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 This research develops a machine-learning fault detection model for received signal levels 

in telecommunication infrastructure. The methodology involves modeling an enterprise 

point-to-multipoint wireless network using pathloss 5.0 software. Data from the simulated 

network, including free space pathloss, transmit power output, transmit antenna gain, 

transmitter loss, miscellaneous loss, and receiver loss, is used to train three regression 

models: gradient boosting regression (GBR), random forest regression (RFR), and K-

Nearest Neighbor (KNN). The algorithm compares the received signal levels (RSL) of 

new data with a threshold value, triggering a "Fault" or "No-fault" condition. A "Fault" 

indicates a deviation in the RSL, prompting maintenance by the field support team. A 

"No-fault" means the RSL is within the accepted range, requiring no maintenance. 

Performance evaluation metrics such as mean absolute error (MAE), mean square error 

(MSE), R-squared, and root mean square error (RMSE) were compared to select the 

optimal model. Experimental results show that the RFR model outperforms GBR and 

KNN with MAE: 0.007101, MSE: 0.000610, R-squared: 0.999992, and RMSE: 0.024697. 

Leveraging these machine learning-based fault detection models enables telecom service 

providers to optimize network performance, reduce downtime, and increase customer 

satisfaction. 
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1. INTRODUCTION 

 

Wireless telecommunication infrastructure can fail without 

notice for maintenance action. However, these failures may 

not always result in a complete downtime, but rather degraded 

performance that can be difficult to pinpoint without 

specialized tools. Received signal level (RSL) is an important 

metrics of the quality of a wireless connection and can be used 

to determine the strength of the signal from the transmitting to 

the receiving device. It is important to regularly monitor the 

RSL to ensure that the network is operating at peak 

performance and to proactively address any issues that may 

arise. 

As businesses rely more and more on the networks to 

increase operational effectiveness and foster long-term 

business growth, telecommunications are a crucial component 

of today's business world. Through the power of 

telecommunication, businesses have experienced improved 

collaboration, enhanced communication and maximum 

productivity. Telecommunications networks have evolved into 

an important medium that provides the necessary platform for 

this electronic data exchange. Yet, in the current digital 

ecosystem, organizations can use mobile communication to 

speed up workflow and productivity while allowing 

employees to use their devices to access particular applications, 

reply to emails, work on presentations, and take part in 

teleconference calls. This is made possible through the 

telecommunication service providers infrastructure. 

The telecommunications network is responsible for carrying 

all internet data and can be comprised of various technologies, 

including satellites, microwaves, and mobile networks like 5G. 

Efficient communication relies on telecommunication 

infrastructure, which enables individuals and organizations to 

communicate via wired and wireless connections, phone, 

internet, and other mediums. As demand for connectivity 

increases globally, customers and end-users expect modern 

telecommunication networks to operate with minimal 

downtime, making carriers that can offer nearly 100% uptime 

the preferred choice for many consumers. 

Telecommunication network failure of enterprise customers’ 

equipment are avoidable, with careful planning, constant 

monitoring and maintenance in addition with spare parts 

available at all times. To circumvent the problem of constant 

outages which may lead to reputational damage, 

telecommunication service providers started searching for 

better ways to improve service delivery by applying the right 
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maintenance strategies.  

The majority of telecommunication service providers began 

to use reactive or preventive maintenance procedures [1]. 

Reactive or breakdown maintenance is the strategy whereby 

no maintenance is carried out until machine breaks down. 

While predictive maintenance involves performing 

maintenance based on predictions derived from the analysis of 

key degradation parameters. The downside of both strategies 

is that reactive maintenance allows failure to occur before 

actions are taken [2] while preventive maintenance acts 

irrespective of the current state of the equipment to be 

maintained [3]. This means that the customers network will be 

shutdown to perform the maintenance whether the service is 

fine or not. Usually, customers are always upset with this form 

of maintenance decisions as their network will be interrupted 

when they are at the middle of a major task. This could also 

lead to loss of revenue for bigger businesses. Predictive 

maintenance (PdM) technology on the other hand has been 

widely used to manage the health of equipment and predict 

equipment failure so that organizations can schedule 

maintenance in advance to avoid unplanned equipment 

downtime and improve customer service [3-5]. In the light of 

this, the predictive maintenance strategy seems more 

appropriate for the telecommunications provider as it relies on 

the data to make decisions when equipment will be maintained 

before a customer complains. Maintenance actions can then be 

initiated to replace or repair the faulty components so that the 

associated unit can continuously perform its intended function 

throughout its useful life. Consequently, equipment failures 

must be discovered and corrected to avoid service disruption 

[6] and should be performed proactively to reduce 

maintenance costs and increase equipment uptime to the 

maximum extent practicable. This fact necessitates a shift in 

maintenance techniques from diagnostics to a prognostics 

approach. 

The problem statement of this research is that the 

telecommunications industry is always looking for ways to 

maintain its infrastructure and provide reliable service while 

keeping costs to a minimum. Many researchers have engaged 

in reviewing ways to improving maintenance system for about 

twenty years now [7]. The reactive maintenance approach is 

only suitable when a failure occurs causing a sudden shutdown 

and end users are always unhappy with the interruption of 

service. The preventive maintenance (PvM) technique 

emerged as one of the prevalent strategies used by most 

telecommunication businesses. However, the annual cost is 

considerably high since more replacement spare must be 

purchased and stored. The success of this strategy hinges on 

having all replacement spares on hand for scheduled 

maintenance tasks on time. Predictive maintenance strategies 

work without a schedule for servicing or parts replacement. 

The main idea is to predict a failure and then replace the spares 

before their lifespan expires. If there is any evidence of 

deterioration, the maintenance personnel will perform the 

replacement appropriately. Predictive maintenance reduces 

downtime, optimizes spare parts inventory, and extends the 

longevity of the equipment [8, 9]. In a traditional approach, 

Network Operations Center (NOC) personnel manually 

monitor the receive signal levels of the wireless enterprise 

customers and then engage a field support personnel to 

investigate any deviation in the signal parameters. However, 

with the increasing complexity of telecommunication systems 

and the rapid growth of the network, this manual approach 

becomes time-consuming. PdM applications are increasingly 

using intelligence, and model-based approaches due to the fact 

of it’s more efficient to data-driven decision-marking and real-

time applications. The science of artificial intelligence has 

seen the emergence of machine learning method in the field of 

predictive maintenance. This problem can be mitigated by 

developing of a machine learning based fault detection model 

for received signal level in telecommunication enterprise 

infrastructure that can automate the process of monitoring and 

alert network operators of any deviations from optimal signal 

levels. Therefore, the problem to be addressed in this research 

work is identify system metric that indicate an impending 

system failure and develop a machine learning model that can 

accurately monitor the system metric and provide timely alerts 

to network operators for effective telecommunication 

maintenance purposes. 

 

 

2. LITERATURE REVIEW 

 

Traditionally, a team of specialists in the Network 

Operations Center (NOC) troubleshoots, locates, and resolves 

problems by examining the alarms accumulated in various 

network segments. As networks become more complex due to 

increasing demand, there is a need to have proactive solutions 

for automatic reporting of failures [10]. These solutions notify 

operators of both present and future potential issues. However, 

such alarms provide limited relevant data to network 

administrators, with only a small subset of them being relevant 

to current operational issues [11]. Recent advancements in 

information technology have allowed big data approaches to 

handle significant volumes of data. This is seen as a cost-

effective information asset that can enhance decision-making 

and process automation, according to Gartner [12].  

There are various steps to the process of maintaining a 

telecommunication network's faults, including fault detection, 

reporting of faults, diagnosis of faults, and resolution of faults 

[11]. These steps are crucial for figuring out whether the 

system is operating normally or if a malfunction has occurred. 

Detecting faults at an early stage is crucial for optimizing 

mobile networks, according to Rezaei et al. [13], who also 

claim that identifying these faults is the first step towards 

implementing any system that can make decisions. The system 

can automatically recover or the field engineer can step in if a 

fault is detected. The fault alarms follow a specific format 

established by the equipment vendor, containing information 

such as the device that caused the fault, a clear and concise 

explanation of the fault, the level of alarm severity, and 

additional details related to the fault logs, such as the node 

identifier, start time of the fault, and other relevant information. 

After identifying the critical alerts and creating a ticket to 

record the fault's history, the level 2 team takes charge of 

investigating the fault. Their primary objective is to identify 

the underlying cause of the failure and develop a suitable 

solution to rectify the problem [14]. 

Depending on the severity, it may be possible to resolve the 

fault remotely without taking any more on-site steps to restore 

service. Yet, in other circumstances, a physical intervention—

such as a field engineer's on-site visit—might be necessary for 

fault resolution. When this event occurs, a new set of tickets 

will be generated and sent to the field team. The on-site 

support team acknowledges the dispatch notification and takes 

necessary corrective action to repair the failed hardware 

component. The support team then updates the ticket with 

information about the actions taken to resolve the failure [11]. 
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Avoiding system failures and network downtime is crucial in 

meeting the Service Level Agreement [10]. With increasing 

network complexity, effective fault management becomes 

more critical, and network operators need to anticipate faults 

in advance to make timely repair decisions [15]. The objective 

of developing advanced maintenance solutions is to minimize 

maintenance costs. In order to achieve this objective for the 

best maintenance method to maintain telecommunication 

infrastructure. 

 

2.1 Machine learning 

 

The science of artificial intelligence has seen the emergence 

of machine learning methods in the field of predictive 

maintenance. Machine learning, among other things, is a 

complex combination of algorithms based on AI that are 

frequently used within knowledge discovery to assist systems 

in discovering patterns and structures from training examples 

[16]. This technique involves creating a model based on 

historical input data and its output behavior, which enables 

accurate forecasting of outcomes [17]. By capturing 

knowledge in data and uncovering hidden patterns, ML 

algorithms provide a more efficient approach to data-driven 

decision-making. Machine learning can execute complex 

algorithms by learning from data instead of relying on the pre-

programmed instructions [18, 19]. The idea stems from the 

fact that computers can solve problems that require them to 

determine the relationship between the output of a vector of 

input variables (x). To achieve this, a training data set 

consisting of N input and output value samples is used, and 

various learning methods are employed to create a function 

y(x) that predicts the output variable's value for a new input 

variable value. 

The machine learning workflow are of two stages, 

consisting of training and decision-making. In the training 

phase, machine learning techniques are utilized to develop a 

model by analyzing the training dataset. During the decision-

making phase, the system can apply the trained model to 

obtain an estimated output for each new input. Supervised 

learning algorithms which are one of the various categories of 

machine learning technique require a labeled training dataset 

to build a model that describes the relationship between input 

and output. A supervisor is needed to inform the system about 

the expected output for each input in supervised learning. 

There are multiple supervised learning algorithms available, 

each with its own set of requirements and uses [20, 21]. 

There are various machine learning algorithms available for 

different types of problems. For example, Carvalho et al. [22] 

investigated different studies on predictive maintenance 

published between 2009 and 2018, which utilized vibration 

signal data generated from PdM devices. They investigated 

various machine learning techniques to solve the prediction 

problem. The PdM applications utilized specific equipment 

such as turbines, motors, compressors, pumps, and fans. The 

research paper examined various machine learning techniques, 

the equipment used in maintenance prediction, and the type of 

data used in the machine learning algorithm. According to the 

authors' reviews, Random Forest is the most commonly used 

machine learning algorithm with 33%, then the neural 

network-based algorithms with 27%, support vector machines 

(SVM) with 25% while k-means is the least with 13%. The 

authors stressed the significance of selecting an appropriate 

machine learning method to achieve optimal performance in 

predictive maintenance applications. To demonstrate this, they 

conducted a comprehensive review of the literature on 

machine learning methods used in predictive maintenance. 

They focused on the techniques currently being investigated in 

the field and evaluated the effectiveness of state-of-the-art 

machine learning approaches. Furthermore, they discussed the 

impact of artificial intelligence (AI) on future predictive 

maintenance, which is a vital aspect of advanced production 

systems. Specifically, they discussed the reasons for the 

interest in applying deep learning technology in predictive 

maintenance strategies, but cautioned that it may not be 

suitable for every problem as it often requires large datasets 

for training. 

Çinar et al. [23] conducted a comprehensive literature 

review to identify existing machine learning (ML) applications 

in order to guide researchers and practitioners in selecting 

appropriate ML techniques, data size, and data types for 

feasible ML applications. Their paper provides an exhaustive 

review of ML techniques applied in predictive maintenance 

over a ten-year period (2010-2020). According to their 

analysis, SVM, RF, and ANN are the most commonly used 

ML algorithms in the review literature. However, it has been 

observed that RF is the most widely used ML technique in 

PdM and has been used in various industrial equipment, 

components and systems. 

Research papers, such as those by Jardine et al. [8], Lei et 

al. [24], and Uddin et al. [25], show that significant efforts 

have been made over the past two decades to improve 

Predictive Maintenance systems, with knowledge-driven and 

data-driven approaches being the most common [26-29]. The 

data-driven approach relies on data mining techniques to 

create models directly from historical records, making it an 

ideal tool for Predictive maintenance applications [29]. 

Machine learning, a subset of artificial intelligence, is 

increasingly important in this approach as it teaches computers 

to learn directly from data without relying on a given equation 

as a model. As more data becomes available for learning, 

machine learning algorithms can adjust their performance to 

develop powerful predictive model. 

The reason behind this conclusion is that machine learning 

techniques can effectively deal with complex and multivariate 

data by uncovering underlying relationships. Machine 

learning algorithms are designed to learn and improve their 

performance by analyzing input data and making predictions 

with minimal or no human intervention, as noted by Calabrese 

et al. [30], Susto et al. [31], Verhagen and Boer [32]. 

 

2.2 Frameworks for building machine learning systems 

 

Three data mining frameworks widely used by machine 

learning professionals: Knowledge Discovery in Database 

(KDD), Cross-Industry Standard Process for Data Mining 

(CRISP-DM), Sample, Explore, Modify, Model, and Assess 

(SEMMA) [12]. KDD, which was coined by Gregory 

Piatetsky-Shapiro in 1989, is a process of extracting valuable 

knowledge from data. The CRISP-DM model is an iterative 

process, which means that many of the actions taken will 

revisit prior steps and repeat procedures in order to achieve 

clarity [33, 34]. SEMMA is another popular data mining 

framework that comprises of five stages. However, most 

researchers and data mining experts prefer to use KDD and 

CRISP-DM process models because of their comprehensive 

and precise nature. It is however clear that CRISP-DM is more 

complete as it provides a well-defined iterative flow of 

knowledge across and between stages. Furthermore, it covers 
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all the crucial aspects of creating a dependable machine 

learning system from a business standpoint. 

 

 

3. MATERIALS AND METHODS 

 

This section presented the conceptual framework, the 

materials and methods employed in achieving the research 

goals. 

 

3.1 Conceptual framework 

 

The conceptual framework is made up of three modules: a 

data collection module, data analytics module and a machine 

learning management module. The Data Analytics Module is 

responsible for collecting the received signal level data from 

the telecommunication network and verifying that the data is 

correctly formatted for further modeling. The machine 

learning module extracts characteristics from the preprocessed 

dataset to train and assess the model's performance as shown 

in Figure 1, while Table 1 shows the Material and software 

applications used in carryout this research. 

 

 
 

Figure 1. Conceptual framework 

 

3.2 Data generation approach 

 

To simulate the received signal level data, the following 

methods were investigated and in this study a physics-based 

simulation method using the Path Loss 5.0 software was 

utilized. Table 2 contains the parameters for the Transmitter 

(Tx) and Receiver (Rx) which are utilized in the simulation of 

a vector element for a functional telecommunication link using 

the pathloss 5.0 software. The table provides specific 

information on the transmit and receiver antenna gain, transmit 

power output, frequency, polarization, coordinates, and 

antenna height which are used to determine the path length. 

These parameters were supplied by the microwave radio 

manufacturer. On the other hand, the parameters in Table 3 

were employed to generate data that could be used for testing 

the machine learning model. Therefore, the values in both 

tables are distinct since they were generated using parameters 

from different base stations.  

 

Table 1. Material and software applications 

 

Resource Details 

CPU 16GB, Core i5 computer 

Pathloss 5.0 
For microwave wireless link design and 

planning 

Jupyter 

Notebook 

Open-source machine learning and data analysis 

platform 

Ipython 
Evolved into Jupyter with an interactive 

command-line interface 

Scikit-learn Full featured library for ML algorithms. 

Pandas 
open-source data manipulation and analysis 

library. 

NumPy 
open-source library with collection of 

mathematical functions. 

Matplotlib plotting library for Python. 

Seaborn 
python library used for plotting and creating a 

wide variety of statistical plots. 

Pickle 

Python library for serialization and 

deserialization of an object's state to a byte 

stream and vice versa. 

 

Table 2. Parameters for simulating training datasets 

 
Transmitter Details Receiver Details 

Transmitter power output 

(21dBm) 

Receiver power output (-

100dBm) 

Antenna height (36.0m) Antenna height (9.0m) 

Transmitter Antenna Gain 

(16dBi) 

Receiver Antenna Gain 

(33.9dBi) 

Vertical polarization Vertical polarization 

Frequency (10GHz) Frequency (10GHz) 

Latitude 06 38 57.19 N Latitude 06 39 04.54 N 

Longitude 003 21 54.94 E Longitude 003 20 59.73 E 

Path length = d(km) = 1.71km 

 

Table 3. Parameters for simulating testing datasets 

 
Transmitter Details Receiver Details 

Transmitter power output 

(18dBm) 

Receiver power output (-

100dBm) 

Antenna height (36.0m) Antenna height (9.0m) 

Transmitter Antenna Gain 

(13.3dBi) 

Receiver Antenna Gain 

(33.9dBi) 

Vertical polarization Vertical polarization 

Frequency (10GHz) Frequency (10GHz) 

Latitude 06 38 57.19 N Latitude 06 39 04.54 N 

Longitude 003 21 54.94 E Longitude 003 20 59.73 E 

Path length = d(km) = 1.71km 

 

Simulating data for received signal level (RSL) involves 

generating values for the signal strength that represents a real-

world scenario and the following steps were followed: 

 

a) Determine the frequency of transmission. 

b) Select a propagation model to determines how the 
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signal strength changes over the distance. 

c) Select the transmit power according to the 

manufacturer’s specifications. 

d) Choose the antenna heights and define the 

environments. 

e) Generate data using pathloss 5.0. 

f) Validate the data to ensure the simulated data 

accurately represents the real-world scenario. 

 

3.2.1 Pathloss 5.0 

Pathloss 5.0 is a robust software program that is useful for 

designing, optimizing, and planning radio networks. It offers 

an array of tools to evaluate and simulate radio propagation 

and to anticipate coverage and signal strength which allows 

users to input the base station (transmitter) and users (receiver) 

end parameters such as the base station location, antenna 

height, transmit power, frequency band, modulation scheme. 

Once the transmitter and receiver parameters have been set up, 

Pathloss 5.0 can be used to simulate the propagation of radio 

signals between the two ends and predict the expected signal 

strength, quality, and coverage area of the link.  

The software uses advanced algorithms to model the effects 

of various factors such as terrain, building clutter, and 

atmospheric conditions on radio propagation, allowing users 

to optimize the placement and configuration of transmitters 

and receivers for maximum performance. In addition, Pathloss 

5.0 provides tools for analyzing link performance, including 

link budget analysis and interference analysis, which allow 

users to fine-tune the transmitter and receiver parameters and 

improve link performance.  

To simulate the wireless links, the pathloss software was 

launched on a computer and a new project environment was 

created. The transmitter and receiver parameters were set up 

by specifying locations, antenna height, antenna gain, 

transmitter power, and frequency. Digital Terrain data was 

imported and the propagation model was defined. Finally, the 

pathloss was calculated and a link budget was generated for 

the wireless link. 

 

3.2.2 Data validation 

The free space path loss (FSPL) equation is employed to 

estimate the attenuation of a radio signal as it moves through 

space, whereas the received signal level (RSL) equation is 

utilized to determine the strength of a radio signal that a 

receiver antenna receives in a wireless communication system. 

The RSL is crucial in evaluating the dependability and quality 

of the communication link and is often compared to the 

minimum signal level required for the communication system 

to work properly. These equations can be represented as 

shown in Eq. (1) and Eq. (2) [35] and are used to generate the 

sample raw data in Table 4 and Table 5. 

 

𝐿FSL = 92.45 + 20log(𝑓GHz) + 20log(𝑑km)[dB] (1) 

 

where, 

𝑓 =  the frequency of the signal in gigahertz frequency 

(GHz) 
𝑑 = the distance between the transmitter and receiver in(km) 

Similarly, 

 

Received signal strength (RSL) = Po − Lctx +
Gatx − Lcrx + Garx − FSL − Lm [dBm] 

(2) 

 

where,  

Po = the transmitted power in (dBm) 
Lctx = Transmitter antenna loss (dB) 
Gatx = the gain of the transmitting antenna (dBi) 

Lcrx = Receiver antenna loss (dB) 
Garx = the gain of the receiving antenna (dBi) 

Lm = system losses (dB) 

FSL = free-space pathloss (dB) 
 

Using the simulation parameters from Table 2 and Eqs. (1)-

(2) to validate the parameters. 

 

F = 10GHz and d = 1.71km 

Free space pathloss (FSPL) = 92.45 + 20log (10) + 20log 

(1.71) 

FSPL = 92.45 + 20 + 4.6599 = 117.11dB 

 

Similarly, with Eq. (3) 

 

Received Signal Level (RSL) = Po − Lctx + Gatx −
Lcrx + Garx − FSL − Lm  

(3) 

 

where, 

Po = 21dBm,  

Lctx = 2.43dB 

Gatx = 16dBi 

Lcrx = 0.00dB 

Garx = 33.9dBi 

FSL = 117.11dB 

Lm = 0.02dB 

 

RSL = 21 – 2.43 + 16 – 0.00 + 33.9 – 117.11 – 0.02 =  

-48.66dBm 

 

In general, the mathematical model for simulating the RSL 

values is shown in Eq. (4). 
 

RSL =Po − Lctx + Gatx − Lcrx + Garx − (92.45 +
20 log(𝑓GHZ) + 20 log(𝑑km)) − Lm 

(4) 

 

Table 4. Sample generated training dataset 
 

Node 

ID 

Path Length 

(km) 

Free Space Path 

Loss (dB) 

Receive Signal 

Level (dBm) 

100 0.1 92.45 -24 

101 0.11 93.2778537 -24.8278537 

102 0.12 94.03362492 -25.58362492 

... ... ................... ......................... 

119 0.29 101.69796 -33.24795996 

120 0.3 101.9924251 -33.54242509 

 

Table 5. Sample generated test dataset 
 

Node 

ID 

Path Length 

(km) 

Free Space Path 

Loss (dB) 

Receive Signal Level 

(dBm) 

100 0.1 92.45 -29.7 

101 0.11 93.2778537 -30.5278537 

102 0.12 94.03362492 -31.28362492 

... ... .................. ......................... 

119 0.29 101.69796 -38.94795996 

120 0.3 101.9924251 -39.24242509 

    

 

3.2.3 Data understanding 

To conduct the research, simulated data was generated 

using pathloss 5.0 software, and a mathematical model 

obtained from the RSL transmission equations was used to 
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verify the accuracy of the dataset. This additional step of 

validation using the RSL transmission equations helped ensure 

the reliability of the results before utilizing them in machine 

learning models. The RSL dataset comprises 5000 instances 

with 10 attributes, such as customer node IDs, distance (in 

kilometers), transmitting frequency (in GHz), free space path 

loss (in dB), transmit power (in dBm), transmit antenna gain 

(in dBi), transmitter loss (in dB), miscellaneous losses, remote 

antenna gain (in dBi), and received signal level (in dBm). 

 

3.2.4 Data preprocessing 

Data preprocessing is a fundamental technique aimed at 

reducing the complexity of data for easier processing. It covers 

the entire process of preparing data for analysis, including data 

wrangling and other tasks such as scaling and normalizing data, 

converting categorical variables to numerical variables, and 

dividing data into training and validation sets [36, 37]. 

 

3.3 Feature selection and extraction 

 

It has been demonstrated that feature selection for high-

dimensional data analysis is effective and advantageous by 

selecting a subset of important characteristics from a dataset 

using feature selection.  

The objective of selecting features from a given set of data 

is to choose the most insightful and pertinent features for a 

specific issue while lowering the data's dimensions and 

computing complexity [38]. On the other hand, feature 

extraction typically transforms the raw data into easily 

recognizable features [39]. For this investigation, the six 

labelled input features indicated in Table 6 together with their 

data types have been chosen. 

 

Table 6. Input features 

 
Input Features Data Types 

Free Space Pathloss (dB) float (64) 

Transmit Power (dBm) int (64) 

Transmitter Antenna Gain (dBi) int (64) 

Transmitter Loss (dB) float (64) 

Miscellaneous Losses float (64) 

Remote Antenna Gain (dBi) float (64) 

 

3.4 Data normalization 

 

Data standardization was performed on the dataset using 

Standard Scaler library in Python before incorporating the 

input into the ML algorithms. The main idea is to standardize 

the data by adjusting its scale and distribution so that each 

value has a mean of 0 and a standard deviation of 1 as shown 

in Eq. (5): 

 

z=
X-μ

σ
  (5) 

 

where, 

Z: the standard score 

X: the raw score or observation being standardized 

μ: the mean of the data 

σ: the standard deviation of the data 

 

3.4.1 Data division 

Nguyen et al. [40] did a study where the Performance 

evaluation of several machine learning algorithms is done by 

partitioning the dataset into different proportions for training 

and testing. The RMSE, MAE, and R-squared metrics were 

used to assess the model's effectiveness and gauge each 

metric's predictive potential. It was observed that the 

training/testing ratios of 70/30 outperformed other ratios. The 

train-test split's aim is to ensure that the model is trained and 

tested on various data sets in order to avoid overfitting [41]. 

 

3.5 Model selection 

 

The act of choosing the most appropriate statistical or 

machine learning model for a specific problem or dataset is 

known as model selection. It is an important step in the 

machine learning modeling process, as the choice of models 

can greatly impact the accuracy and interpretability of the 

results. Received signal level prediction is a supervised 

learning regression problem because the predicted output is 

continuous-valued [39]. Hence, neural networks, support 

vector regression (SVR), K-NN, and random forest regression 

have shown substantial performance in received signal level 

predictions [42-46]. 

 

3.5.1 Hyperparameter tuning 

A very common approach for hyperparameter tuning is grid 

search, where a range of hyperparameters are specified for 

model training and evaluation with each hyperparameter 

combined together. Random search is another approach, where 

a random subset of hyperparameters is chosen and the model 

is trained and evaluated with those hyperparameters. There are 

also more advanced methods such as Bayesian optimization 

and gradient-based optimization. However, the process to tune 

the hyperparameter can be time-consuming and 

computationally expensive, especially for large and complex 

models [47-50]. 

 

3.5.2 Model development 

The Python and machine learning libraries were imported 

into the Jupyter notebook environment and stored in the same 

directory as the 'RSL_Data.csv' file for preprocessing. The 

RSL data was split into features and a target variable, with 

input values comprising the features and the RSL values as the 

target (output) variable. The features were standardized by 

scaling them to have a mean of 0 and a standard deviation of 

1. 

The data was split into two subsets, using the train_test_split 

function. One subset was used for training the machine 

learning model, and the other subset was used for evaluating 

the performance of the model. The split was random and 

involved using 70% of the data for training and the remaining 

30% for validation. A random seed value was also set, which 

ensured that the dataset was split consistently each time the 

code was executed. This level of consistency is crucial for 

reproducibility since it guarantees that the same random split 

is used during each execution. 

For each classifier, an instance was created, and the models 

were fitted to the provided training data. After being trained 

via the fit method, the model was employed to make 

predictions on new data using the predict method. Additionally, 

the performance of the trained model was assessed on the 

validation dataset, which was used to fine-tune the model's 

hyperparameters. 

To fine-tune the model’s performance, the GridSearchCV 

class was employed. This class exhaustively searches a 

specified hyperparameter space, which is specified as a list of 

dictionaries. The GridSearchCV class receives inputs used to 
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evaluate the performance of the model for each 

hyperparameter combination. It then carries out a cross-

validation procedure, utilizing the specified number of folds, 

to estimate the model's performance for each hyperparameter 

combination. The result of the GridSearchCV is a fitted 

GridSearchCV object, which contains information about the 

search process, the estimator object with the best 

hyperparameters found during the search. Using domain 

knowledge, the trained model was applied to a new testing 

dataset to generate predictions, which were then classified as 

indicating either a fault or no fault considering the rule-based 

algorithm that had been defined. 

 

3.6 Performance evaluation metrics 

 

Based on the literature [51-53], different approaches exist 

to assess the performance of the proposed models. In this study, 

the target variable is a continuous parameter; 𝑅2  (which 

indicates the goodness of fit between the observed and 

predicted values), the mean squared error (MSE), the mean 

absolute error and the root mean squared error have been used 

to evaluate the performance of the models as shown in Eq. (6) 

to Eq. (9). 

Lower values for RMSE, MSE, MSE and higher values for 

𝑅2  are indicative of a better predictive performance per 

machine learning approach. 

Where, 𝑁 represents the number of samples, 𝑓𝑖 is the actual 

value predicted by the model, 𝑦𝑖  denotes the predicted value 

and 𝑦‾ is mean value of 𝑦𝑖 . 
 

𝑅2 = 1 −
∑  𝑁
𝑖=1   (𝑦𝑖 − 𝑓𝑖)

2

∑  𝑁
𝑖=1   (𝑦𝑖 − 𝑦‾)2

 (6) 

 

MSE =
1

𝑁
∑  𝑁
𝑖=1 (𝑦𝑖 − 𝑓𝑖)

2  (7) 

 

RMSE = √
1

𝑁
∑  

𝑁

𝑖=1

(𝑦𝑖 − 𝑓𝑖)
2 (8) 

 

MAE = 
1

𝑁
∑  |𝑦𝑖 −𝑓𝑖|
𝑁
𝑖=1  (9) 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Generated/acquired dataset 

 

The RSL dataset utilized for this research consist of 5000 

instances and 10 attributes. These attributes consist of 

customer node IDs, distance (measured in kilometers), 

transmitting frequency (in GHz), free space path loss 

(measured in dB), transmit power (measured in dBm), transmit 

antenna gain (measured in dBi), transmitter loss (measured in 

dB), miscellaneous losses, remote antenna gain (measured in 

dBi), and received signal level (measured in dBm). The free 

space pathloss column contains formula, where: 

 

𝐹𝑆𝑃𝐿 = 92.45 + 20 ∗ 𝐿𝑂𝐺(𝐶2)+ 20 ∗ 𝐿𝑂𝐺(𝐵2). 

 

C2 and B2 represents the frequencies and distances between 

the transmitter and receiver. Similarly, the frequency column 

is an aggregate of column (E3-G3+F3+I3-D3-H3). 

The dataset is available for download at: 

https://docs.google.com/spreadsheets/d/1isu81PG1_cml8-

WTPNtfwa_H5ZnPPQf6/edit?usp=share_link&ouid=111742

986142993233907&rtpof=true&sd=true. 

The setting of the threshold values for the RSSI for no fault 

is -70dBm above, while for fault detection is below -70dBm. 

According to international standard, RSSI greater than -

70dBm has an excellent signal quality, while between -70dBm 

to -85dBm is good. Then between -86dBm to -100dBm is fair, 

below -100dBm is poor and -110 dBm has no signal.  

 

4.2 Model comparison 

 

Table 7 provides the performance metrics of three different 

models, namely Gradient Boosti ng Regression (GBR), 

Random Forest Regression (RFR), and K-Nearest Neighbors 

Regression (KNN), on a testing set of data. The values in the 

table are as follows: 

Gradient Boosting Regression (GBR) has an R-squared 

value of 0.998686, an MAE of 0.221628, an MSE of 0.095309, 

and an RMSE of 0.308721. 

Random Forest Regression (RFR) has an R-squared value 

of 0.999992, an MAE of 0.007101, an MSE of 0.00061, and 

an RMSE of 0.024697. 

K-Nearest Neighbors Regression (KNN) has an R-squared 

value of 0.999989, a MAE of 0.007402, an MSE of 0.00077, 

and an RMSE of 0.027741. 

 

Table 7. Model performance metrics on testing dataset 

 

Model 
Testing Metrics 

R-Squared MAE MSE RMSE 

GBR 0.998686 0.221628 0.095309 0.308721 

RFR 0.999992 0.007101 0.00061 0.024697 

KNN 0.999989 0.007402 0.00077 0.027741 

 

A comparison of the R-squared values, Mean Absolute 

Error (MAE), The MSE value and RMSE values shows that 

the RFR and KNN models have significantly lower RMSE 

values compared to the GBR model. This indicates that the 

RFR and KNN models have a better fit to the data and are 

making more accurate predictions compared to the GBR 

model. 

In summary, based on the values in the Table 7, it appears 

that the Random Forest Regressor (RFR) model has the best 

overall performance, as it has the highest R-squared value 

(0.999992) and the lowest MAE, MSE, and RMSE values. 

Similar comparison was performed on the Gradient 

Boosting Regression (GBR), Random Forest Regression 

(RFR), and K-Nearest Neighbors Regression (KNN), using 

the validation dataset shown in Table 7. The values in the table 

are as follows: 

Gradient Boosting Regression (GBR) has an R-squared 

value of 0.998677, an MAE of 0.211548, an MSE of 0.092343, 

and an RMSE of 0.303879. 

Random Forest Regression (RFR) has an R-squared value 

of 0.999998, an MAE of 0.002090, an MSE of 0.000108, and 

an RMSE of 0.010371. 

K-Nearest Neighbors Regression (KNN) has an R-squared 

value of 0.999992, an MAE of 0.007231, an MSE of 0.000564, 

and an RMSE of 0.023739. 

In summary, based on the values in the Table 8, it appears 

that the Random Forest Regressor (RFR) model has the best 

overall performance, as it has the highest R-squared value 

(0.999998) and the lowest MAE, MSE, and RMSE values on 

the validation dataset. 
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Table 8. Model performance metrics on validation dataset 

 

Model 
Validation Set Data Metrics 

R-Squared MAE MSE RMSE 

GBR 0.998677 0.211548 0.092343 0.303879 

RFR 0.999998 0.002090 0.000108 0.010371 

KNN 0.999992 0.007231 0.000564 0.023739 

 

4.3 Heatmaps using the testing and validation dataset 

 

As shown from the heatmap in Figure 2, the R-squared 

values for all three models are 1, which indicates that all three 

models provide a perfect fit to the data. The MAE values are 

0.22 for GBR, 0.0071 for RFR, and 0.0074 for KNN. This 

suggests that the RFR model has the smallest MAE and 

therefore the best performing classifier when comparing their 

individual mean absolute values. MSE values of 0.0095 for 

GBR, 0.00061 for RFR, and 0.00077 for KNN means that the 

random forest regression model with smallest value has the 

best performance. RMSE values of 0.31 for GBR, 0.025 for 

RFR, and 0.028 for KNN also suggests that the RFR model 

has the smallest RMSE and therefore performs best. Based on 

the values of the evaluation metrics, it shows that the RFR 

model has the best performance among the three models using 

the testing dataset. Similar comparison of the performance 

metrics on the validation dataset shows that the random forest 

regression model performed best with 'MAE': 0.002090, 

'MSE': 0.000108, 'R-squared': 0.999998, and 'RMSE': 

0.010371 as shown in Figure 3. 
 

 
 

Figure 2. Heatmap for testing dataset 

 

4.3.1 Density plots 

Figure 4 shows the distribution of residuals from the 

gradient boosting regression model. The density plot of the 

received signal levels of the wireless radios is skewed, with 

the center of the plot not located at zero. This suggests that the 

residuals from the machine learning model are not normally 

distributed, and there is a systematic error in the model's 

predictions. This suggests that the model is not making 

accurate predictions for the received signal levels, and there 

may be issues with the model's fit to the data. The skewed 

shape of the plot and the lack of consistency in the residuals 

suggest that there features that are not captured by the model. 

The fact that the plot in Figure 5 is symmetrical with one peak 

centered at 0 suggests that the residuals are normally 

distributed around 0, which is a desirable characteristic for a 

well-performing machine learning model. The narrow spread 

indicates that the residuals have low variability, which could 

mean that the model is making accurate predictions. This is 

consistent with the idea that the model is making accurate 

predictions with low variability in the residuals. Figure 6 

depicts the k-NN model that was trained on wireless radio 

received signal levels data. It also appears that the density plot 

of the received signal levels of the wireless radios is 

symmetrical with a single peak, indicating that the residuals 

from the model are normally distributed. The center of the plot 

being at 0 suggests that the received signal levels were 

accurately predicted. The narrow spread between suggests that 

the residuals have low variance and are consistent, which is a 

desirable property for a machine learning model.  
 

 
 

Figure 3. Heatmap for validation dataset 
 

 
 

Figure 4. Density plot of GBR 
 

 
 

Figure 5. Density plot of RFR 
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Figure 6. Density plot of KNN 

 

4.3.2 Histogram and KDE plots 

A histogram plot shows the distribution of residuals which 

represents the errors made by the model in its predictions 

while the KDE plots show an estimate of the probability 

density functions of the residuals. A normally distributed 

residuals would suggest that the model is making accurate 

predictions, on average. The center of the histogram plot 

should be close to zero, and the distribution should be 

symmetrical. If the residuals are not normally distributed, it 

suggests that the model is making systematic errors in its 

predictions and may need to be re-evaluated. If the residuals 

are evenly spread out and the KDE plot is symmetrical, it 

suggests that the model is making accurate predictions. If the 

residuals are not evenly spread out and the KDE plot is skewed, 

it suggests that the model is not making accurate predictions 

for certain ranges of the target values, and this may be a sign 

of overfitting or underfitting. Figure 7 depicts a non-

symmetrical histogram for the GBR model with multiple 

peaks. This may indicate that the model is not accurately 

reporting the data. The ideal residual distribution should have 

a mean of 0 and a constant variance. The histogram in question 

has a non-zero mean and is skewed, which means it is not 

symmetrical. Figure 8 displays the random forest regression 

model’s histogram and KDE plot, with a symmetrical 

histogram centered at 0. This imply that the residuals have a 

mean of 0, which shows that the model is, on average, 

producing unbiased predictions. A tall peak signifies that the 

model is making accurate prediction for those values and 

capturing the underlying patterns in the data. Figure 9 shows 

the histogram and the KDE plot of the KNN regression model 

with a symmetrical histogram centered around 0 suggest that 

the model is performing reasonably well. 
 

 
 

Figure 7. Histogram plot for GBR 

 
 

Figure 8. Histogram plot for RFR 

 

 
 

Figure 9. Histogram plot for KNN 

 

4.4 The industry relevance of the research, result and work 

 

Received signal level deviation model is an approach used 

to detect faults in telecommunication networks. It involves 

analyzing the deviation of received signal levels from 

expected values (RSSI of -70dBm and above) to identify any 

anomalies that may indicate a fault (RSSI below -70dBm). The 

relevance of this model in the telecommunication industry lies 

in its ability to quickly detect faults in a network, which is 

critical for maintaining high-quality communication services. 

By identifying and addressing faults early, service providers 

can minimize downtime, improve network performance, and 

enhance customer satisfaction. 

The model works by analyzing the difference between the 

actual received signal level and the expected value for a given 

network element. If the deviation exceeds a predetermined 

threshold, it is flagged as a potential fault. The model can be 

applied to various network elements, such as base stations, 

antennas, and transmission lines. The results of using the 

model for fault detection in a telecommunication network can 

be significant. By detecting faults early, service providers can 

reduce the time and resources required to fix the issue, 

minimizing the impact on customers. Additionally, the model 

can help service providers identify patterns and trends in 

network faults, allowing them to implement preventive 

measures to reduce the likelihood of future issues.  
 

 

5. CONCLUSIONS 
 

In this study, the efficacy of machine learning in monitoring 
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degraded radio links using received signal level (RSL) 

parameters has been performed. This research demonstrates 

that employing machine learning models enables precise 

identification of RSL deterioration through the use of RSL 

datasets. To identify the optimal classifier that fits the model, 

a dataset is trained using a machine learning classifier. Various 

base classifiers are evaluated based on the obtained results. 

The findings indicate that Random Forest Regression 

performs better than Gradient Boosting Regression and K-

Nearest Neighbors in R-squared, MAE, MSE, and RMSE 

metrics. The proposed method for telecommunication 

maintenance using the deviation of received signal level can 

be used to reduce time to provide maintenance activities to 

customers. 

The research contribution of this study is the development 

of a novel fault detection model for received signal level in 

telecommunication enterprise infrastructure using machine 

learning techniques. The modeling of an enterprise point to 

multipoint wireless communication network using pathloss 

5.0 software and the extraction of data from the vector images 

of the simulated wireless network is a significant contribution 

to the field. The application of the gradient boosting regression 

(GBR), random forest regression (RFR) and K-Nearest 

Neighbor (KNN) regression models to the extracted dataset is 

another contribution, as it provides a comprehensive 

evaluation of the performance of the developed fault detection 

model. The proposed algorithm's ability to trigger a “Fault” or 

“No-fault” condition by comparing a threshold value with the 

received signal levels (RSL) of new and unseen dataset is an 

essential contribution, as it facilitates the timely maintenance 

of the wireless link. The use of the developed model can 

contribute to the improvement of telecommunication 

enterprise infrastructure by providing an efficient and reliable 

fault detection system for received signal levels. This research 

also contributes to the field of wireless communication by 

presenting a novel approach for fault detection using machine 

learning techniques. 

Overall, the proposed fault detection model has the potential 

to be used in real-world telecommunication enterprise 

infrastructure to improve the reliability and efficiency of 

wireless links. It can help reduce maintenance costs, minimize 

downtime, and improve the overall performance of 

telecommunication networks. 
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