

Parallel Multi-core Implementation of the Optimized Speck Cipher

Ahmed Fanfakh1* , Nihad Abduljalil2 , Ali Kadhum M. Al-Qurabat3

1 Department of Computer Science, University of Babylon, Babylon 51002, Iraq
2 Department of Air Conditioning and Refrigeration, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
3 Department of Cyber Security, College of Science, Al-Mustaqbal University, Babylon 51001, Iraq

Corresponding Author Email: ahmed.fanfakh@uobabylon.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140316

ABSTRACT

Received: 26 February 2024

Revised: 1 May 2024

Accepted: 8 May 2024

Available online: 24 June 2024

 Lightweight cryptographic algorithms like Speck, which are a family of block ciphers

developed by the US National Security Agency (NSA), have become popular because of

their efficient performance and small operational size. This paper introduces the execution

on a parallel multi-core processor of the optimized version of the Speck cipher. However,

this proposition fulfils the increased demand for developing quick and ultra-lightweight

ciphers. In this work, this is addressed by optimizing the speck128/128 cipher by reducing

its number of rounds to five. The optimization is accomplished by adding the dynamic

substitution layer to increase the randomness of the cipher, which allows us to reduce the

speck rounds. We conducted tests such as statistical, randomness, and cryptanalysis tests

for linear and differential attacks on the optimized speck. The security results show that

the optimized speck overcomes the original speck security level. The conducted

experiments show that the new version of the speck runs faster than the original one in

terms of execution time and throughput. The parallel execution over a multicore processor

is applied, and its speedup ratio is equal to 2.64 when it's compared to the parallel

execution of the original speck. Different message sizes and thread configurations are

used in this work. The sequential execution of both speck ciphers is computed in terms of

execution time and throughput, and the acceleration ratio of the optimized speck in this

case is equal to 2.63.

Keywords:

speck cryptography, parallel computing,

multi-core CPU, rounds reduction

1. INTRODUCTION

Given the availability of resource limited devices, including

those that are connected to Internet of Things (IoT),

lightweight cryptography has become an important research

topic. Furthermore, when it comes to these low-end devices

with limited processing power and memory, implementation

of any robust cryptosystems is often hampered due to their

strong security [1].

Recently, a lot of attention has been focused on Speck; a

lightweight block cipher because it operates efficiently in this

context and can be easily implemented. In 2013, the United

States’ National Security Agency (NSA) introduced Speck

cipher as an alternative to AES which was more affordable.

These are classes of block ciphers that work on 32- or 64-bit

words depending on the key sizes and use fixed number of

cycles. For instance, if one needs secure communication but

has devices having limitations in resources, then he or she will

definitely choose Speck since its simplicity and efficacy

appear to be very appealing [2].

However much beneficial Speck maybe but there is more

need for enhancing its operations especially through making

them more efficient so as to meet the growing demand for

cryptographic algorithms. Parallel processing is a

computational methodology utilized to partition the running of

an algorithm for cryptography into more manageable tasks.

These tasks are then executed concurrently on several

computing resources, including multi-core central processing

units (CPUs).

In this work, we proposed new configured speck cipher to

increase its performance capabilities. The approach prioritizes

the reduction of round count and is executed on multicore

CPUs with the intention of enhancing performance. In addition,

the parallel implementation was devised strategically to take

advantage of the capabilities of the multi-core architecture of

modern CPUs. By utilizing the CTR mode of operation, the

proposed parallel implementation of Speck achieves a high

degree of parallelism and enables efficient data encryption and

decryption. This work examines the outcomes of the security

analysis and assesses the performance of the parallel

implementation in relation to the original Speck algorithm. It

evaluates the implementation’s efficacy in terms of throughput

and speedup.

The rest of this paper is organized as follows. Section 2

provides a brief overview of the related works. Section 3

describes the background of Speck encryption. Section 4

describes the proposed optimized Speck algorithm. Sections 5

demonstrates the parallel implementation of the optimized

Speck and its original version on multi-core CPU. Section 6

validates and compares the security results of the proposed

optimized Speck cipher. Section 7 presents the experimental

results of sequential and parallel implementations. Section 8

International Journal of Safety and Security Engineering
Vol. 14, No. 3, June, 2024, pp. 843-852

Journal homepage: http://iieta.org/journals/ijsse

843

https://orcid.org/0000-0002-6177-0012
https://orcid.org/0000-0001-7148-0062
https://orcid.org/0000-0002-8522-290X
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140316&domain=pdf

concludes the proposed work and summarizes the obtained

results.

2. RELATED WORKS

The two primary categories of encryption methods are

symmetric and asymmetric. The symmetric-key strategy is

favoured in practical implementations because it requires less

computational complexity, memory usage, and resources than

the asymmetric key scheme. Stream ciphers and block ciphers

are the two main types of symmetric ciphers. The Counter

mode (CTR) variation of AES is one of the most common

implementations of this widely-used algorithm [3, 4]. The

block cipher functions as a stream cipher here because the

ciphering process is decoupled from the plaintext. To achieve

the appropriate degree of security, however, block ciphers

often need numerous rounds. Feistel or Substitution-

Permutation Networks (FN or SPN) may form the basis goal

of keeping the confusion and diffusion features intact by

increasing the number of rounds. Several notable research

endeavours have been dedicated to exploring innovative

techniques and optimizations for reducing the number of

rounds in Speck encryption, aiming to enhance its

performance without compromising security. In previous

research, researchers of Ren and Chen [5], and Gohr [6]

utilized deep learning and cryptanalysis approaches on

reduced Speck to achieve reductions to 11 rounds. In contrast,

researchers of Sleem and Couturier [7], Yue and Wu [8]

focused on reducing the number of rounds of Speck to 7 for

lightweight cryptographic schemes, with the former proposing

an ultra-lightweight cryptographic scheme for IoT and the

latter presenting an improved neural differential distinguish

model for the lightweight cipher Speck.

Cryptanalysis studies have been made in the state-of-the-art

researches to determine the resistance of speck cipher when

reducing its number of rounds. A new method for developing

lightweight and universally applicable deep learning-aided

differential distinguishers is presented by Liu et al. [9]. The

work of differential cryptanalysis against the NSA block

cipher SPECK32/64 demonstrates how traditional approaches

in cryptanalysis have been advanced by the inclusion of deep

learning techniques when the speck rounds are reduced.

While demonstrating the effectiveness of deep learning in

cryptanalysis, the work of Deng et al. [10] break new ground

by incorporating attention processes into differential

cryptanalysis on SPECK. Their results outperform those of

classic residual networks in terms of accuracy and

interpretability, uncovering possible vulnerabilities in the

process.

An enhanced method of differential-neural cryptanalysis for

round-reduced is introduced by Zhang et al. [11]. They

outperform DDT-based approaches in certain rounds after

using a neural network to improve the accuracy of neural

distinguishers. They accomplish realistic key recovery attacks

by enhancing both classical differentials and neural

distinguishers; this raises the attack threshold by two rounds,

allowing assaults on up to 17 rounds.

By continually striving to reduce the number of rounds in

Speck encryption, this work presents an innovative approach

that significantly minimizes the number of Speck128/128

rounds to 5. The proposed work shows a strong design that is

specifically made for the parallel architecture of multi-core

CPUs.

3. SPECK CRYPTOGRAPHY

Speck, a symmetric key block cipher, is an algorithm that

provides secure and efficient methods of encoding or decoding

data. The lightweight cipher Speck was introduced by the

National Security Agency (NSA) of the United States in 2013.

It belongs to a family of ciphers named ARX (Addition/

Rotation/ XOR) which are renowned worldwide. Speck is a

suitable encryption technique for many applications that

require data integrity and confidentiality because it is very

efficient and straightforward in its operation. Speck works on

blocks of data with predetermined length using a single key

for both encryption and decryption processes. Maximum

quantity of data that can be processed in a single operation and

level of security are directly affected by the block and key

sizes.

In this work, a Speck cipher with a block size of 128 bits

and a key size of 128 bits are used, ensuring strong

cryptographic capabilities. The speck function in this

configuration takes 32 rounds. The Speck round function can

be broken down into three distinct operations: XOR, modulo

addition, and rotation, as shown in Eq. (1).

Li+1 = ((Li ≫ α) ⊞ R) ⊕ ki Ri+1 = (Ri ≪ β) ⊕

Li+1
(1)

In this case, Li and Ri denoted the left and right halves of

the data at round i, respectively. ki denotes the round key at

round i, and α and β are the rotation constants. Figure 1 shows

the CTR Speck round function.

Figure 1. Speck encryption function

4. THE PROPOSED OPTIMIZED SPECK CIPHER

The proposed optimized SPECK algorithm employs a

substitution table to reduce the number of SPECK rounds,

thereby improving the efficiency of the encryption process.

We started with iterative testing and experimentation to see

how various changes affected the cipher's efficiency and

security. To assess the cryptographic properties, the fine-tune

settings like the number of rounds, the size and structure of the

S-box is used. Starting with a single Speck round, we then

applied randomization and statistical testing as part of our

optimization method and so on till reaching to the acceptable

security level. Using this strategy, we were able to determine

the optimization threshold at which we could achieve our

844

desired degree of security. The Speck-Encrypt algorithm

accomplishes this optimization by accepting the key schedule,

input data, output buffer, initialization vector (IV), and

substitution box (Sbox) as parameters. The optimized Speck

encryption function, illustrated in Figure 2, incorporates the

substitution box subsequent to every Speck round.

Figure 2. The proposed optimized speck encryption function

Algorithm 1 The Optimized SPECK Encryption

 Algorithm

1: procedure Speck-Encrypt (keySchedule, in,

 out, iv, Sbox, messageSize)

2: Sbox ← RC4(key_schedule, key_size)

3: for i = 0 → message size do

4: iv[0] ← iv[0] + i

5: crypted_iv[0] ← iv[0]

6: crypted_iv[1] ← iv[1]

7: for j = 0 → 5 do

8: SpeckRound(cryptediv[1], cryptediv[0],

 keySchedule[j])

9: cryptediv[0] ← Substitution(cryptediv[0],

 Sbox)

10: out[i] ← crypted_iv[0] ⊕ in[i]

11: out[i + 1] ← crypted_iv[1] ⊕ in[i + 1]

12: Update Sbox ← ROTL(Sbox,

 crypted_iv[0]&8)

Algorithm 1 commences by initializing the cryptediv array

containing the current version of IV, which is updated for

every data block in order to guarantee the encryption process's

uniqueness. Each byte of the cryptediv array undergoes a

substitution operation via the substitution box (Sbox). This

operation contributes to the improvement of the encryption's

confusion and diffusion properties, thereby enhancing its

security. Within the optimization process, five rounds of

SPECK encryption are executed within the inner iteration, in

contrast to the conventional 32 rounds. The significant

reduction in computational expense facilitates encryption to

execute at an accelerated pace, with only a marginal

compromise on security. Each iteration of the encryption

process involves calling the SpeckRound function, which

applies the speck basic round function to the cryptediv array in

order to update it. In Algorithm 2, the details of the speck

round function are illustrated. Furthermore, the algorithm

applies a bitwise left rotation to the solitary byte of the

substitution box (Sbox) by utilizing the least significant bits of

the byte in cryptediv that corresponds to the rotator (Sbox).

This operation provides diffusion further and strengthens the

encryption’s cryptographic integrity.

Notably, the proposed optimization makes use of the widely

implemented substitution concept in block ciphers, which has

been implemented to enhance performance while maintaining

a solid security foundation. Nevertheless, a comprehensive

security analysis and performance evaluation of the optimized

SPECK algorithm that has been proposed is imperative to

ascertain its robustness against prospective attacks and its

appropriateness for particular use cases. Indeed, the RC4

stream algorithm (Algorithm 3) will be utilized to create the

substitution Sbox.

Algorithm 2 The round function of speck128/128

void SpeckRound(uint64_t∗ x1, uint64_t∗ x2, const

uint64_t key)

{

 *x1 = (*x1 >> 8) | (*x1 << (8 * sizeof(*x1) - 8));

 *x1 += *x2;

 *x1 ^= key;

 *x2 = (*x2 << 3) | (*x2 >> (8 * sizeof(*x2) - 3));

 *x2 ^= *x1;

}

Algorithm 3 RC4 Key Scheduling Algorithm

 (KSA)

1: Procedure Rc4_KeySchedule (K, L)

2: S ← Array of size 256 initialized with 0 to 255

3: for idx1 ← 0 to 255 do

4: S[idx1] ← idx1

5: idx2 ← 0

6: for idx1 ← 0 to 255 do

7: idx2 ← (idx2 + S[idx1] + K [idx2 mod L]) mod

 256

8: Swap S[idx1] and S[idx2]

9: Return S

To create a single reliable Sbox, iterations are performed

based on the previously generated DK. RC4 is employed

because of its popularity and ease of implementation in both

hardware and software. The dynamic Sbox is generated during

the Key Setup Algorithm (KSA) step of RC4 setup.

5. THE PARALLEL EXECUTION OF THE

OPTIMIZED SPECK OVER MULTICORE

PROCESSOR

The parallel message-passing execution over a multicore

processor for both the optimized and original Speck ciphers is

demonstrated in this section. Algorithm 4 of the optimized

speck has various input data, such as the key, the plain

message (in), the substitution Sbox, the initial vector (IV), the

block size, and the process ID to output the encrypted message.

The algorithm encrypts two blocks per iteration, and at the

ends of the iteration, the Sbox is rotated. Algorithm 5

demonstrates the steps of the original speck algorithm over a

multicore platform. Both algorithms are called using the main

function that is presented in Algorithm 6 to perform MPI

communication routines. The algorithm applies encryption

using the Speck cipher in a parallelized manner using MPI

(Message Passing Interface) through scatter and gather

845

operations. The code employs non-blocking scatter and

gathers operations (MPI_Iscatter and MPI_Igather), which

overlap communication and computation. This allows the

encryption process to proceed on each process while data is

being exchanged, maximizing computational efficiency.

Moreover, the unique index of the block, taskid ∗ blocksize, is

used as a counter (CTR) that updates the first block of the

initial vector.

Algorithm 4 The Optimized SPECK Encryption

 Function for Multi-core CPU

void SpeckEncrypt (uint64_t∗ keySchedule, uint64_t∗ in,

uint64_t∗ out, uint64_t∗ IV, uchar∗ Sbox, int blocksize, int

taskid)

{

 uint64_t crypted_iv[2];

 uint64_t iv_block[2];

 uchar∗ tt; int k = taskid∗blocksize;

 for(int i=0; i<blocksize; i+=2)

 {

 IV[0] + = k;

 crypted_iv[0] = IV[0];

 crypted_iv[1] = IV[1];

 for(int j=0; j<5; j++)

 {

 SpeckRound(&crypted_iv[1], &crypted_iv[0],

 &keSchedule[j]);

 tt = (uchar∗)&crypted_iv[0];

 tt[0] = Sbox[tt[0]];

 tt[1] = Sbox[tt[1]];

 tt[2] = Sbox[tt[2]];

 tt[3] = Sbox[tt[3]];

 tt[4] = Sbox[tt[4]];

 tt[5] = Sbox[tt[5]];

 tt[6] = Sbox[tt[6]];

 tt[7] = Sbox[tt[7]];

 }

 out[i] = crypted_iv[0] ^ in[i];

 out[i+1] = crypted_iv[1] ^ in[i+1];

 rotl8(Sbox[tt[0]], tt[7]&8); //updating Sbox

 k++;

 }

}

Algorithm 6 The proposed MPI Speck Encryption

 Function for Multi-core CPU

void speck_ctr_encrypt(uint64_t∗ key_schedule,

 uint64_t∗ in, uint64_t∗ out,

 uint64_t∗ iv, uchar∗ Sbox, int n)

{

 int taskid, blocksize, numtasks;

 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 MPI_Comm_size(MPI_COMM_WORLD,

&numtasks);

 blocksize = n / numtasks;

 uint64_t∗ local_in = (uint64_t∗)

 malloc(blocksize * sizeof(uint64_t));

 uint64_t∗ local_out = (uint64_t∗)malloc

 (blocksize * sizeof(uint64_t));

 MPI_Request scatterRequest, gatherRequest;

 MPI_Datatype datatype = MPI_UINT64_T;

 MPI_Datatype blocktype;

 MPI_Type_contiguous(blocksize, datatype,

&blocktype);

 MPI_Type_commit(&blocktype);

 MPI_Iscatter(in, blocksize, datatype, local_in,

 blocksize, datatype, 0,

 MPI_COMM_WORLD, &scatterRequest);

 speck_encrypt(key_schedule, local_in, local_out,

 iv, Sbox, blocksize, taskid);

 MPI_Igather(local_out, blocksize, datatype, out,

 blocksize, datatype, 0,

 MPI_COMM_WORLD, &gatherRequest);

 MPI_Wait(&scatterRequest,

 MPI_STATUS_IGNORE);

 MPI_Wait(&gatherRequest,

 MPI_STATUS_IGNORE);

 MPI_Type_free(&blocktype);

}

Algorithm 5 The Original SPECK Encryption

 Function for Multi-core CPU

void SpeckEncrypt (uint64_t∗ keySchedule, uint64_t∗ in,

uint64_t∗ out, uint64_t∗ IV, uchar∗ Sbox, int blocksize, int

taskid)

{

 uint64_t crypted_iv[2];

 uint64_t iv_block[2];

 int k=taskid∗blocksize;

 for(int i=0; i<blocksize; i+=2)

 {

 IV[0] += k;

 crypted_iv[0] = IV[0];

 crypted_iv[1] = IV[1];

 for(int j=0; j<32; j++)

 {

 SpeckRound(&crypted_iv[1], &crypted_iv[0],

 &keySchedule[j]);

 }

 out[i] = crypted_iv[0] ^ in[i];

 out[i+1] = crypted_iv[1] ^ in[i+1];

 k++;

 }

}

6. ANALYSIS OF THE SECURITY RESULTS

A proposed encryption scheme’s security and safety are

evaluated using well established techniques including

statistical, linear, differential, or brute force attacks [12, 13].

Here, we conduct rigorous tests to demonstrate the security of

the proposed optimized Speck encryption. While the proposed

encryption system may be used for any kind of data, the results

for multimedia content are.

6.1 Statistical analysis tests

Randomness and uniformity are two features a cipher must

have in order to be regarded as safe against statistical assaults

[14, 15]. The following statistical integrity tests are carried out

to evaluate the level of randomness: Analysis of the entropy of

the data, the histogram of the plain and encrypted messages,

the correlation between the original and encrypted messages,

and the Probability Density Function (PDF).

846

6.1.1 Uniform analysis test

The most important test is the uniformity of the encrypted

message’s probability density function (PDF). The possibility

of seeing any given symbol in the resulting ciphertext is about

1/n, where n is the total number of symbols. In Figure 3, the

original PDF and the encrypted messages using both speck

versions are shown. For all ciphertext symbols, the PDFs are

close to 0.039 (1/256 = 3.9 × 10−3), which is consistent with a

uniform distribution.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. The recurrence of the original message (a), cipher

using optimized speck (b), and the cipher using original

speck (c). The related PDF of the original message (d), the

produced cipher of the optimized speck (e), and the original

speck (f)

6.1.2 Histogram analysis test

In this section, the optimized and original speck ciphers are

evaluated and compared to histogram analysis tests. When the

histogram of the encrypted image is normally distributed, can

we say that this encryption successfully meets the uniformity

criteria. This suggests that the occurrence of each symbol in

the message is proportionate to the number of symbols in it. In

other words, it should be somewhat close to the message

size/character count. A histogram is shown in Figure 4,

contrasting the 512-by-512-pixel plain images with their

cipher image equivalents. It is shown that the encrypted image

of both speck versions has a histogram very close to the

uniform distribution given by (512*512) /256 =1024).

(a)

847

(b)

(c)

Figure 4. The histogram analysis of (a) plain message, (b)

optimized, and (c) original speck

6.1.3 Entropy analysis

The entropy of information in a message M, which stands

for the measure of dispersion [14], may be described as the

following when applied to a random variable:

𝐻(𝑚) = − ∑ 𝑝𝑟(𝑚𝑖) log2

1

𝑝𝑟(𝑚𝑖)

ℎ2

𝑖=1

 (3)

Entropy is measured in bits, and the probability of observing

a given symbol is denoted by pr(mi), where mi is an integer

between 1 and NS. If the ciphertext’s entropy is the same as or

near to log2(N S), then the ciphertext represents a truly random

source with a normal distribution.

(a)

(b)

Figure 5. Entropy analysis for the encrypted message using

both optimized and original speck in (a) and (b) respectively

In Figure 5, the comparison of the encrypted messages’

entropy at the 16×16 (256-element) sub-matrix level using a

random dynamic key is presented. The entropy of the resulting

ciphertexts also matches the target value of 8 as shown by the

results of the analysis. As a result, the proposed optimized

speck cipher system is sufficiently safe against any given

entropy attack.

6.1.4 Correlation analysis

To make sure that the proposed encryption system holds up

in practice, it is crucial to get rid of any relationship between

the sequence of the components [15, 16]. When the correlation

coefficient is small (close to zero), it indicates that the cipher

scheme is actually random. To perform the correlation test, we

choose pairs of adjacent pixels from the original message and

the encrypted version at random. Correlation may be

performed in any of the three possible dimensions (horizontal,

vertical, and diagonal). The following equation is used to

determine the value of the correlation coefficient rxy:

𝑟𝑥𝑦 =
cov(x,y)

√𝐷(𝑥)×𝐷(𝑌)

cov(x,y)=
1

𝑛
∑ (𝑥𝑖 − 𝐸(𝑥))(

𝑛

𝑖=1
𝑦𝑖 − 𝐸(𝑦)) 𝐸𝑥=

1

𝑛
 ×

∑ 𝑥𝑖
𝑛
𝑖=1

 𝐷𝑥=

1

𝑛
× (∑(𝑥𝑖−

𝑛

𝑖=1

E(x)))

2

(4)

The correlation test between the original and encrypted

messages of both speck versions is shown for one random key

at a time and for a total of 1000 random keys in Figure 6. The

results indicate that the correlation coefficient is extremely

small, very near to 0, which substantiates the ciphertext’s

randomness and, by extension, its own independence.

6.1.5 Practrand randomness test

To ensure PRNGs are random, the PractRand testing suite

uses statistical methods [17]. As was previously said, the

proposed optimized Speck cipher was tested with 64 seeds

under Practrand, and it succeeded in every case. The created

sequence is evaluated by PractRand, and a report is generated

indicating whether or not the sequence passes the tests. The

encrypted message was then subjected to PractRand, which is

one of the most difficult statistical tests available. This

848

verification ensures that the generated cipher of the optimized

speck algorithm is sufficiently random and reliable.

(a)

(b)

Figure 6. The PDF distribution of the correlation coefficient

between the plain and encrypted message using (a) the

optimized and (b) the original speck

6.2 Linear and differential analysis tests

When designing cryptographic algorithms, it is essential

that they be resistant to linear and differential attacks. This is

particularly true for symmetric key block ciphers [18]. These

assaults show two common ways that cryptanalysts attack the

algorithms of cryptography and get private keys or plaintext.

6.2.1 The linear analysis test

In the study of Aly et al. [18], the idea of linear probability

approximation (LPF) was initially proposed as a strategy for

linear cryptanalysis of the DES block cipher, which is used in

this test. The main idea is to find a linear connection or

approximation that links certain parts of the plaintext with

their corresponding ciphertext counterparts. Establishing a

linear relationship between the plaintext and the ciphertext

makes the key more sensitive to extraction.

We compute the linear probability value for both optimized

and original speck ciphers for each discrete set of 16-byte

plaintext and ciphertext blocks with 1000 iterations. See

Figure 7 for the test results. For optimized speck ciphers, the

mean of LPF is 0.517, whereas for original speck ciphers, it is

0.479. To compute the resistance to the linear attack, the study

of Matsui [19] computed the absolute difference of the desired

probability 0.5 with the computed linear probability P. If the

resulted value is close to zero, then the cipher has more

resistance to liner attacks. According to this proposition, the

optimized speck gives a bias of 0.017, whereas the original

speck bias is equal to 0.021. Thus, the optimized speck is more

resistance to the linear attack compared to its original version.

(a)

(b)

Figure 7. The linear attack analysis for (a) the optimized and

(b) the original speck

6.2.2 The differential attack test

An efficient way to evaluate the safety of cryptographic

algorithms is differential cryptanalysis, which involves

looking at how small changes in the input data affect the output

data [20]. In this test, the correlation coefficient between two

sets of encrypted texts that represent two plaintexts that varied

by one bit every block is computed. To evaluate the resistance

of differential attacks on cipher messages, the correlation

coefficient is computed and must give a lower value. In this

test, 1000 sub-matrices of size 16 bytes are randomly selected

from two different ciphertexts. The average of the correlation

coefficient is computed for all sub-metrics of the two

ciphertexts. For the optimized speck cipher, the average

correlation coefficient is equal to 0.0003 and is equal to -

0.0018 for the original one. Accordingly, the optimized speck

has more resistance to the differential attack than the original

version. Figure 8 demonstrates the computed correlation

coefficient of all selected cipher blocks.

849

(a)

(b)

Figure 8. The analysis of differential attack for (a) the

optimized and (b) the original speck

7. PERFORMANCE RESULTS AND COMPARISON

This section presents the performance of the proposed

optimized speck cipher that uses two scenarios. In the initial

scenario, the optimized and original Speck ciphers are

executed sequentially on a single CPU core. The execution of

message passing algorithms for both ciphers on a multicore

CPU constitutes the second scenario. This section presents a

comparison of the speedup, encryption time, and throughput

metrics for both instances of the Speck crypto algorithm.

7.1 Results of sequential execution

The calculated performance comparison of the optimized

and original Speck ciphers was performed on one core of the

Intel(R) i7-7700HQ processor. The CPU utilizes a frequency

speed of 2.80 GHz for all its processors. The assessment

results of the execution time and throughput of the single-

thread optimized and original ciphers on the processor are as

demonstrated in Table 1.

Upon analysing the data presented, it is evident that the

optimized Speck algorithm features considerable

improvements in the execution time and throughput compared

to the initial Speck algorithm. The average execution time and

throughput speedup ratio equal to about 2.58, which means

that the Speck algorithm optimized performs cryptographic

operations faster than the original one. In other words, the

operations it performs cope with larger amounts of

transmissions at a time, boosting the efficacy of data

processing.

Table 1. The sequential execution results comparison of

optimized and original Speck

Message

Size

Optimized

Speck

Original

Speck

Exe.

Time

(s)

Throughput

(Gbits/s)

Exe.

Time (s)

Throughput

(Gbits/s)

4 0.032 1.04 0.086 0.39

8 0.062 1.08 0.172 0.38

16 0.124 1.08 0.329 0.34

32 0.243 1.10 0.540 0.49

64 0.486 1.11 1.041 0.51

128 0.982 1.09 2.602 0.41

256 1.999 1.07 5.354 0.40

512 3.933 1.09 10.151 0.42

7.2 Parallel execution results over multicore processor

Experiment of this subsection was performed on multicore

processor Intel i7-7700HQ and its purpose was to determine

the efficiency of the optimized Speck algorithm compared to

the initial one. Algorithms of this subsection were developed

using message passing interface parallel primitives MPI. To

show the improvement of Speck algorithm, four different

combinations of threads 2, 4, 6, 8 are used for each of the

executions on the multicore processor. Figure 9 shows all

results of the execution time, throughput, and speedup

comparing with the single core of Speck algorithms. The mean

throughput of the optimized Speck algorithm is 3.83 gigabits

per second. In order to determine the speedup ratio, the

sequential execution time of the optimized Speck cipher is

compared to the parallel execution time. The mean speedup

ratio is 2.63 on average. The mean acceleration obtained by

the two Speck parallel algorithms is 2.64. Table 2 shows the

average throughput and execution time for all thread counts.

The advantage of the optimized algorithm relative to the

original algorithm is immediately obvious. At various message

sizes and thread configurations, it completes cryptographic

operations much faster.

Table 2. Comparison of the parallel average results of all

thread configurations for optimized and original speck

Message

Size

Optimized

Speck

Original

Speck

Exe.

Time

(s)

Throughput

(Gbits/s)

Exe.

Time

(s)

Throughput

(Gbits/s)

4 0.012 2.83 0.029 1.25

8 0.018 4.00 0.052 1.40

16 0.038 3.75 0.099 1.43

32 0.073 3.96 0.180 1.62

64 0.140 4.14 0.368 1.59

128 0.284 4.08 0.738 1.51

256 0.627 4.00 1.681 1.43

512 1.242 3.98 3.064 1.54

850

(a)

(b)

(c)

Figure 9. The experiment results over multicore: (a)

execution time, (b) throughput, and (c) speedup

8. CONCLUSION

This work presents a new version of the Speck cipher which

also examines its multi-core processor effectiveness by

exploiting parallel processing capabilities of the CPUs. The

dynamic, Randomized S-box layer of optimized speck cipher

enhances its security and enables reduction in rounds.

Statistical tests, randomness and immunity to linear or

differential attack for both the original as well as the optimized

algorithm are compared and evaluated. Consequently, security

obtained indicates that the optimized speck can retain the same

level of safety and face attacks. It is indicated through

experimental findings that the optimized Speck algorithm has

superior performance in terms of execution time, throughput,

and speedup compared with its original version. The suggested

optimization method integrates substitution-based adjustments

with a decreased round count in order to improve encryption

efficiency while maintaining security levels at an acceptable

level. By average sequential execution performance increase,

it has been established that the optimized Speck algorithm was

2.58 times faster than its previous generation. When executing

on multi-core processor, the new Speck cipher manages larger

data more efficiently by running 2.64 times faster in

comparison to the original speck.

In the future, we are going to acknowledge the significance

of investigating key sizes over 128 bits, such as 192 and 256

bits. The objective is to examine the effects of varying key

sizes on the optimized Speck algorithm. To accommodate

larger key sizes, we may contemplate making modifications to

security primitives or employing round configurations.

Moreover, it is interesting to implement the proposed cipher

over GPUs to show its performance and efficiency.

ACKNOWLEDGMENT

The authors would like to thank the universities of Babylon,

Warith Al-Anbiyaa, and Al-Mustaqbal for supporting this

work.

REFERENCES

[1] Rana, M., Mamun, Q., Islam, R. (2022). Lightweight

cryptography in IoT networks: A survey. Future

Generation Computer Systems, 129: 77-89.

https://doi.org/10.1016/j.future.2021.11.011

[2] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S.,

Weeks, B., Wingers, L. (2013). The SIMON and SPECK

families of lightweight block ciphers. Cryptology ePrint

Archive, 404. https://ia.cr/2013/404.

[3] Singh, S., Sharma, P.K., Moon, S.Y., Park, J.H. (2024).

Advanced lightweight encryption algorithms for IoT

devices: Survey, challenges and solutions. Journal of

Ambient Intelligence and Humanized Computing, 15:

1625-1642. https://doi.org/10.1007/s12652-017-0494-4

[4] Daemen, J., Rijmen, V. (2020). The Design of Rijndael.

The Advanced Encryption Standard (AES), Springer

Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-

60769-5

[5] Ren, J.J., Chen, S.Z. (2019). Cryptanalysis of Reduced-

Round SPECK. IEEE Access, 7: 63045-63056.

https://doi.org/10.1109/ACCESS.2019.2917015

[6] Gohr, A. (2019). Improving attacks on round-reduced

speck32/64 using deep learning. Advances in Cryptology

– CRYPTO 2019, 150-179. https://doi.org/10.1007/978-

3-030-26951-7_6

[7] Sleem, L., Couturier, R. (2021). Speck-R: An ultra light-

weight cryptographic scheme for internet of things.

Multimedia Tools and Applications, 80: 17067-17102.

https://doi.org/10.1007/s11042-020-09625-8

[8] Yue, X.T., Wu, W.Q. (2023). Improved neural

differential distinguisher model for lightweight cipher

speck. Applied Sciences, 13(12): 6994.

https://doi.org/10.3390/app13126994

[9] Liu, J., Ren, J., Chen, S. (2023). A deep learning aided

differential distinguisher improvement framework with

more lightweight and universality. Cybersecurity, 6(47):

2023. https://doi.org/10.1186/s42400-023-00176-7

[10] Deng, H.R., Cao, X.H., Cheng, Y. (2023). Attention in

differential cryptanalysis on lightweight block cipher

851

SPECK. In 2023 20th Annual International Conference

on Privacy, Security and Trust (PST), Copenhagen,

Denmark, pp. 1-9.

https://doi.org/10.1109/PST58708.2023.10320201

[11] Zhang, L., Lu, J.Y., Li, C. (2023). Improved differential-

neural cryptanalysis for round-reduced SIMECK32/64.

Frontiers of Computer Science, 17: 176817.

https://doi.org/10.1007/s11704-023-3261-z

[12] Fanfakh, A., Noura, H., Couturier, R. (2022). ORSCA-

GPU: One round stream cipher algorithm for GPU

implementation. The Journal of Supercomputing, 78:

11744-11767. https://doi.org/10.1007/s11227-022-

04335-4

[13] Hamiza, H.J., Fanfakh, A. (2024). Parallel lightweight

block cipher algorithm for multicore CPUs. Baghdad

Science Journal. https://doi.org/10.21123/bsj.2024.9052

[14] Xu, S.J., Wang, Y.L., Wang, J.Z., Tian, M. (2008).

Cryptanalysis of two chaotic image encryption schemes

based on permutation and XOR operations. In 2008

International Conference on Computational Intelligence

and Security, Suzhou, China, pp. 433-437.

https://doi.org/10.1109/CIS.2008.146

[15] Alamari, Y.A., Fanfakh, A., Hadi, E. (2023). Parallel

message authentication algorithm implemented over

multicore CPU. International Journal of Intelligent

Engineering & Systems, 16(4): 2023.

https://doi.org/10.22266/ijies2023.0831.52

[16] Zhang, G.J., Liu, Q. (2011). A novel image encryption

method based on total shuffling scheme. Optics

Communications, 284(12): 2775-2780.

https://doi.org/10.1016/j.optcom.2011.02.039

[17] http://pracrand.sourceforge.net, accessed on Nov. 2,

2023.

[18] Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S.,

Szepieniec, A. (2020). Design of symmetric-key

primitives for advanced cryptographic protocols. IACR

Transactions on Symmetric Cryptology, 2020(3): 1-45.

https://doi.org/10.13154/tosc.v2020.i3.1-45

[19] Matsui, M. (1993). Linear cryptanalysis method for DES

cipher. Advances in Cryptology - EUROCRYPT ’93,

386-397. https://doi.org/10.1007/3-540-48285-7_33

[20] Biham, E., Shamir, A. (1991). Differential cryptanalysis

of DES-like cryptosystems. Journal of Cryptology, 4(1):

3-72. https://doi.org/10.1007/BF00630563

852

