝜕𝛿𝜑𝑞

𝜕𝑦
= Δ𝛿𝜑𝑞 + 𝛼𝑞𝛿𝜑𝑞 + 𝛿𝑓𝑞 (10) 

 

𝛿𝜑𝑞(𝑥, 𝑦, 0) = 0 (11) 

 

𝛿𝜑𝑞(0, 𝑦, 𝑡) = 0, 𝛿𝜑𝑞(1, 𝑦, 𝑡) = 0, (12) 

 

𝛿𝜑𝑞(𝑥, 0, 𝑡) = 0, 𝛿𝜑𝑞(𝑥, 1, 𝑡) = 0, (13) 

 

Consider the first increment of the functional (5): 

 

𝐿(𝑓𝑞 + 𝛿𝑓𝑞) − 𝐿(𝑓𝑞) = 𝛿𝐿 = ∫ 𝑑𝑡 ∫ (
𝜕𝛿𝜑𝑞

𝜕𝑡
+ 𝑢

𝜕𝛿𝜑𝑞

𝜕𝑥
+ 𝜐

𝜕𝛿𝜑𝑞

𝜕𝑦
) 𝜑∗𝑑Ω

Ω

𝑇

0

 

− ∫ 𝑑𝑡 ∫ (
𝜕2𝛿𝜑𝑞

𝜕𝑥2
+

𝜕2𝛿𝜑𝑞

𝜕𝑦2
+ 𝛼𝑞𝛿𝜑𝑞 + 𝛿𝑓𝑞) 𝜑∗𝑑Ω

Ω

𝑇

0

 

+ ∑ 𝜆𝑖 ∫ 𝑑𝑡 ∫ 𝛿𝜑𝑞 ⋅ 2(𝑝𝑞 − 𝜑𝑞)𝛿(𝑟 − 𝑟𝑖)

Ω

𝑇

0

𝑛

𝑖=1

𝑑Ω 

 

By converting this increment, one can obtain the gradient of 

the functional, which is determined through the formulation of 

the conjugate problem and then the following theorem takes 

place. 

The theorem: If 𝜑𝑞 is the solution of the direct problem (1)-

(4), then there is a unique solution 𝜑∗ satisfying the conjugate 

Eq. (14) with conditions (15)-(17): 

 
𝜕𝜑∗

𝜕𝑡
+ 𝑢

𝜕𝜑∗

𝜕𝑥
+ 𝜐

𝜕𝜑∗

𝜕𝑦
= −Δ𝜑∗ − 𝛼𝑞𝜑∗ − 𝛽𝑞

+ 2 ∑ 𝜆𝑖(𝑝𝑞 − 𝜑𝑞)𝛿(𝑟 − 𝑟𝑖)

𝑛

𝑖=1

 

(14) 

 

𝜑∗(𝑥, 𝑦, 𝑇) = 0 (15) 

 

𝜑∗(0, 𝑦, 𝑡) = 0, 𝜑∗(1, 𝑦, 𝑡) = 0, (16) 

 
𝜑∗(𝑥, 0, 𝑡) = 0, 𝜑∗(𝑥, 1, 𝑡) = 0, (17) 

 

To prove this theorem, the Lagrange relation of the 

conjugate operator is used. In functional analysis, the 

Lagrange relation for the conjugate operator is as follows. Let 

us have some linear operator 𝐴 in the Hilbert space 𝐻 and its 

conjugate operator 𝐴∗,  then the Lagrange relation for these 

operators has the form: 

 

⟨𝐴𝑢, 𝑣⟩ = ⟨𝑢, 𝐴∗𝑣⟩  

 
where, 𝑢 and 𝑣 are arbitrary elements of the Hilbert space, and 

⟨⋅,⋅⟩ denotes a scalar product in a given space. This relation 

demonstrates how the operator and its conjugate operator 

interact with the elements of space, preserving the scalar 

product. Therefore, we transform the right part of the first 

increment of the functional so that the function 𝛿𝜑𝑞  stands 

behind the parenthesis sign under the integral, and the 

differential relation containing the function 𝜑∗  is in 

parentheses. For this purpose, we will use piecemeal 

integration: 

 

∫ 𝑑𝑡 ∫
𝜕𝛿𝜑𝑞

𝜕𝑡
𝜑∗𝑑Ω

Ω

=

𝑇

0

∫ (𝛿𝜑𝑞(𝑥, 𝑦, 𝑇) ⋅ 𝜑∗(𝑥, 𝑦, 𝑇) − 𝛿𝜑𝑞(𝑥, 𝑦, 0)

Ω

⋅ 𝜑∗(𝑥, 𝑦, 0) − ∫ 𝛿𝜑𝑞 ⋅
𝜕𝜑∗

𝜕𝑡

𝑇

0

) 𝑑Ω 

∫ 𝑑𝑡 ∫ 𝑢
𝜕𝛿𝜑𝑞

𝜕𝑥
𝜑∗𝑑Ω =

Ω

𝑇

0

∫ 𝑑𝑡 ∫ (𝛿𝜑𝑞 ⋅ 𝑢𝜑∗|
0

1
− ∫ 𝛿𝜑𝑞 ⋅ 𝑢

𝜕𝜑∗

𝜕𝑥
𝑑𝑥

1

0

)

1

0

𝑇

0

𝑑𝑦 

∫ 𝑑𝑡 ∫ 𝑣
𝜕𝛿𝜑𝑞

𝜕𝑦
𝜑∗𝑑Ω =

Ω

𝑇

0

∫ 𝑑𝑡 ∫ (𝛿𝜑𝑞 ⋅ 𝑣𝜑∗|
0

1
− ∫ 𝛿𝜑𝑞 ⋅ 𝑣

𝜕𝜑∗

𝜕𝑦
𝑑𝑦

1

0

)

1

0

𝑇

0

𝑑𝑥 

∫ 𝑑𝑡 ∫
𝜕2𝛿𝜑𝑞

𝜕𝑥2
𝜑∗𝑑Ω

Ω

𝑇

0

= ∫ 𝑑𝑡 ∫ (
𝜕𝛿𝜑𝑞

𝜕𝑥
⋅ 𝜑∗|

0

1

−
𝜕𝜑∗

𝜕𝑥
⋅ 𝛿𝜑𝑞|

0

1
1

0

𝑇

0

+ ∫
𝜕2𝜑∗

𝜕𝑥2
𝛿𝜑𝑞𝑑𝑥

1

0

) 𝑑𝑦 

∫ 𝑑𝑡 ∫
𝜕2𝛿𝜑𝑞

𝜕𝑦2
𝜑∗𝑑Ω

Ω

𝑇

0

= ∫ 𝑑𝑡 ∫ (
𝜕𝛿𝜑𝑞

𝜕𝑦
⋅ 𝜑∗|

0

1

−
𝜕𝜑∗

𝜕𝑦
⋅ 𝛿𝜑𝑞|

0

1
1

0

𝑇

0

+ ∫
𝜕2𝜑∗

𝜕𝑦2
𝛿𝜑𝑞𝑑𝑦

1

0

) 𝑑𝑥 

 
Given the conditions (11) – (13), the first increment of the 

functional has the following form: 

 

𝛿𝐿 = ∑ 𝜆𝑖 ∫ 𝑑𝑡 ∫ 𝛿𝜑𝑞 ⋅ 2(𝑝𝑞 − 𝜑𝑞)𝛿(𝑥 − 𝑥𝑖)

Ω

𝑇

0

𝑛

𝑖=1

𝑑Ω

+ ∫ 𝑑𝑡 ∫ (−
𝜕𝜑∗

𝜕𝑡
− 𝑢

𝜕𝜑∗

𝜕𝑥
− 𝜐

𝜕𝜑∗

𝜕𝑦
) 𝛿𝜑𝑞𝑑Ω

Ω

𝑇

0

 

− ∫ 𝑑𝑡 ∫ (
𝜕2𝜑∗

𝜕𝑥2
+

𝜕2𝜑∗

𝜕𝑦2
+ 𝛼𝑞𝜑∗ + 𝛿𝑓𝑞) 𝛿𝜑𝑞𝑑Ω

Ω

−

𝑇

0

∫ 𝑑𝑡 ∫ 𝛿𝑓𝑞𝜑∗𝑑Ω

Ω

𝑇

0

+ ∫ 𝛿𝜑𝑞(𝑥, 𝑦, 𝑇) ⋅ 𝜑∗(𝑥, 𝑦, 𝑇)

Ω

 

− ∫ 𝑑𝑡 ∫ (
𝜕𝛿𝜑𝑞(1, 𝑦, 𝑡)

𝜕𝑥
⋅ 𝜑∗(1, 𝑦, 𝑡) −

𝜕𝛿𝜑𝑞(0, 𝑦, 𝑡)

𝜕𝑥
⋅ 𝜑∗(0, 𝑦, 𝑡))

1

0

𝑇

0

𝑑𝑦 

− ∫ 𝑑𝑡 ∫ (
𝜕𝛿𝜑𝑞(𝑥,1,𝑡)

𝜕𝑥
⋅ 𝜑∗(𝑥, 1, 𝑡) −

𝜕𝛿𝜑𝑞(𝑥,0,𝑡)

𝜕𝑥
⋅ 𝜑∗(𝑥, 0, 𝑡))

1

0

𝑇

0
𝑑𝑥. 

 
The statement of the conjugate problem (14)-(17) follows 

from the last expression. The theorem is proved. 

By definition, the main part of the functional increment is 

the gradient, i.e. 

 

𝛿𝐿 = ⟨𝛿𝑓𝑞 , 𝐿′𝑓𝑞⟩ = − ∫ 𝑑𝑡 ∫ 𝛿𝑓𝑞𝜑∗𝑑Ω

Ω

𝑇

0

  

 
From here: 

 

𝐿′𝑓𝑛 = 𝜑∗(𝑥, 𝑦, 𝑡; 𝑓𝑞
𝑛) (18) 

 
and the following approximation using the gradient iterative 

method has the form: 

 

𝑓𝑞
𝑛+1 = 𝑓𝑞

𝑛 − 𝜉 ⋅ 𝐿′𝑓𝑞
𝑛 (19) 
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2.2 Implementation algorithm 

 

The implementation algorithm is presented as follows: 

1. Choose the initial approximation 𝑓𝑞
0. 

2. Let 𝑓𝑞
𝑛 be known, numerically solve the direct problem 

(1)-(4) and find 𝜑𝑞(𝑥, 𝑦, 𝑡; 𝑓𝑞
𝑛). 

3. We minimize the functional 𝐿(𝑓𝑞
𝑛) by the formula (5). 

4. If the value of the functional is not small enough, then 

solve the conjugate problem (14)-(17). 

5. Calculate the gradient of the functional by the formula 

(18). 

6. Calculate the following approximation by the formula 

(19). 

 

2.3 Dimensionless formulation and difference schemes of 

equations 

 

To reduce the equations to a dimensionless form, we denote 

the characteristic values or scales of length, time, velocity, 

concentration of impurities, respectively, in 𝐿, 𝑇, 𝑈∗, 𝜑𝑞
∗ . 

The corresponding dimensionless quantities are defined as 

follows: 

 

�̅� =
𝑥

𝐿
, �̅� =

𝑦

𝐿
, 𝑡̅ =

𝑡

𝑇
, �̅� =

𝑢

𝑈∗  , �̅� =
𝜐

𝑈∗ ,

�̅�𝑞 =
𝜑𝑞

𝜑𝑞
∗. 

 

where, 𝑡̅ is the dimensionless time, �̅�, �̅� is the dimensionless 

length, width and height, �̅�, �̅�  are the dimensionless 

components of velocity, 𝐻0 =
𝑇𝑈∗

𝐿
 is the homochrony number, 

𝐴 = 𝑈∗𝐿 is the dimensionless number of turbulent exchange. 

Turning to dimensionless quantities for Eq. (1) of impurity 

transfer and transformation, we obtain: 

 
𝜑𝑞

∗

𝑇

𝜕�̅�𝑞

𝜕𝑡̅
+

𝑈∗𝜑𝑞
∗

𝐿
(�̅�

𝜕�̅�𝑞

𝜕�̅�
+ �̅�

𝜕�̅�𝑞

𝜕�̅�
)

=
𝜑𝑞

∗

𝐿2 (
𝜕

𝜕�̅�
(

𝜕�̅�𝑞

𝜕�̅�
) +

𝜕

𝜕�̅�
(

𝜕�̅�𝑞

𝜕𝑦
)) +

𝐿

𝑈∗ 𝛼𝜑𝑞

+
𝐿

𝑈∗𝜑∗
(𝛽𝑞 + 𝑓𝑞) 

(20) 

 

where, �̅�𝑞 is the dimensionless concentration of impurities. 

Let's consider the direct problem (1)–(4) in discrete form. 

Let's build a grid 𝜔ℎ,𝜏 with a step ℎ = 1/𝑁, 𝜏 = 𝑇 𝑁𝑡⁄  in the 

area under study, where 𝑁, 𝑁𝑡 are positive integers. 

Then, in the grid 𝜔ℎ,𝜏 = {𝑥𝑖 = 𝑖ℎ, 𝑦𝑗 = 𝑗ℎ, 𝑡𝑛 = 𝑛𝜏; 𝑖, 𝑗 =

0, 𝑁, 𝑛 = 0, 𝑁𝑡} , we write down the corresponding direct 

difference problem. Thus, the problem (1)–(4) has the 

following form: 

 

1

𝐻0

𝜑𝑖𝑗
𝑛+1−𝜑𝑖𝑗

𝑛

𝜏
+

1

2
((𝑢 + |𝑢|)

𝜑𝑖𝑗
𝑛 −𝜑𝑖−1𝑗

𝑛

ℎ1
+ (𝑢 −

|𝑢|)
𝜑𝑖+1𝑗

𝑛 −𝜑𝑖𝑗
𝑛

ℎ1
) +

1

2
((𝑣 + |𝑣|)

𝜑𝑖𝑗
𝑛 −𝜑𝑖𝑗−1

𝑛

ℎ2
+ (𝑣 −

|𝑣|)
𝜑𝑖𝑗+1

𝑛 −𝜑𝑖𝑗
𝑛

ℎ2
) =

𝐿

𝑈∗ 𝛼𝑞𝜑𝑖𝑗
𝑛 +

𝐿

𝑈∗𝜑𝑞
∗ (𝑓𝑖𝑗

𝑛 + 𝛽𝑞) +
1

𝐴
(𝜑�̅�𝑥,𝑖𝑗

𝑛 +

𝜑�̅�𝑦,𝑖𝑗
𝑛 )  

(21) 

 

with homogeneous boundary conditions of the first kind 

 

𝜑0,𝑗
𝑛 = 𝜑 𝑖,0

𝑛 = 𝜑 0,𝑁𝑥
𝑛 = 𝜑0,𝑁𝑦

𝑛 = 0,  

 

and the initial condition 

 

𝜑𝑖𝑗
0 = 𝜑0𝑖,𝑗 .  

 

We will solve the conjugate problem (14)-(17) using the 

following difference scheme: 

 

1

𝐻0

𝜑𝑖𝑗
∗𝑛+1 − 𝜑𝑖𝑗

∗𝑛

𝜏
+

1

2
((𝑢 + |𝑢|)

𝜑𝑖𝑗
∗𝑛 − 𝜑𝑖−1𝑗

∗𝑛

ℎ1

+ (𝑢 − |𝑢|)
𝜑𝑖+1𝑗

∗𝑛 − 𝜑𝑖𝑗
∗𝑛

ℎ1

)

+
1

2
((𝑣 + |𝑣|)

𝜑𝑖𝑗
∗𝑛 − 𝜑𝑖𝑗−1

∗𝑛

ℎ2

+ (𝑣 − |𝑣|)
𝜑𝑖𝑗+1

∗𝑛 − 𝜑𝑖𝑗
∗𝑛

ℎ2

)

=
1

𝐴
(−𝜑�̅�𝑥,𝑖𝑗

∗𝑛 + 𝜑�̅�𝑦,𝑖𝑗
∗𝑛 )

+
2𝐿

𝑈∗𝜑𝑞
∗

∑ 𝜆𝑘(𝑔𝑖𝑗
𝑛 − 𝜑𝑖𝑗

𝑛  )𝛿(�̅� − �̅�𝑘)

𝑛

𝑘=1

 

(22) 

 

with homogeneous boundary conditions of the first kind 

 

𝜑 0,𝑗
∗𝑛 = 𝜑 𝑖,0

∗𝑛 = 𝜑0,𝑁𝑥
∗𝑛 = 𝜑 0,𝑁𝑦

∗𝑛 = 0,  

 

and the initial condition 

 

𝜑∗
𝑖𝑗
𝑁𝑡 = 0.  

 

 

3. NUMERICAL RESULTS AND DISCUSSION 

 
To solve the problem, the following initial approximation is 

chosen in the form of a Gaussian distribution: 

 

𝜑0(𝑥, 𝑦) =
�̅�𝑗

2√𝜇𝜎
𝑒

−√
𝜎
𝜇

((𝑥−𝑥𝑗)
2

+(𝑦−𝑦𝑗)
2

)
   

 

where, 𝜇 is diffusion coefficient of a substance, 𝜎 is parameter 

associated with the characteristics of the pollutant source. It 

reflects the radius of the source. 𝑥𝑗 , 𝑦𝑗 are the coordinates of 

sources.  

The iterative Landweber method was used to solve the 

specified inverse problem. 

The following numerical values were used as a 

characteristic scale of length, time, and velocity: 𝐿 =
35000 м, 𝑇 = 3600 𝑠𝑒𝑐, 𝑈∗ = 10 𝑚 𝑠𝑒𝑐⁄ . 

Data on gross emissions from sources were taken from 

environmental statistics of the Bureau of National Statistics of 

the Agency for Strategic Planning and Reforms of the 

Republic of Kazakhstan for 2021 [33]. 

To calculate the sources of the spread of the harmful 

substance CO, three production and industrial facilities were 

considered - the Metallurgical Complex of Kazzinc LLP, 

Sogrinskaya CHP, Ust-Kamenogorsk CHP (Figure 1). 

Air pollution data is received every 20 minutes from AMS. 

This data is transmitted online and securely stored on a server 

hosted in the Data Center of Akademset LLP. The data 

obtained is available in CSV format for analysis or use. 

Chemical compounds CO, SO2 and NO2 were selected to 

carry out a computational experiment on the spread of 

pollutants. These substances are considered as the most 

dangerous for the environment, and on the other hand, their 
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concentrations are regularly recorded by AMS for the city of 

Ust-Kamenogorsk. 

The value of stoichiometric coefficients was assumed as in 

[32]. 

For the differential equation of the chemical substance CO, 

the value of stoichiometric coefficients was taken as: 𝑘60 =
5, 1 ∗ 10−5, 𝑘65 = 2, 2 ∗ 10−13,𝑘141 = 4, 3 ∗ 10−15. 

Similarly, for differential equations describing the 

propagation of chemicals SO2 and NO2, the corresponding 

stoichiometric coefficients were taken into account: 

For SO2:  = 1 ∗ 10−16 , 𝑘93 = 2 ∗ 10−17 , 𝑘115 = 1,75 ∗
10−14 , 𝑘116 = 1,75 ∗ 10−14 , 𝑘139 = 2,6 ∗ 10−15 , 𝑘137 =
1,4 ∗ 10−5 , 𝑘140 = 1,7 ∗ 10−12 , 𝑘147 = 6,3 ∗ 10−14 , 𝑘148 =
1 ∗ 10−22 ,𝑘149 = 1,5 ∗ 10−12 , 𝑘150 = 1 ∗ 10−18 , 𝑘151 = 1 ∗

10−20, 𝑘152 = 1 ∗ 10−17, 𝑘62 = 6 ∗ 10−16. 

For NO2 : 𝑘7 = 3 ∗ 10−11, 𝑘24 = 1,8 ∗ 10−14, 𝑘26 = 8,1 ∗
10−12 , 𝑘32 = 1,9 ∗ 10−11 , 𝑘51 = 7 ∗ 10−12 , 𝑘70 = 8,8 ∗
10−12 , 𝑘72 = 8,7 ∗ 10−12 , 𝑘91 = 1,4 ∗ 10−12 , 𝑘117 = 1,75 ∗
10−14, 𝑘126 = 8,1 ∗ 10−12, 𝑘130 = 8,1 ∗ 10−12, 𝑘136 = 7,6 ∗
10−12 , 𝑘10 = 1 ∗ 10−11 , 𝑘32 = 1,9 ∗ 10−11 , 𝑘33 = 2,1 ∗
10−1 , 𝑘36 = 7,5 ∗ 10−15 , 𝑘37 = 2,6 ∗ 10−15 , 𝑘43 = 7,8 ∗
10−7 , 𝑘151 = 1 ∗ 10−20 , 𝑘155 = 4,3 ∗ 10−12 , 𝑘8 = 2,25 ∗
10−11 , 𝑘9 = 9,3 ∗ 10−12 , 𝑘27 = 7,8 ∗ 10−3 , 𝑘28 = 2,4 ∗
10−11 , 𝑘29 = 2,9 ∗ 10−17 , 𝑘36 = 7,5 ∗ 10−15 , 𝑘145 = 1,4 ∗
10−11.  

Figure 1(a) and (b) show the locations of the AMS stations 

and the sources of emissions in the city Ust-Kamenogorsk in a 

geographical coordinate system. 

 

  
(a) Terrain map (b) Topographic map 

 
Figure 1. Location of AMS and pollution sources for pollutant CO 

 

  
(a) Isolines of distribution (b) Graph of distribution 

 
Figure 2. Distribution of pollution from three sources of emissions for pollutant CO in the case when speed components are 5 

m/s 
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Figure 3. 3D version of distribution of pollution from three 

sources of emissions  

 

Figure 2(a), (b) and Figure 3 show the distribution of the 

pollutant CO from three sources. According to the figures, the 

step-by-step distribution of the concentration of the pollutant 

CO can be seen in the atmosphere of the city of Ust-

Kamenogorsk from three sources. It can be seen from the 

graphs that the pollutant is distributed from sources depending 

on the characteristics of atmospheric conditions, traffic flows, 

as well as the topography of the area. This visualizes the 

dynamics of pollution distribution in the environment and 

helps to identify the areas with the highest concentration of the 

substance. 

Numerical results of the inverse problem of source 

restoration demonstrate convergence to an exact solution. 

Based on the data presented in Figure 4, it can be argued that 

the value of the functional decreases to the level of 10−9 after 

33 iterations. Analyzing Figure 5, we notice that the norm of 

the difference between the exact and reconstructed functions 

decreases to a value less than 10−2 , which indicates that a 

minimum has been reached. 

 

 
 

Figure 4. Graph of the functional 𝐿(𝑓𝑛) 

 
 

Figure 5. The norm of the difference between the exact 

function and the reconstructed function ‖𝑓 − 𝑓𝑛‖ 

 

There are a number of models that allow you to simulate the 

spread of pollutants in the atmosphere, such as Box Models, 

Gaussian Models, Eulerian Model, Lagrangian Model, CFD 

Models, Aerosol Dynamic Models [34-37]. Some of them 

have disadvantages: they are stationary, do not take into 

account photochemistry and transformation of impurities, 

require large computing resources, etc.  

The model considered in this paper offers a comprehensive 

solution combining the advantages of various methods and 

integrating technologies for more accurate and effective 

forecasting of air quality and atmospheric processes, such as 

accounting for the formation and transformation of harmful 

chemicals, data assimilation, wind direction, while spending 

less time for calculation. 

This model allows you to identify the most vulnerable areas 

of an industrial city to improve air quality. By clarifying the 

concentration and volume of emissions from point sources, it 

will be possible to more accurately assess the risks to the urban 

environment. And also to offer recommendations to industrial 

enterprises, traffic management organizations, thermal power 

plants, the Department of Environmental Protection and local 

executive bodies to reduce the concentration of harmful 

impurities [7]. 

This work is part of a research project aimed at creating a 

geographic information system (GIS) for environmental 

monitoring. This model is integrated into the GIS system and 

the results of the model will be displayed on the developed 

information and analytical platform. 

In the future, this model can be adapted for other industrial 

cities, as well as additional information, it will be possible to 

consider not only the data of the monitoring station, but also 

mobile sensors and remote sensing data. It is planned to 

consider other methods for solving this model, which will 

allow you to get a better result in less iteration and computing 

resources. 

 

 

4. CONCLUSION 

 

A review of the literature devoted to the study of tasks for 

the restoration of sources of atmospheric air pollution has been 

conducted.  
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The formulation of the problem of transport of pollutants is 

formulated taking into account photochemical transformations. 

An algorithm for solving the inverse problem is 

mathematically justified to clarify incomplete and inaccurate 

data from pollution sources.  

It is shown that this algorithm allows to obtain a more 

accurate and complete picture of the concentration of 

pollutants in the atmospheric air of the city, since the 

mathematical model takes into account meteorological 

parameters and data from pollution sources. The developed 

algorithm corrects the data of pollution sources based on the 

AMS readings. 

To illustrate the possibilities of the proposed method, the 

created software application implementing the method was 

used to simulate the transport of pollutants in the atmospheric 

air of the industrial city of Ust-Kamenogorsk. Incomplete and 

inaccurate data on emissions from industrial enterprises are 

clarified through the data observed by AMS.  

The inclusion of impurities and photochemical reactions 

characteristic of the city in the transformation model 

complements the idea of the impact of industrial facilities on 

air quality. The results obtained are of great practical 

importance for the development of effective strategies in the 

field of regional environmental policy and provide a complete 

picture of the air conditions of industrial cities. 
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NOMENCLATURE 

 

GEMM Global Exposure Mortality Model  

TSP Total suspended particles  

MASINGAR Model of aerosol species in the global 

atmosphere 

AMS Automated monitoring stations  

CHP Combined Heat and Power 

CSV Comma-Separated Values 

CFD Models Computational Fluid Dynamics Models 

GIS Geographic information system  
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