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 A novel deep learning architecture, brain signal recognition deep neural network 

(BSRDNN), based on a one-dimensional convolutional neural network model (1D-CNN) 

and artificial neural network (ANN), is proposed for drowsiness detection from single-

channel electroencephalographic (EEG) data. The effectiveness of the method is shown 

using the MIT/BIH polysomnographic EEG dataset (MIT/BIH-PED) with more than 80h 

long-term EEG data collected by a single electrode. EEG signals for 16 subjects were 

classified by BSRDNN as wakefulness, drowsiness, and sleep. BSRDNN was used via 

two approaches: Option 1 consists of feature extraction and classification by deep 

learning; in Option  2, feature and classification are performed by machine learning 

algorithms, naïve Bayes (NB), k-nearest neighbours (KNN), random forest (RF), and 

stochastic gradient descent (SGD). Combined-subject validation was applied extraction 

to enhance the performance of the proposed technique. Simulations demonstrated better 

performance in terms of accuracy, recall, F1-score and precision compared to the current 

state-of-the-art techniques applied to the same dataset: We obtained 92.31% overall 

accuracy in Option 1, and 94.8-100% in Option 2. The proposed novel BSRDNN model 

demonstrates clear superiority over those featured in published research that used the same 

MIT/BIH-PED dataset. It can perform its designated task with less trainable parameters 

and arithmetic operations compared to other models, resulting in faster training and testing 

phases. This enhanced speed facilitates quicker drowsiness detection, thereby reducing 

the overall time required for the process. 
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1. INTRODUCTION 

 

Drowsiness impairs the brain's responsiveness, which is 

crucial for speedy decision-making. Drowsiness is one of the 

primary contributors to the incidence of traffic accidents 

following high-speed driving or alcohol intake [1]. A common 

and brief condition of inattention that occurs when a person 

transitions from being awake to being asleep is referred to as 

drowsiness. Drowsiness detection has been an increasingly 

popular topic in recent years, especially since vehicle makers 

study and develop early warning systems for driver drowsiness. 

Subjective, vehicle, behaviour, and physiology-based 

sleepiness detection methods have been presented [2-6]. 

Physiology-based sleepiness detection technologies are 

becoming progressively more accurate and efficient due to 

biological detection and sensor improvement [6, 7]. 

Physiology-based sleepiness detection uses 

electrophysiological signals such as electrooculographic 

(EOG), electrocardiographic (ECG), and 

electroencephalogram (EEG) data or combinations of these 

signals [8-10]. EEG may capture millisecond events and 

measure a person's mental tension, drowsiness, and emotional 

state [11, 12]. The EEG is not prohibitively expensive and may 

quickly and painlessly be obtained from the scalp, making it 

popular in drowsiness and sleep investigations [13, 14]. Earlier 

drowsiness detection techniques collected EEG signals from 

several brain regions using multi-channel EEG equipment [15]. 

These techniques may improve the accuracy of sleep detection. 

However, the following issues can arise from the capacity to 

obtain vast volumes of electrical brain data rapidly via EEG 

signals: 

•The use of multi-dimensional data requires a large amount 

of storage space.  

•Excessive computation time. 

•Sensors for collecting multi-channel data are expensive to 

produce.  

•Multiple sensors on a driver’s skull are annoying and 

impractical. 

In recent years, there has been a competition among 

researchers to improve the accuracy of drowsiness detection. 

This improvement is often achieved by devising new and 

novel methods for extracting features or by combining 

multiple features from different physiological signals across 

various domains. Researchers have explored handcrafted-

engineered feature extraction methods [16-25] and fully 

automated approaches [26-33] using deep learning techniques. 

Upon reviewing existing literature and comparing works on 

the MIT/BIH-PED dataset for drowsiness detection, several 

studies stand out. For instance, the study [20] and the studies 

[22-24] focused on the frequency domain, employing methods 
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such as fast Fourier transform (FFT), power spectral density 

(PSD) and wavelet transform (WT) for signal processing and 

feature extraction, obtaining good accuracies ranging from 

83%-86.5% and 90.27%, 88.80% and 87.20%, respectively. In 

the studies [18, 19], both time and frequency domains were 

explored using WT and PSD, achieving accuracies between 

83.6%-87.4% and 81.7%-86.5%. A remarkable accuracy score 

of 92.28% for sleepiness detection was reported [21]. 

Adaptive Hermite decomposition (AHD) was used in the time-

frequency domain; the researchers worked on entropies in the 

process of signal processing and feature extraction and 

obtained an accuracy of 85.51% [25]. The MIT/BIH-PED 

signal was converted to pictures, and transfer learning 

(ResNet, AlexNet and VGG UNet) was utilised to identify a 

subject’s tiredness, with 97.92% and 94.31% accuracy, 

respectively [26, 27]. Adaptive variational mode 

decomposition (AVMD) was applied to analyse EEG signals 

and decompose them into several modes [16]; the features 

were extracted using a different entropy method. An 

ensemble-boosted tree classifier was utilised to obtain a higher 

accuracy of 97.19%. A unique hybrid technique was created 

to extract combination features from biomedical signals using 

blood and MIT/BIH-PED signals; the researchers achieved 

99.01% accuracy [17]. A combination of MIT/BIH-PED and 

EOG hybrid novel feature extraction was used; the researchers 

utilised a gradient boosting decision tree (GBDT) as a 

classifier to achieve 91.34% accuracy [34]. The most 

extractable features of MIT/BIH-PED and ECG signals were 

combined to achieve 99.93% accuracy [35]. A deep learning 

architecture based on an attention mechanism combining 

convolutional layers, LSTM, and 1D-residual blocks was 

proposed; using Bi-GRU for classification and MIT/BIH-

PED, the researchers achieved 98.38% accuracy for two 

classes: Awake and drowsiness [36]. To address limitations 

found in previous studies, we present a new deep learning 

architecture called BSRDNN that is built on a 1D-CNN and an 

ANN for drowsiness detection using single-channel EEG data 

from MIT/BIH-PED. The BSRDNN processes single-channel 

EEG data instead of using hybrid physiological signals to 

reduce complexity, computation time and mathematical 

operations resulting from pre-processing and feature 

extraction [17, 34-36]. It can extract features without 

converting them into 2D images [26, 27] or relying on 

handcrafted-engineered feature extraction methods [16-25]. 

Moreover, BSRDNN reduces arithmetic operation time and 

total trainable parameters compared to parallel models [26-30, 

37]. BSRDNN was applied using two approaches: Option 1 

performs feature extraction and classification using deep 

learning, while Option 2 consists of feature extraction and 

classification using machine learning algorithms (NB, KNN, 

RF and SGD). By identifying the appropriate and discriminant 

features extracted by the novel BSRDNN, our work classified 

the MIT/BIH-PED data into three categories: awakeness, 

drowsiness and sleep. The proposed novel BSRDNN model 

demonstrates clear superiority over those featured in published 

research that used the same MIT/BIH-PED dataset. It can 

perform its designated task with less trainable parameters and 

arithmetic operations compared to other models, resulting in 

faster training and testing phases. This enhanced speed 

facilitates quicker drowsiness detection, thereby reducing the 

overall time required for the process. 

The rest of this paper is organised as follows: Section 2 

explains the methodology and pre-processing applied to the 

dataset and the structure of the novel BSRDNN. Section 3 

illustrates and provides an overview of the simulation and the 

metrics used to evaluate our approach, the training and testing 

phases, and the results that we obtained compared to state-of-

the-art studies that worked on MIT/BIH-PED. Finally, Section 

4 presents the discussion, conclusion, limitations and 

recommendations for future work, respectively. 

 

 

2. METHODOLOGY 

 

After pre-processing the MIT/BIH-PED single-channel 

EEG data to remove artefacts, two filters were applied: a notch 

filter to eliminate power line interference and a bandpass filter 

ranging between 0.15 and 45 Hz to remove insignificant noise. 

After that, time segmentation was applied to the data on 16 

subjects available in MIT/BIH-PED. The data were segmented 

into 30 s windows depending on the label. Figure 1 shows the 

two Options used to implement the proposed method. In 

Option 1, BSRDNN was used for feature extraction and 

classification after scaling and applying the data oversampling 

algorithm to the dataset. In Option 2, feature extraction and 

classification were performed by machine learning algorithms, 

specifically NB, KNN, RF and SGD. These blocks are 

explained in detail below. 

 

 
 

Figure 1. The main blocks used in Options 1 and 2 
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2.1 Dataset and pre-processing steps 

 

We used the pre-recorded MIT/BIH-PED [38] data set, 

collected by a single electrode and this data is open to the 

public and may be found on the Physionet.org website, which 

is presented by the National Institutes of Health (NIH). Signals 

in that data set were recorded at a frequency of 250 Hz, and 

the electrodes C3-O1, C4-A1, and O2-A1 collected the sleep 

EEG data from 16 subjects’ left or right scalps, depending on 

the active area in the subjects’ brain. The EEG data were 

classified into three categories: awake (W), non-rapid eye 

movement sleep (NREM), and rapid eye movement (REM). 

Awake (W) is a state of consciousness in which a person is 

alert and able to do daily tasks.  

The second type of sleep, the NREM, is divided into four 

stages. Stage 1 (S1) is associated with drowsiness; it represents 

a transition between waking and sleeping. The subsequent 

stages, such as Stage 2 (S2), Stage 3 (S3), and Stage 4 (S4), 

are linked to different states of sleep [39]. REM sleep, or stage 

R is a sleep stage characterized by the random rapid movement 

of the eyes. Artefacts interfere with EEG by reducing 

information from its signals. It was essential to remove the 

artefacts completely from the MIT/BIH-PED without 

distorting the information in the EEG signal relating to brain 

activity. Hardware artefacts were removed from every epoch 

(30 seconds) in the data by using a notch filter to eliminate the 

power line interference and a band-pass filter ranging between 

0.15 Hz-45 Hz to remove nonsignificant high-frequency noise 

as shown in the Algorithm 1. The filters were applied in 

succession to all epochs to eliminate resonance noise and eye 

blink artefacts [20, 23, 29, 30]. 

 

Algorithm 1. Algorithm for elimination artifacts form EEG 

signals 

All subject's input: EEG [16] // Entered all EEG signals for 

16 subjects. 

Subject_counter = 1 // Initialization Subject counter with 

value 1. 

While (Subject_counter <= 16) // While loop to take all 16 

subjects. 

    EEG_data = EEG (Subject_counter) // Initialization EEG 

data variable with all 16 subjects. 

    MLength = length (EEG_data) // measure the EEG length 

signal for all 16 subjects 

    Counter = 1 // Initialization Counter variable with value 

1. 

    Division = MLength / 7500 // Initialization the Division 

variable with total length of EEG signal over 7500 sample 

(30 sec) 

    Column = 1 // Initialization Column variable with value 

1. 

    While (Counter <= Division) // while loop to take every 

7500 sample to sec and make filtering to them. 

        EEG = Perform filtering using 0.1 Hz to 45 Hz // filter 

band-pass filter applied to remove the non-significant high 

frequency noise. 

        EEG.hand = Perform filtering using 0.15 Hz to 45 Hz 

// band-pass filter applied to remove the non-significant 

high frequency noise. 

        Column = Column+7500 // take the next 7500 sample 

(30 Sec) 

        Counter++ // Increase the Counter variable. 

    END while 

END while 

2.2 Data segmentation 

 

Two important sleep quality standards exist: Rechtschaffen 

and Kales produced the first in 1968, while the American 

Academy of Sleep Medicine (AASM) developed the second in 

2007 [40]. The MIT/BIH-PED was assessed based on the first 

standard, and the data were labelled every 30 s. At 250 Hz, 

each 30 s of data contains 7500 samples, resulting in 10258 

raw samples with 7500 (30 s) columns for 16 subjects. 

 

2.3 Compression of raw EEG data using truncated 

singular value decomposition  

 

Truncated singular value decomposition (TSVD) is a 

method of matrix factorization that divides matrix A into the 

three matrices U, ∑, and V, as shown in Figure 2. TSVD 

corresponds to the operation 𝑨 = 𝑼∑𝑽𝑻where 𝑨 represents an 

(𝒎 × 𝒏) data matrix, where 𝒎 and 𝒏 are the numbers of rows 

and columns of the samples and observations, respectively. 

𝑼 is the left truncated singular vector (𝒎 × 𝒓), where 𝑟 

represents the shortened dimension index. ∑ on the other hand, 

displays the truncated singular values of an (𝒓 × 𝒓) matrix, and 

the right singular vector of an (𝒓 × 𝒏) truncated matrix is 

represented as 𝑽𝑻 [41]. 

 

 
 

Figure 2. Schematic diagram of the TSVD 

 

After segmentation into 30 s (7500 samples), we employed 

TSVD in Option 2. EEG signals from 7500 samples (30 s) 

were compressed into 25 (0.1 s), 125 (0.5 s), 250 (1 s), 375 

(1.5 s), 500 (2 s), and 625 (2.5 s) samples. The TSVD 

technique showed us how to reduce redundant data by 

selecting important features based on data variance and a 

productive data compression method that preserves vital 

information in EEG data while achieving a high compression 

ratio. 

 

2.4 Data scaling (Standardization) 

 

The rescaling strategy inherent to machine learning has 

prevented characteristics with wider ranges from dominating 

others. Therefore, all EEG data inputs were rescaled to have 

the properties of a typical normal distribution [42]. The sample 

standard score was computed as Eq. (1): 

 

𝑧 = (
𝑥 − 𝜇

𝜎
) (1) 

 

where, 𝑥 represents the input sample or EEG data, 𝜇 signifies 

the mean calculated for the data or the global average, and 𝜎 is 

the standard deviation. Standardization involves setting the 

mean to zero and the standard deviation to one to reduce 
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computation time and improve accuracy for deep neural 

networks. 

 

2.5 Imbalanced data (Oversampling data) 

 

The synthetic minority oversampling technique (SMOTE) 

[43] is one of the most popular oversampling techniques for 

addressing the imbalance issue. It is a way of creating 

synthetic data by modifying various processes. It is one of the 

most prominent of these approaches; it can also balance the 

distribution of classes but does not provide any additional 

information to the model. SMOTE calculates feature vector 

distances for the minority class. Figure 3 shows that the 

difference is multiplied by a random value to balance all 

classes and added to the preceding feature vector. 
 

 
Figure 3. Overcoming class imbalance using SMOTE 

 

2.6 Proposed BSRDNN model 

 

CNNs are specialized artificial neural networks for data 

processing and feature extraction [44-46]. To classify data, a 

CNN extracts features from video (3D), image (2D), or speech 

signal (1D) data. Each CNN model comprises a convolution 

layer with kernels or filters to do this. This enables the network 

to construct feature vectors. In our network, a pooling layer 

was used to minimize data dimensionality, and a dense layer 

was used to improve performance. CNN performs a dot 

product operation to develop features. The input data and filter 

kernel weights are used to do this. The dot product operation 

was entrusted to a certain kind of CNN (1D, 2D, or 3D) with 

a specific size of kernel based on the dimensions of the input 

dataset signals, which can be classified using 1D-CNN directly 

from raw data, reducing computational and signal transform 

costs. 1D-CNN requires fewer arithmetic operations than 2D-

CNN. Without converting single-channel EEG inputs to 2D, it 

may detect tiredness. This inspired us to create our own 

BSRDNN, a very advanced neural network constructed using 

1D-CNN and ANN (Figure 4). The baseline model for the 

BSRDNN’s design was based on the VGG19 net by Gallo [46]. 

By duplicating 1D-CNN layers with the same filter value and 

size, especially Conv1d (32*3) and Conv1d (128*3), this 

duplication of Conv1d layers resulted in increased training 

speed, reduced training samples per unit time and enhanced 

accuracy. Two layers of dense (128) neurons were placed 

between the convolution layers. This idea came from a 

DenseNet suggested by Wang et al. [47]. The concept behind 

this approach is to enable each layer to access the features of 

all preceding layers, thereby enhancing the gradient flow 

during training and facilitating the network’s acquisition of 

knowledge for improved accuracy instead of using a long 

short-term memory (LSTM) layer. Tables 1 and 2 describe 

BSRDNN layers for two Options. It is assumed that the raw 

EEG signals can be representative of by 𝑥 and that the filter or 

kernel size is 𝐾𝑠. The 𝐾𝑠 samples of a specific signal window, 

with weights for a filter-kernel assigned at random by 𝐾𝑠, were 

created with new 𝐾𝑠 values by the dot product operation, as Eq. 

(2): 

 

𝑥𝑛𝑒𝑤 = 𝐴𝑐𝑡(𝑥 ∗ 𝑘𝑒𝑟𝑛𝑒𝑙𝑘𝑠 + 𝐵𝑖𝑎𝑠𝑘𝑠) (2) 

 

where, 

Act: Activation function. 

Bias: Bias value of kernel. 

∗: Convolution dot operation. 

kernel: Size of filters with size 𝐾𝑠. 

𝒙: EEG signal within N data points 𝒙𝟏 , 𝒙𝟐 …, 𝒙𝑵. 

In the place of the EEG, 𝐾𝑠 models, the mean of these new 

𝐾𝑠 values or their largest values, were employed. This process 

was iterated until every sample contained in the entire signal 

was processed. The optimal number and size of filters affect 

their performance. The terms used in Figure 4 and Tables 1 

and 2 are defined as follows. 

 

 
 

Figure 4. Structure of proposed model (BSRDNN) based on 

hybrid 1D-CNN and ANN 

 

Output shape: This represents the output shape in Table 1 

from the first layer of Conv 1D (7498,16). The first integer, 

7498 in the first row, represents the length vector after 

applying filter size 3 on 7500 samples (30 sec). The second 

integer, 16, represents the number of filters applied to the EEG 

signal. The other layers were calculated as in the first layer. 

Parameters: These are typically the weights of the 

connections. In this case, these parameters were learned during 

the training stage and can be calculated by (((size 

filter*number of channel) + bias) *number of filters); in our 

case, (((3*1) + 1) *16) we obtained 64 in the first layer. The 

other layers were calculated as in the first layer. 
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Table 1. Summary of the proposed BSRDNN in Option 1 model based on 1D-CNN and ANN, showing computational 

complexity 

 

Layer No. Layer (Type) Filter*Kernel Size 
UNIT 

SIZE 

Complexity Computational 

Parameters Output Shape 

1 Conv 1D 16*3 – 64 (7498, 16) 

2 Maxpool 1D – – 0 (7498, 16) 

3 Conv 1D 32*3 – 1568 (7496, 32) 

4 Maxpool 1D – – 0 (7496, 32) 

5 Conv 1D 32*3 – 3104 (7494, 32) 

6 Maxpool 1D – – 0 (7494, 32) 

7 Conv 1D 128*3 – 12416 (7492, 128) 

8 Maxpool 1D – – 0 (7492, 128) 

9 Conv 1D 128*3 – 49280 (7490, 128) 

10 Maxpool 1D – – 0 (7490, 128) 

11 Dense – 128 16512 (7490, 128) 

12 Conv 1D 64*3 – 24640 (7488, 64) 

13 Maxpool 1D – – 0 (7488, 64) 

14 Dense – 128 8320 (7488, 128) 

15 Conv 1D 40*1 – 5160 (7488, 40) 

16 Flatten – – 0 299520 

17 Dense – 3 898563 3 

 

Table 2. Summary of the proposed BSRDNN model in Option 2 using TSVD 25,125,250,325,500,625, showing computational 

complexity 

 

Layer No. & Type 
Output Shape and Parameters (Complexity Computational) for TSVD (25,125,250,325,500,625) 

TSVD=25 TSVD=125 TSVD=250 

1  Conv 1D (23, 16) 64 (123, 16) 64 (248, 16) 64 

2 Maxpool 1D (23, 16) 0 (123, 16) 0 (248, 16) 0 

3  Conv 1D (21, 32) 1568 (121, 32) 1568 (246, 32) 1568 

4 Maxpool 1D (21, 32) 0 (121, 32) 0 (246, 32) 0 

5 Conv 1D (19, 32) 3104 (119, 32) 3104 (244, 32) 3104 

6 Maxpool 1D (19, 32) 0 (119, 32) 0 (244, 32) 0 

7 Conv 1D (17, 128) 12416 (117, 128) 12416 (242, 128) 12416 

8 Maxpool 1D (17, 128) 0 (117, 128) 0 (242, 128) 0 

9 Conv 1D (15, 128) 49280 (115, 128) 49280 (240, 128) 49280 

10 Maxpool 1D (15, 128) 0 (115, 128) 0 (240, 128) 0 

11 Dense (15, 128) 16512 (115, 128) 16512 (240, 128) 16512 

12 Conv 1D (13, 64) 24640 (113, 64) 24640 (238, 64) 24640 

13 Maxpool 1D (13, 64) 0 (113, 64) 0 (238, 64) 0 

14 Dense (13, 128) 8320 (113, 128) 8320 (238, 128) 8320 

15 Conv 1D (13, 40) 5160 (113, 40) 5160 (238, 40) 5160 

16 Flatten (520) 0 (4520) 0 (9520) 0 

17 Dense (3) 1563 (3) 13563 (3) 28563 

Layer No. & Type TSVD=325 TSVD=500 TSVD=625 

1  Conv 1D (373, 16) 64 (498, 16) 64 (623, 16) 64 

2 Maxpool 1D (373, 16) 0 (498, 16) 0 (623, 16) 0 

3  Conv 1D (371, 32) 1568 (496, 32) 1568 (621, 32) 1568 

4 Maxpool 1D (371, 32) 0 (496, 32) 0 (621, 32) 0 

5 Conv 1D (369, 32) 3104 (494, 32) 3104 (619, 32) 3104 

6 Maxpool 1D (369, 32) 0 (494, 32) 0 (619, 32) 0 

7 Conv 1D (367, 128) 12416 (492, 128) 12416 (617, 128) 12416 

8 Maxpool 1D (367, 128) 0 (492, 128) 0 (617, 128) 0 

9 Conv 1D (365, 128) 49280 (490, 128) 49280 (615, 128) 49280 

10 Maxpool 1D (365, 128) 0 (490, 128) 0 (615, 128) 0 

11 Dense (365, 128) 16512 (490, 128) 16512 (615, 128) 16512 

12 Conv 1D (363, 64) 24640 (488, 64) 24640 (613, 64) 24640 

13 Maxpool 1D (363, 64) 0 (488, 64) 0 (613, 64) 0 

14 Dense (363, 128) 8320 (488, 128) 8320 (613, 128) 8320 

15 Conv 1D (363, 40) 5160 (488, 40) 5160 (613, 40) 5160 

16 Flatten (14520) 0 (19520) 0 (24520) 0 

17 Dense (3) 43563 (3) 58563 (3) 73563 

 

1D convolution layer (Conv1D): As a modified variant of 

a two-dimensional convolutional neural network (2D-CNN), a 

1D-CNN was recently developed in deep learning. The 

advantage of a 1D-CNN is that it has a minimum computation 

requirement owing to the design's simplicity and portability, 

which makes it suitable for real-time and cost-effective 

hardware implementation, where the convolution layer uses 

kernel weights of filters to transform the raw EEG data into 

feature maps [48]. 

Maxpool 1D: The layers are used to subsample each input 
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layer by making it less complex and reducing the number of 

parameters that need to be learned. The cost of computing can 

be decreased by reducing the size of feature maps by 

considering their maximum values [44]. Used Stride 1 after the 

1D convolution layer to preserve the original time resolution 

by depend on Wang et al. [49]. 

Flatten layer: This layer "flattens" the multidimensional 

data that was generated by the layers that came before it into a 

single vector so that it may be utilised as an input for the step 

that comes after it [48]. 

Dense layer: This is the most popular and widely used layer. 

The dense layer describes the connection between neurons in 

the next and intermediate layers [46]. In our architecture, we 

used three fully connected layers. To improve classification 

results, we used a hidden layer of 128 neurons in our model's 

first and second dense layers. The final neuron value for the 

third dense is equal to multiple classifications applied in this 

work, so a three-neuron is sufficient to make a classification 

of the EEG signals into three categories awakeness, 

drowsiness and sleep. 

Softmax function: The Softmax function is particularly 

beneficial because it converts a vector of real numbers into a 

probability distribution of possible outcomes. A Softmax 

function is often used as an activation function in the output 

layer of NN models, which predicts a multinomial probability 

and may be specified as Eq. (3) [44, 48]: 

 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝑁
𝑗=0

 (3) 

 

where, N is the number of classes, z is the input vector, and 

𝜎(𝑧)𝑖 is the output class probability. 

 

 

3. SIMULATION AND EVALUATION 

 

3.1 Simulation setup 

 

We simulated the operation of BSRDNN for drowsiness 

detection using MIT/BIH-PED data collected through a single 

channel, to classify EEG data. In Option 1, the BSRDNN 

model was used for feature extraction and classification of the 

EEG signals into wakefulness, drowsiness and sleep, and in 

Option 2, we used the BSRDNN model for feature extraction 

and machine learning algorithms (NB, KNN, RF and SGD) for 

classification. Application of the BSRDNN in Option 1 was 

carried out in the Google  Colab Pro Platform that had 32 GB 

RAM and K80, T4 and P100 GPU for training and testing. For 

Option 2, the application was implemented in a Python 3.6.5 

environment on a computer with an Intel Core i7- 4600M 

@2.90 GHz CPU with 8 GB RAM for training and testing. 

 

3.2 Evaluation metrics for classification  

 

The confusion matrix was used to describe the performance 

of a classification approach or ‘classifier’ using test data. We 

employed the following metrics for evaluation based on the 

confusion matrix: overall accuracy, sensitivity, precision and 

F1-score [45]. These parameters are described below. 

True negative (TN): When an EEG does not have drowsy 

characteristics, the classifier correctly predicts that the EEG 

does not have drowsy characteristics. 

True positive (TP): When the EEG shows signs of 

drowsiness, the classifier can make an accurate prediction that 

the EEG is in a drowsy state. 

False negative (FN): The classifier makes the incorrect 

assumption that an EEG is not drowsy when the EEG 

demonstrates drowsiness. 

False positive (FP): The classifier makes an inaccurate 

prediction that the EEG is drowsy when the EEG is not in a 

drowsy state. 

Accuracy is a statistic that indicates the overall performance 

of the model across all classes. It is useful in situations in 

which all classes are of equal importance. It is calculated by 

dividing the total number of correct guesses by the total 

number of forecasts made.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

Precision is calculated as the ratio of positive samples 

accurately identified to the total number of positive samples 

classified (either correctly or incorrectly). This measure 

corresponds to the model’s ability to identify whether a person 

identified by the model as drowsy is drowsy. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

 

Recall is also termed as sensitivity, an additional well-

known synonym for classifier fullness. This metric assesses 

the effectiveness of the model in detecting sleepiness in a real-

world setting. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

F1-score is the weighted average of precision and recall. 

This measure balances the accurate prediction rates of sleepy 

and alert states by combining precision and sensitivity data. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

 

3.3 Training and testing phases 

 

Option 1: All 10258 raw samples, 7500 (30s) columns of 

data, were fed into the notch and bandpass filters to eliminate 

power line interference and inconsequential high-frequency 

noise. The data was segmented into 30 s intervals depending 

on the label. After applying the SMOTE oversampling, the 

data were split into a training set comprising 70% of the data 

to train the BSRDNN model for feature extraction and 

classification of the EEG signals into wakefulness, drowsiness 

and sleep. The remaining 30% was reserved for testing the 

BSRDNN model after training. We used a hyperparameter, i.e., 

an Adam optimiser, with a 0.001 learning rate, 128 batch size 

and 50 epochs. Categorical cross-entropy was considered a 

loss function. In the training phase for Option 1, a total of 1.02 

hours was spent on training. In the testing phase, the model 

needed an average time of 1 second to predict the label. Table 

3 presents a summary of the results. The confusion matrix 

depicted in Figure 5 was obtained from Option 1. 

Option 2: All techniques from Option 1 were employed, 

with TSVD added to compress data (25, 125, 250, 375, 500, 

and 625 samples) by extracting key information, reducing 

unnecessary information, and deleting the SMOTE algorithm. 

Option 2 employed BSRDNN as a feature extractor and KNN, 
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RF, SGD, and NB algorithms for classification. The BSRDNN 

model extracted MIT/BIH-PED features from 10258 input 

data with 7500 (30 s) columns. After that, the features were 

separated into training (70%) and test (30%) sets to assess the 

KNN, RF, SGD, and NB algorithms' classification abilities. 

The results are presented in Table 4. We used the same 

optimizer, learning rate of 0.001 and loss function used in 

Option 1 with a different batch size = 1024. In the training 

phase for Option 2, the total time was 0.27, 1.58, 2.1, 3.1, 4.2 

and 5.2 hours for 25, 125, 250, 375, 500 and 625 samples, 

respectively. In the testing phase, the model needed an average 

time of 1 second for predicting the label. The results and 

confusion matrix depicted in Figures 6-9 are obtained from 

Option 2. 

 

Table 3. BSRDNN (Option 1) results for feature extraction and classification 

 
Status Precision % Recall % F1-Score % 

Awakeness (w) 88% 91% 90% 

Drowsiness (Sleep stage 1) 93% 87% 90% 

Asleep (sleep stages 2,3,4 and REM sleep) 96% 100% 98% 

Accuracy % 92.31% 

 

 
 

Figure 5. Confusion matrix result for option 1 

 

Table 4. BSRDNN (Option 2) results for feature extraction and machine learning algorithms for classification 

 
Naïve Bayes (NB) Random Forest (RF) 

TSVD Accuracy % Recall % F1-Score Precision TSVD Accuracy % Recall % F1-Score Precision 

Tsvd=25 94.80% 94.80% 93.80% 95.80% Tsvd=25 99.70% 99.70% 99.90% 99.70% 

Tsvd=125 95.50% 95.50% 95.80% 96.20% Tsvd=125 99.90% 99.90% 100.00% 99.90% 

Tsvd=250 95.50% 95.50% 95.20% 96.20% Tsvd=250 99.90% 99.90% 100.00% 99.90% 

Tsvd=375 95.90% 95.90% 96.10% 96.60% Tsvd=375 99.90% 99.90% 100.00% 99.90% 

Tsvd=500 95.60% 95.60% 96.10% 96.10% Tsvd=500 99.90% 99.90% 100.00% 99.90% 

Tsvd=625 96.00% 96.00% 96.30% 96.60% Tsvd=625 100.00% 100.00% 100.00% 100.00% 

K- Nearest Neighbors (KNN) Stochastic Gradient Descent (SGD) 

TSVD Accuracy % Recall % F1-Score Precision TSVD Accuracy % Recall % F1-Score Precision 

Tsvd=25 99.70% 99.70% 100.00% 99.70% Tsvd=25 99.80% 99.80% 99.90% 99.80% 

Tsvd=125 99.90% 99.90% 100.00% 99.90% Tsvd=125 99.90% 99.90% 100.00% 99.90% 

Tsvd=250 99.90% 99.90% 100.00% 99.90% Tsvd=250 99.90% 99.90% 100.00% 99.90% 

Tsvd=375 99.90% 99.90% 99.90% 99.90% Tsvd=375 99.90% 99.90% 100.00% 99.90% 

Tsvd=500 99.90% 99.90% 100.00% 99.90% Tsvd=500 99.90% 99.90% 100.00% 99.90% 

Tsvd=625 99.90% 99.90% 100.00% 99.90% Tsvd=625 99.90% 99.90% 100.00% 99.90% 

 

   
TSVD = 25 TSVD = 125 TSVD = 250 

   
TSVD = 375 TSVD = 500 TSVD = 625 

 

Figure 6. Confusion matrix for Naïve Bayes classifiers in Option 2 
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TSVD = 25 TSVD = 125 TSVD = 250 

   
TSVD = 375 TSVD = 500 TSVD = 625 

 

Figure 7. Confusion matrix for k-nearest neighbors Classifiers in Option 2 

 

   
TSVD = 25 TSVD = 125 TSVD = 250 

   
TSVD = 375 TSVD = 500 TSVD = 625 

 

Figure 8. Confusion matrix for Random forest Classifiers in Option 2 

 

   
TSVD = 25 TSVD = 125 TSVD = 250 

   
TSVD = 375 TSVD = 500 TSVD = 625 

 

Figure 9. Confusion matrix for Stochastic Gradient Descent (SGD) Classifiers in Option 2 
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3.4 Comparison with the state-of-the-art 

 

To provide a fair comparison, we evaluated the performance 

of the proposed BSRDNN with the performance of other 

approaches on a benchmark consisting of MIT/BIH-PED data. 

Table 5 shows a detailed comparison of the metrics of our 

proposed BSRDNN model work with the work of the authors 

[16-27, 34-36]. Table 6 shows the comparison between the 

studies [28-30, 37] that proposed deep learning architectures 

based on 1D-CNN for drowsiness detection and our BSRDNN. 

Given that the authors used different specifications of 

hardware, a comparison process of the models in terms of 

running time will not be fair. Instead, we compare the constant 

total trainable parameters. The specific value for each model 

will give us the ability to make an appropriate comparison, as 

shown in Table 7. We calculate the ratio between those of 

other authors and our proposed model in Option 1 to show that 

the BSRDNN is more advantageous in terms of having less 

trainable parameters and arithmetic operations compared with 

other models. 

 

Ratio= 
𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑝𝑎𝑡𝑎𝑛𝑒𝑡𝑒𝑠 𝑓𝑜𝑟 𝑎𝑢𝑡ℎ𝑜𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑎𝑙𝑣𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑠 𝑓𝑜𝑟 𝑝𝑟𝑜𝑝𝑜𝑠𝑠𝑒𝑑 𝑂𝑝𝑡𝑖𝑜𝑛 1
 

(8) 

 

Table 5. Comparison of the proposed model's performance with that of other models that have been tested on the same dataset 

benchmark of MIT/BIH-PED 
 

Methods/Publications Accuracy (%) Recall or Sensitivity (%) F1-score (%) Precision (%) Classes 

[18] 83.6%-87.4% – – – 2 

[20] 83%-86.5% – – – 2 

[25] 85.51% 85.89% – 85.16% 2 

[19] 81.7%- 86.5% – – – 2 

[24] 87.20% – – – 2 

[23] 88.80% 88.55% – 85.04% 2 

[22] 90.27% – – – 2 

[34] 91.34% – – – 2 

[21] 92.28% 95.45% 93.47 – 2 

Proposed Option 1 92.31% 91%-100% 90%-98% 88%-96% 3 

[26] 94.31% – – – 2 

[16] 97.19% 97.01% 97.60% 98.18% 2 

[27] 97.92% – – – 2 

[36] 98.38% 98.31% 98.49% 98.67% 2 

[17] 99.01% 99.45% – 99.75 3 

[35] 99.93% 99.69% 99.93% 99.90% 2 

Proposed Option 2 94.8%-100% 94.8%-100% 93.8%-100% 95.8%-100% 3 

 

Table 6. Benchmarking with other studies proposed 1d-CNN for drowsiness detection 

 

Authors Model Dataset 
Overall 

Accuracy (%) 
Recall  F1-score (%) Precision (%) 

[28] 1D-CNN sleep-EDF -2013 82.46%-85.39% 
40.5%-

89.6% 
46.6%-90.5% 55.0%-92.3 

[30] 1D-CNN 
Emotive EPOC+ headset 

device (14channels) 
90.42% 89% 88% 86.51% 

Proposed 

Option 1 
BSRDNN MIT/BIH-PED 92.31% 

91%-

100% 
90%-98% 88%-96% 

[29] 1D-CNN sleep-EDF -2013 Expanded 94.87% 92% 92% 93% 

[37] 1D-CNN -LSTM sleep-EDF 94.15% 70%-97% 65%-98% 56%-99% 

Proposed 

Option 2 

BSRDNN and NB, 

KNN, RF, SGD 
Dataset (MIT/BIH-PED 94.8%-100% 

94.8%-

100% 
93.8%-100% 95.8%-100% 

 

Table 7. Comparison of the total trainable parameters for different models to Proposed Option 1 

 
Authors Method Total Trainable Parameters Ratio 

Proposed Option 1 BSRDNN 1,019,627 1 

Proposed Option 2 

BSRDNN with TSVD=25 122,627 0.12 

BSRDNN with TSVD=125 134,627 0.13 

BSRDNN with TSVD=250 149,627 0.15 

BSRDNN with TSVD=375 164,627 0.16 

BSRDNN with TSVD=500 179,627 0.18 

BSRDNN with TSVD=625 194,627 0.19 

[26] 
AlexNet 62,378,344 61 

VGGNet 16 138,423,208 135.8 

[27] 

ResNet18 11,511,784 11.3 

ResNet50 23,983,592 23.5 

ResNet101 42,864,875 42 

[28] 1D-CNN 29,576,658 29 

[29] 1D-CNN 5,024,354 4.9 

[30] 1D-CNN 14,788,329 14.5 

[37] 1D-CNN -LSTM 2,450,418 2.4 
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4. DISCUSSION AND CONCLUSION 

 

In this study, we proposed a novel machine learning 

architecture called BSRDNN, which was able to identify 

drowsiness by using data from a single channel of EEG. 

BSRDNN can analyse and extract features automatically from 

raw EEG signals without the need for handcrafted-engineered 

features, or using transformation techniques. The performance 

of the proposed model was assessed with the MIT/BIH-PED 

data available on the Physionet.org website. Option 1 yielded 

an accuracy of 92.31% for combined-subject validation, and 

Option 2 yielded an accuracy of 94.8–100% for combined-

subject validation using various algorithms for classification. 

Below is a summary of the merits of our work: 

-As seen in Tables 5 and 6, the proposed model showed 

clear superiority over the published research that used the 

same MIT/BIH-PED dataset and other studies proposed 1d-

cnn for drowsiness detection. The results were significantly 

improved through the proposed model, which was used in two 

Options: the first Option used BSRDNN as a Feature 

extraction and classification with a 92.31% accuracy, and the 

second Option combined the deep learning BSRDNN model 

and machine learning algorithms (NB, KNN, RF and SGD), 

where BSRDNN model was used for feature extraction and 

machine learning algorithms for classification yielded an 

accuracy of 94.8-100%. 

-Real-time applications, such as driving, need a faster 

reaction time, and selecting a single-channel EEG over a 

multi-channel EEG accomplishes this goal.  

-BSRDNN was constructed without manual feature 

extraction, unlike other similar studies [16, 18, 26-29]. Our 

method automatically extracts characteristics without human 

interaction. We operate directly with EEG signals without 

transforming them into 2D images. 

-The goal in Option 2 was to improve the accuracy that we 

achieved in Option 1, by dedicating the BSRDNN in Option 2 

to feature extraction. This, and the combination with TSVD, 

reduced the total number of parameters from 1,019,627 in 

Option 1 to around (122,627-194,627) in Option 2 as shown in 

Tables 1 and 2. 

-TSVD achieves a high compression ratio as shown in Table 

2, and preserves essential EEG information. This was evident 

in the results achieved with all the compressed proportions 25, 

125, 250 375, 500, and 625 samples. Hence, TSVD offers 

considerable feature selection ability based on data variation 

to reduce the significant quantity of duplicate data. 

-The suggested model of single-channel EEG-based 

drowsiness detection comparisons about other cutting-edge 

techniques of the same type, using the MIT/BIH-PED dataset 

as shown in Table 5. On the other hand, an accuracy of 99.1% 

has been reported based on the combination of two biomedical 

signals, namely blood pressure and EEG [17]. Blood pressure 

has some limitations, being affected by changes in facial and 

emotional expressions which lead to incorrect detection and 

extra calculations, considering its applicability, it appears that 

EEG is the technology that is most effective, promising, and 

trustworthy for detecting drowsiness [50]. 

-BSRDNN showed higher adaptability and a better 

capability to deal with single-channel data directly. 

Furthermore, it could extract features (up to 25, 125, 250,375, 

500, 625  and 7500) automatically, which means it can be 

applied to other tasks via transfer learning techniques, such as 

in ventricular fibrillation detection and seizure detection. 

These techniques use single-channel data and can use 

BSRDNN in different applications using 1D-CNN [51].   

-We achieved our primary goal of reducing the arithmetic 

operation time and the total number of parameters. Similar 

studies [28-30, 37] proposed deep learning architectures based 

on a 1D-CNN, but their work had drawbacks, with total 

parameters reaching (2.4-29.5) million and in the studies of 

Budak et al. [26] and Turkoglu et al. [27], they used ResNet18, 

ResNet50, ResNet101, AlexNet and VGGNet with (11.5-

138.1) million total parameters. This means that our model 

requires a significantly lower number of arithmetic operations, 

is faster training and testing phases detect drowsiness more 

quickly, as the BSRDNN has 1,019,627 total parameters in 

Option 1 and around (122,627-194,627) in Option 2. 

-Table 7 presents the ratio of total trainable parameters for 

different models compared to the proposed Option 1 of 

BSRDNN. Interestingly, the proposed Option 2 with Tsvd 25 

has fewer total parameters compared to other models. This 

finding underscores the advantage of our proposed BSRDNN 

model, as it effectively reduces the total trainable parameters. 

This means that BSRDNN enhances the speed of both the 

training and testing phases, ultimately reducing the time 

required for drowsiness detection. 

-Future results can be improved by extending the 

applications of BSRDNN to real driving EEG signal datasets 

featuring more participants. Combined with the seizure 

detection process, these systems can be provided in drivers’ 

environments via an integrated system in the vehicle. 

This study on drowsiness detection has some limitations. 

One such limitation is the challenge of generalising the 

proposed model to different people and diverse environments, 

particularly when using EEG headsets. These headsets are 

often expensive, which can limit their accessibility and usage 

across various populations. These factors may also be sensitive 

to artefacts, so pre-processing should be good because these 

issues can affect accuracy. Furthermore, the MIT/BIH-PED 

dataset is primarily a laboratory non-driving EEG dataset. In 

the future, we hope to obtain a larger driving dataset that 

contains EEG signals from participants of different genders 

and ages. 

In the future, we aim to apply BSRDNN to additional 

driving datasets featuring a greater number of participants and 

to empower the model with online learning to exploit its full 

potential of the model. Researchers are also encouraged to 

conduct additional studies on the possibility of adding 

predicting or forecasting to time series EEG signals and 

addressing related issues through other deep learning 

algorithms, such as the recurrent neural network (RNN), long-

short-term memory (LSTM) and gated recurrent unit (GRU). 

Combining these algorithms with BSRDNN will facilitate the 

detection of drowsiness more quickly, perhaps even before it 

occurs. In addition, it might be possible to include a process 

for detecting seizures in subjects before they occur. These 

systems can be made available in drivers’ environments via an 

integrated system in a vehicle. 
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