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 Lightweight cryptographic algorithms like Speck, which are a family of block ciphers 

developed by the US National Security Agency (NSA), have become popular because of 

their efficient performance and small operational size. This paper introduces the execution 

on a parallel multi-core processor of the optimized version of the Speck cipher. However, 

this proposition fulfils the increased demand for developing quick and ultra-lightweight 

ciphers. In this work, this is addressed by optimizing the speck128/128 cipher by reducing 

its number of rounds to five. The optimization is accomplished by adding the dynamic 

substitution layer to increase the randomness of the cipher, which allows us to reduce the 

speck rounds. We conducted tests such as statistical, randomness, and cryptanalysis tests 

for linear and differential attacks on the optimized speck. The security results show that 

the optimized speck overcomes the original speck security level. The conducted 

experiments show that the new version of the speck runs faster than the original one in 

terms of execution time and throughput. The parallel execution over a multicore processor 

is applied, and its speedup ratio is equal to 2.64 when it's compared to the parallel 

execution of the original speck. Different message sizes and thread configurations are 

used in this work. The sequential execution of both speck ciphers is computed in terms of 

execution time and throughput, and the acceleration ratio of the optimized speck in this 

case is equal to 2.63. 
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1. INTRODUCTION 

 

Given the availability of resource limited devices, including 

those that are connected to Internet of Things (IoT), 

lightweight cryptography has become an important research 

topic. Furthermore, when it comes to these low-end devices 

with limited processing power and memory, implementation 

of any robust cryptosystems is often hampered due to their 

strong security [1]. 

Recently, a lot of attention has been focused on Speck; a 

lightweight block cipher because it operates efficiently in this 

context and can be easily implemented. In 2013, the United 

States’ National Security Agency (NSA) introduced Speck 

cipher as an alternative to AES which was more affordable. 

These are classes of block ciphers that work on 32- or 64-bit 

words depending on the key sizes and use fixed number of 

cycles. For instance, if one needs secure communication but 

has devices having limitations in resources, then he or she will 

definitely choose Speck since its simplicity and efficacy 

appear to be very appealing [2]. 

However much beneficial Speck maybe but there is more 

need for enhancing its operations especially through making 

them more efficient so as to meet the growing demand for 

cryptographic algorithms. Parallel processing is a 

computational methodology utilized to partition the running of 

an algorithm for cryptography into more manageable tasks. 

These tasks are then executed concurrently on several 

computing resources, including multi-core central processing 

units (CPUs). 

In this work, we proposed new configured speck cipher to 

increase its performance capabilities. The approach prioritizes 

the reduction of round count and is executed on multicore 

CPUs with the intention of enhancing performance. In addition, 

the parallel implementation was devised strategically to take 

advantage of the capabilities of the multi-core architecture of 

modern CPUs. By utilizing the CTR mode of operation, the 

proposed parallel implementation of Speck achieves a high 

degree of parallelism and enables efficient data encryption and 

decryption. This work examines the outcomes of the security 

analysis and assesses the performance of the parallel 

implementation in relation to the original Speck algorithm. It 

evaluates the implementation’s efficacy in terms of throughput 

and speedup. 

The rest of this paper is organized as follows. Section 2 

provides a brief overview of the related works. Section 3 

describes the background of Speck encryption. Section 4 

describes the proposed optimized Speck algorithm. Sections 5 

demonstrates the parallel implementation of the optimized 

Speck and its original version on multi-core CPU. Section 6 

validates and compares the security results of the proposed 

optimized Speck cipher. Section 7 presents the experimental 

results of sequential and parallel implementations. Section 8 
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concludes the proposed work and summarizes the obtained 

results. 

 

 

2. RELATED WORKS 

 

The two primary categories of encryption methods are 

symmetric and asymmetric. The symmetric-key strategy is 

favoured in practical implementations because it requires less 

computational complexity, memory usage, and resources than 

the asymmetric key scheme. Stream ciphers and block ciphers 

are the two main types of symmetric ciphers. The Counter 

mode (CTR) variation of AES is one of the most common 

implementations of this widely-used algorithm [3, 4]. The 

block cipher functions as a stream cipher here because the 

ciphering process is decoupled from the plaintext. To achieve 

the appropriate degree of security, however, block ciphers 

often need numerous rounds. Feistel or Substitution-

Permutation Networks (FN or SPN) may form the basis goal 

of keeping the confusion and diffusion features intact by 

increasing the number of rounds.  Several notable research 

endeavours have been dedicated to exploring innovative 

techniques and optimizations for reducing the number of 

rounds in Speck encryption, aiming to enhance its 

performance without compromising security. In previous 

research, researchers of Ren and Chen [5], and Gohr [6] 

utilized deep learning and cryptanalysis approaches on 

reduced Speck to achieve reductions to 11 rounds. In contrast, 

researchers of Sleem and Couturier [7], Yue and Wu [8] 

focused on reducing the number of rounds of Speck to 7 for 

lightweight cryptographic schemes, with the former proposing 

an ultra-lightweight cryptographic scheme for IoT and the 

latter presenting an improved neural differential distinguish 

model for the lightweight cipher Speck. 

Cryptanalysis studies have been made in the state-of-the-art 

researches to determine the resistance of speck cipher when 

reducing its number of rounds.  A new method for developing 

lightweight and universally applicable deep learning-aided 

differential distinguishers is presented by Liu et al. [9]. The 

work of differential cryptanalysis against the NSA block 

cipher SPECK32/64 demonstrates how traditional approaches 

in cryptanalysis have been advanced by the inclusion of deep 

learning techniques when the speck rounds are reduced. 

While demonstrating the effectiveness of deep learning in 

cryptanalysis, the work of Deng et al. [10] break new ground 

by incorporating attention processes into differential 

cryptanalysis on SPECK. Their results outperform those of 

classic residual networks in terms of accuracy and 

interpretability, uncovering possible vulnerabilities in the 

process. 

An enhanced method of differential-neural cryptanalysis for 

round-reduced is introduced by Zhang et al. [11]. They 

outperform DDT-based approaches in certain rounds after 

using a neural network to improve the accuracy of neural 

distinguishers. They accomplish realistic key recovery attacks 

by enhancing both classical differentials and neural 

distinguishers; this raises the attack threshold by two rounds, 

allowing assaults on up to 17 rounds. 

By continually striving to reduce the number of rounds in 

Speck encryption, this work presents an innovative approach 

that significantly minimizes the number of Speck128/128 

rounds to 5. The proposed work shows a strong design that is 

specifically made for the parallel architecture of multi-core 

CPUs. 

3. SPECK CRYPTOGRAPHY 

 

Speck, a symmetric key block cipher, is an algorithm that 

provides secure and efficient methods of encoding or decoding 

data. The lightweight cipher Speck was introduced by the 

National Security Agency (NSA) of the United States in 2013. 

It belongs to a family of ciphers named ARX (Addition/ 

Rotation/ XOR) which are renowned worldwide. Speck is a 

suitable encryption technique for many applications that 

require data integrity and confidentiality because it is very 

efficient and straightforward in its operation. Speck works on 

blocks of data with predetermined length using a single key 

for both encryption and decryption processes. Maximum 

quantity of data that can be processed in a single operation and 

level of security are directly affected by the block and key 

sizes. 

In this work, a Speck cipher with a block size of 128 bits 

and a key size of 128 bits are used, ensuring strong 

cryptographic capabilities. The speck function in this 

configuration takes 32 rounds. The Speck round function can 

be broken down into three distinct operations: XOR, modulo 

addition, and rotation, as shown in Eq. (1). 

 

Li+1 = ((Li ≫ α) ⊞ R) ⊕ ki Ri+1 = (Ri ≪ β) ⊕ 

Li+1  
(1) 

 

In this case, Li and Ri denoted the left and right halves of 

the data at round i, respectively. ki denotes the round key at 

round i, and α and β are the rotation constants. Figure 1 shows 

the CTR Speck round function. 

 

 
 

Figure 1. Speck encryption function 

 

 

4. THE PROPOSED OPTIMIZED SPECK CIPHER 

 

The proposed optimized SPECK algorithm employs a 

substitution table to reduce the number of SPECK rounds, 

thereby improving the efficiency of the encryption process. 

We started with iterative testing and experimentation to see 

how various changes affected the cipher's efficiency and 

security. To assess the cryptographic properties, the fine-tune 

settings like the number of rounds, the size and structure of the 

S-box is used. Starting with a single Speck round, we then 

applied randomization and statistical testing as part of our 

optimization method and so on till reaching to the acceptable 

security level. Using this strategy, we were able to determine 

the optimization threshold at which we could achieve our 
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desired degree of security. The Speck-Encrypt algorithm 

accomplishes this optimization by accepting the key schedule, 

input data, output buffer, initialization vector (IV), and 

substitution box (Sbox) as parameters. The optimized Speck 

encryption function, illustrated in Figure 2, incorporates the 

substitution box subsequent to every Speck round. 

 

 
 

Figure 2. The proposed optimized speck encryption function 

 

Algorithm 1 The Optimized SPECK Encryption 

                      Algorithm 

1: procedure Speck-Encrypt (keySchedule, in, 

                        out, iv, Sbox, messageSize) 

2:  Sbox ← RC4(key_schedule, key_size) 

3:  for i = 0 → message size do 

4:  iv[0] ← iv[0] + i 

5:  crypted_iv[0] ← iv[0] 

6:  crypted_iv[1] ← iv[1] 

7:  for j = 0 → 5 do 

8:  SpeckRound(cryptediv[1], cryptediv[0], 

     keySchedule[j]) 

9:  cryptediv[0] ← Substitution(cryptediv[0], 

     Sbox) 

10: out[i] ← crypted_iv[0] ⊕ in[i] 

11: out[i + 1] ← crypted_iv[1] ⊕ in[i + 1] 

12: Update Sbox ← ROTL(Sbox, 

      crypted_iv[0]&8) 

 

Algorithm 1 commences by initializing the cryptediv array 

containing the current version of IV, which is updated for 

every data block in order to guarantee the encryption process's 

uniqueness. Each byte of the cryptediv array undergoes a 

substitution operation via the substitution box (Sbox). This 

operation contributes to the improvement of the encryption's 

confusion and diffusion properties, thereby enhancing its 

security. Within the optimization process, five rounds of 

SPECK encryption are executed within the inner iteration, in 

contrast to the conventional 32 rounds. The significant 

reduction in computational expense facilitates encryption to 

execute at an accelerated pace, with only a marginal 

compromise on security. Each iteration of the encryption 

process involves calling the SpeckRound function, which 

applies the speck basic round function to the cryptediv array in 

order to update it. In Algorithm 2, the details of the speck 

round function are illustrated. Furthermore, the algorithm 

applies a bitwise left rotation to the solitary byte of the 

substitution box (Sbox) by utilizing the least significant bits of 

the byte in cryptediv that corresponds to the rotator (Sbox). 

This operation provides diffusion further and strengthens the 

encryption’s cryptographic integrity. 

Notably, the proposed optimization makes use of the widely 

implemented substitution concept in block ciphers, which has 

been implemented to enhance performance while maintaining 

a solid security foundation. Nevertheless, a comprehensive 

security analysis and performance evaluation of the optimized 

SPECK algorithm that has been proposed is imperative to 

ascertain its robustness against prospective attacks and its 

appropriateness for particular use cases. Indeed, the RC4 

stream algorithm (Algorithm 3) will be utilized to create the 

substitution Sbox.  

 

Algorithm 2 The round function of speck128/128 

void SpeckRound(uint64_t∗ x1, uint64_t∗ x2, const 

uint64_t key) 

{ 

    *x1 = (*x1 >> 8) | (*x1 << (8 * sizeof(*x1) - 8)); 

    *x1 += *x2; 

    *x1 ^= key; 

    *x2 = (*x2 << 3) | (*x2 >> (8 * sizeof(*x2) - 3)); 

    *x2 ^= *x1; 

} 

 

Algorithm 3 RC4 Key Scheduling Algorithm        

                      (KSA) 

1:   Procedure Rc4_KeySchedule (K, L) 

2:  S ← Array of size 256 initialized with 0 to 255 

3:  for idx1 ← 0 to 255 do 

4:  S[idx1] ← idx1 

5:  idx2 ← 0 

6:  for idx1 ← 0 to 255 do 

7:  idx2 ← (idx2 + S[idx1] + K [idx2 mod L]) mod 

     256 

8:  Swap S[idx1] and S[idx2] 

9:  Return S 

 

To create a single reliable Sbox, iterations are performed 

based on the previously generated DK. RC4 is employed 

because of its popularity and ease of implementation in both 

hardware and software. The dynamic Sbox is generated during 

the Key Setup Algorithm (KSA) step of RC4 setup. 

 

 

5. THE PARALLEL EXECUTION OF THE 

OPTIMIZED SPECK OVER MULTICORE 

PROCESSOR 

 

The parallel message-passing execution over a multicore 

processor for both the optimized and original Speck ciphers is 

demonstrated in this section. Algorithm 4 of the optimized 

speck has various input data, such as the key, the plain 

message (in), the substitution Sbox, the initial vector (IV), the 

block size, and the process ID to output the encrypted message.  

The algorithm encrypts two blocks per iteration, and at the 

ends of the iteration, the Sbox is rotated. Algorithm 5 

demonstrates the steps of the original speck algorithm over a 

multicore platform. Both algorithms are called using the main 

function that is presented in Algorithm 6 to perform MPI 

communication routines. The algorithm applies encryption 

using the Speck cipher in a parallelized manner using MPI 

(Message Passing Interface) through scatter and gather 
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operations. The code employs non-blocking scatter and 

gathers operations (MPI_Iscatter and MPI_Igather), which 

overlap communication and computation. This allows the 

encryption process to proceed on each process while data is 

being exchanged, maximizing computational efficiency. 

Moreover, the unique index of the block, taskid ∗ blocksize, is 

used as a counter (CTR) that updates the first block of the 

initial vector. 

 

Algorithm 4 The Optimized SPECK Encryption   

                      Function for Multi-core CPU 

void SpeckEncrypt (uint64_t∗ keySchedule, uint64_t∗ in, 

uint64_t∗ out, uint64_t∗ IV, uchar∗ Sbox, int blocksize, int 

taskid) 

{ 

   uint64_t crypted_iv[2]; 

   uint64_t iv_block[2]; 

   uchar∗ tt; int k = taskid∗blocksize; 

 for(int i=0; i<blocksize; i+=2) 

 { 

     IV[0] + = k; 

     crypted_iv[0] = IV[0]; 

     crypted_iv[1] = IV[1]; 

     for(int j=0; j<5; j++) 

     { 

        SpeckRound(&crypted_iv[1], &crypted_iv[0],               

        &keSchedule[j]); 

        tt = (uchar∗)&crypted_iv[0]; 

        tt[0] = Sbox[tt[0]]; 

        tt[1] = Sbox[tt[1]]; 

        tt[2] = Sbox[tt[2]]; 

        tt[3] = Sbox[tt[3]]; 

        tt[4] = Sbox[tt[4]]; 

        tt[5] = Sbox[tt[5]]; 

        tt[6] = Sbox[tt[6]]; 

        tt[7] = Sbox[tt[7]]; 

      } 

    out[i] = crypted_iv[0] ^ in[i]; 

    out[i+1] = crypted_iv[1] ^ in[i+1]; 

    rotl8(Sbox[tt[0]],  tt[7]&8 );  //updating Sbox 

    k++; 

  }  

} 

 

Algorithm 6 The proposed MPI Speck Encryption 

                      Function for Multi-core CPU 

void speck_ctr_encrypt(uint64_t∗  key_schedule, 

        uint64_t∗ in, uint64_t∗ out, 

         uint64_t∗ iv, uchar∗ Sbox, int n) 

{ 

    int taskid, blocksize, numtasks; 

    MPI_Comm_rank(MPI_COMM_WORLD, &taskid); 

    MPI_Comm_size(MPI_COMM_WORLD, 

&numtasks); 

    blocksize = n / numtasks; 

    uint64_t∗ local_in = (uint64_t∗) 

    malloc(blocksize * sizeof(uint64_t)); 

    uint64_t∗ local_out = (uint64_t∗)malloc 

                            (blocksize * sizeof(uint64_t)); 

    MPI_Request scatterRequest, gatherRequest; 

    MPI_Datatype datatype = MPI_UINT64_T; 

    MPI_Datatype blocktype; 

    MPI_Type_contiguous(blocksize, datatype, 

&blocktype); 

    MPI_Type_commit(&blocktype); 

    MPI_Iscatter(in, blocksize, datatype, local_in,  

                           blocksize, datatype, 0,         

    MPI_COMM_WORLD, &scatterRequest); 

    speck_encrypt(key_schedule, local_in, local_out,   

                            iv, Sbox, blocksize, taskid); 

    MPI_Igather(local_out, blocksize, datatype, out,   

                          blocksize, datatype, 0, 

    MPI_COMM_WORLD, &gatherRequest); 

    MPI_Wait(&scatterRequest,          

                      MPI_STATUS_IGNORE); 

    MPI_Wait(&gatherRequest,     

                      MPI_STATUS_IGNORE); 

    MPI_Type_free(&blocktype); 

} 

 

Algorithm 5 The Original SPECK Encryption   

                      Function for Multi-core CPU 

void SpeckEncrypt (uint64_t∗ keySchedule, uint64_t∗ in, 

uint64_t∗ out, uint64_t∗ IV, uchar∗ Sbox, int blocksize, int 

taskid) 

{ 

   uint64_t crypted_iv[2]; 

   uint64_t iv_block[2]; 

   int k=taskid∗blocksize; 

 for(int i=0; i<blocksize; i+=2) 

 { 

     IV[0] += k; 

     crypted_iv[0] = IV[0]; 

     crypted_iv[1] = IV[1]; 

     for(int j=0; j<32; j++) 

     { 

        SpeckRound(&crypted_iv[1], &crypted_iv[0],               

        &keySchedule[j]); 

     } 

   out[i] = crypted_iv[0] ^ in[i]; 

   out[i+1] = crypted_iv[1] ^ in[i+1]; 

    k++; 

 } 

} 

 

 

6. ANALYSIS OF THE SECURITY RESULTS 

 

A proposed encryption scheme’s security and safety are 

evaluated using well established techniques including 

statistical, linear, differential, or brute force attacks [12, 13]. 

Here, we conduct rigorous tests to demonstrate the security of 

the proposed optimized Speck encryption. While the proposed 

encryption system may be used for any kind of data, the results 

for multimedia content are. 

 

6.1 Statistical analysis tests 

 

Randomness and uniformity are two features a cipher must 

have in order to be regarded as safe against statistical assaults 

[14, 15]. The following statistical integrity tests are carried out 

to evaluate the level of randomness: Analysis of the entropy of 

the data, the histogram of the plain and encrypted messages, 

the correlation between the original and encrypted messages, 

and the Probability Density Function (PDF). 
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6.1.1 Uniform analysis test 

The most important test is the uniformity of the encrypted 

message’s probability density function (PDF). The possibility 

of seeing any given symbol in the resulting ciphertext is about 

1/n, where n is the total number of symbols. In Figure 3, the 

original PDF and the encrypted messages using both speck 

versions are shown. For all ciphertext symbols, the PDFs are 

close to 0.039 (1/256 = 3.9 × 10−3), which is consistent with a 

uniform distribution. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 

 

Figure 3. The recurrence of the original message (a), cipher 

using optimized speck (b), and the cipher using original 

speck (c). The related PDF of the original message (d), the 

produced cipher of the optimized speck (e), and the original 

speck (f) 

 

6.1.2 Histogram analysis test 

In this section, the optimized and original speck ciphers are 

evaluated and compared to histogram analysis tests. When the 

histogram of the encrypted image is normally distributed, can 

we say that this encryption successfully meets the uniformity 

criteria. This suggests that the occurrence of each symbol in 

the message is proportionate to the number of symbols in it. In 

other words, it should be somewhat close to the message 

size/character count. A histogram is shown in Figure 4, 

contrasting the 512-by-512-pixel plain images with their 

cipher image equivalents. It is shown that the encrypted image 

of both speck versions has a histogram very close to the 

uniform distribution given by (512*512) /256 =1024).  

 

 
(a) 
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(b) 

 

 
(c) 

Figure 4. The histogram analysis of (a) plain message, (b) 

optimized, and (c) original speck 

 

6.1.3 Entropy analysis 

The entropy of information in a message M, which stands 

for the measure of dispersion [14], may be described as the 

following when applied to a random variable: 

 

𝐻(𝑚) = − ∑ 𝑝𝑟(𝑚𝑖) log2

1

𝑝𝑟(𝑚𝑖)

ℎ2

𝑖=1

 (3) 

 

Entropy is measured in bits, and the probability of observing 

a given symbol is denoted by pr(mi), where mi is an integer 

between 1 and NS. If the ciphertext’s entropy is the same as or 

near to log2(N S), then the ciphertext represents a truly random 

source with a normal distribution.  

 

 
(a) 

 

 
(b) 

 

Figure 5. Entropy analysis for the encrypted message using 

both optimized and original speck in (a) and (b) respectively 

 

In Figure 5, the comparison of the encrypted messages’ 

entropy at the 16×16 (256-element) sub-matrix level using a 

random dynamic key is presented. The entropy of the resulting 

ciphertexts also matches the target value of 8 as shown by the 

results of the analysis. As a result, the proposed optimized 

speck cipher system is sufficiently safe against any given 

entropy attack. 

 

6.1.4 Correlation analysis 

To make sure that the proposed encryption system holds up 

in practice, it is crucial to get rid of any relationship between 

the sequence of the components [15, 16]. When the correlation 

coefficient is small (close to zero), it indicates that the cipher 

scheme is actually random. To perform the correlation test, we 

choose pairs of adjacent pixels from the original message and 

the encrypted version at random. Correlation may be 

performed in any of the three possible dimensions (horizontal, 

vertical, and diagonal). The following equation is used to 

determine the value of the correlation coefficient rxy: 

 

𝑟𝑥𝑦 =
cov(x,y)

√𝐷(𝑥)×𝐷(𝑌)
  

cov(x,y)=
1

𝑛
∑ (𝑥𝑖 − 𝐸(𝑥))(

𝑛

𝑖=1
𝑦𝑖 − 𝐸(𝑦)) 𝐸𝑥=

1

𝑛
 ×

∑ 𝑥𝑖
𝑛
𝑖=1   

 𝐷𝑥=  

1

𝑛
×  (∑(𝑥𝑖−

𝑛

𝑖=1

E(x)))

2

 

(4) 

 

The correlation test between the original and encrypted 

messages of both speck versions is shown for one random key 

at a time and for a total of 1000 random keys in Figure 6. The 

results indicate that the correlation coefficient is extremely 

small, very near to 0, which substantiates the ciphertext’s 

randomness and, by extension, its own independence. 

 

6.1.5 Practrand randomness test 

To ensure PRNGs are random, the PractRand testing suite 

uses statistical methods [17]. As was previously said, the 

proposed optimized Speck cipher was tested with 64 seeds 

under Practrand, and it succeeded in every case. The created 

sequence is evaluated by PractRand, and a report is generated 

indicating whether or not the sequence passes the tests. The 

encrypted message was then subjected to PractRand, which is 

one of the most difficult statistical tests available. This 
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verification ensures that the generated cipher of the optimized 

speck algorithm is sufficiently random and reliable. 

 

 
(a) 

 

 
(b) 

 

Figure 6. The PDF distribution of the correlation coefficient 

between the plain and encrypted message using (a) the 

optimized and (b) the original speck 

 

6.2 Linear and differential analysis tests 

 

When designing cryptographic algorithms, it is essential 

that they be resistant to linear and differential attacks. This is 

particularly true for symmetric key block ciphers [18]. These 

assaults show two common ways that cryptanalysts attack the 

algorithms of cryptography and get private keys or plaintext. 

 

6.2.1 The linear analysis test 

In the study of Aly et al. [18], the idea of linear probability 

approximation (LPF) was initially proposed as a strategy for 

linear cryptanalysis of the DES block cipher, which is used in 

this test. The main idea is to find a linear connection or 

approximation that links certain parts of the plaintext with 

their corresponding ciphertext counterparts. Establishing a 

linear relationship between the plaintext and the ciphertext 

makes the key more sensitive to extraction. 

We compute the linear probability value for both optimized 

and original speck ciphers for each discrete set of 16-byte 

plaintext and ciphertext blocks with 1000 iterations. See 

Figure 7 for the test results. For optimized speck ciphers, the 

mean of LPF is 0.517, whereas for original speck ciphers, it is 

0.479. To compute the resistance to the linear attack, the study 

of Matsui [19] computed the absolute difference of the desired 

probability 0.5 with the computed linear probability P. If the 

resulted value is close to zero, then the cipher has more 

resistance to liner attacks. According to this proposition, the 

optimized speck gives a bias of 0.017, whereas the original 

speck bias is equal to 0.021. Thus, the optimized speck is more 

resistance to the linear attack compared to its original version.  

  

 
(a) 

 

 
(b) 

 

Figure 7. The linear attack analysis for (a) the optimized and 

(b) the original speck 

 

6.2.2 The differential attack test 

An efficient way to evaluate the safety of cryptographic 

algorithms is differential cryptanalysis, which involves 

looking at how small changes in the input data affect the output 

data [20]. In this test, the correlation coefficient between two 

sets of encrypted texts that represent two plaintexts that varied 

by one bit every block is computed.  To evaluate the resistance 

of differential attacks on cipher messages, the correlation 

coefficient is computed and must give a lower value. In this 

test, 1000 sub-matrices of size 16 bytes are randomly selected 

from two different ciphertexts. The average of the correlation 

coefficient is computed for all sub-metrics of the two 

ciphertexts. For the optimized speck cipher, the average 

correlation coefficient is equal to 0.0003 and is equal to -

0.0018 for the original one. Accordingly, the optimized speck 

has more resistance to the differential attack than the original 

version. Figure 8 demonstrates the computed correlation 

coefficient of all selected cipher blocks. 
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(a) 

 

 
(b) 

 

Figure 8. The analysis of differential attack for (a) the 

optimized and (b) the original speck 

 

 

7. PERFORMANCE RESULTS AND COMPARISON 

 

This section presents the performance of the proposed 

optimized speck cipher that uses two scenarios. In the initial 

scenario, the optimized and original Speck ciphers are 

executed sequentially on a single CPU core. The execution of 

message passing algorithms for both ciphers on a multicore 

CPU constitutes the second scenario. This section presents a 

comparison of the speedup, encryption time, and throughput 

metrics for both instances of the Speck crypto algorithm. 

 

7.1 Results of sequential execution 

 

The calculated performance comparison of the optimized 

and original Speck ciphers was performed on one core of the 

Intel(R) i7-7700HQ processor. The CPU utilizes a frequency 

speed of 2.80 GHz for all its processors. The assessment 

results of the execution time and throughput of the single-

thread optimized and original ciphers on the processor are as 

demonstrated in Table 1. 

Upon analysing the data presented, it is evident that the 

optimized Speck algorithm features considerable 

improvements in the execution time and throughput compared 

to the initial Speck algorithm. The average execution time and 

throughput speedup ratio equal to about 2.58, which means 

that the Speck algorithm optimized performs cryptographic 

operations faster than the original one. In other words, the 

operations it performs cope with larger amounts of 

transmissions at a time, boosting the efficacy of data 

processing. 

 

Table 1. The sequential execution results comparison of 

optimized and original Speck 

 

Message 

Size 

Optimized 

Speck 

Original 

Speck 

Exe. 

Time 

(s) 

Throughput 

(Gbits/s) 

Exe. 

Time (s) 

Throughput 

(Gbits/s) 

4 0.032 1.04 0.086 0.39 

8 0.062 1.08 0.172 0.38 

16 0.124 1.08 0.329 0.34 

32 0.243 1.10 0.540 0.49 

64 0.486 1.11 1.041 0.51 

128 0.982 1.09 2.602 0.41 

256 1.999 1.07 5.354 0.40 

512 3.933 1.09 10.151 0.42 

 

7.2 Parallel execution results over multicore processor 

 

Experiment of this subsection was performed on multicore 

processor Intel i7-7700HQ and its purpose was to determine 

the efficiency of the optimized Speck algorithm compared to 

the initial one. Algorithms of this subsection were developed 

using message passing interface parallel primitives MPI. To 

show the improvement of Speck algorithm, four different 

combinations of threads 2, 4, 6, 8 are used for each of the 

executions on the multicore processor. Figure 9 shows all 

results of the execution time, throughput, and speedup 

comparing with the single core of Speck algorithms. The mean 

throughput of the optimized Speck algorithm is 3.83 gigabits 

per second. In order to determine the speedup ratio, the 

sequential execution time of the optimized Speck cipher is 

compared to the parallel execution time. The mean speedup 

ratio is 2.63 on average. The mean acceleration obtained by 

the two Speck parallel algorithms is 2.64. Table 2 shows the 

average throughput and execution time for all thread counts. 

The advantage of the optimized algorithm relative to the 

original algorithm is immediately obvious. At various message 

sizes and thread configurations, it completes cryptographic 

operations much faster. 

 

Table 2. Comparison of the parallel average results of all 

thread configurations for optimized and original speck 

 

Message 

Size 

Optimized 

Speck 

Original 

Speck 

Exe. 

Time 

(s) 

Throughput 

(Gbits/s) 

Exe. 

Time 

(s) 

Throughput 

(Gbits/s) 

4 0.012 2.83 0.029 1.25 

8 0.018 4.00 0.052 1.40 

16 0.038 3.75 0.099 1.43 

32 0.073 3.96 0.180 1.62 

64 0.140 4.14 0.368 1.59 

128 0.284 4.08 0.738 1.51 

256 0.627 4.00 1.681 1.43 

512 1.242 3.98 3.064 1.54 
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(b) 

 

 
(c) 

 

Figure 9. The experiment results over multicore: (a) 

execution time, (b) throughput, and (c) speedup 

 

 

8. CONCLUSION  

 

This work presents a new version of the Speck cipher which 

also examines its multi-core processor effectiveness by 

exploiting parallel processing capabilities of the CPUs. The 

dynamic, Randomized S-box layer of optimized speck cipher 

enhances its security and enables reduction in rounds. 

Statistical tests, randomness and immunity to linear or 

differential attack for both the original as well as the optimized 

algorithm are compared and evaluated. Consequently, security 

obtained indicates that the optimized speck can retain the same 

level of safety and face attacks. It is indicated through 

experimental findings that the optimized Speck algorithm has 

superior performance in terms of execution time, throughput, 

and speedup compared with its original version. The suggested 

optimization method integrates substitution-based adjustments 

with a decreased round count in order to improve encryption 

efficiency while maintaining security levels at an acceptable 

level. By average sequential execution performance increase, 

it has been established that the optimized Speck algorithm was 

2.58 times faster than its previous generation. When executing 

on multi-core processor, the new Speck cipher manages larger 

data more efficiently by running 2.64 times faster in 

comparison to the original speck. 

In the future, we are going to acknowledge the significance 

of investigating key sizes over 128 bits, such as 192 and 256 

bits. The objective is to examine the effects of varying key 

sizes on the optimized Speck algorithm. To accommodate 

larger key sizes, we may contemplate making modifications to 

security primitives or employing round configurations. 

Moreover, it is interesting to implement the proposed cipher 

over GPUs to show its performance and efficiency.  
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