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To generate coherent and readable Chinese image caption, this paper designs an Chine
captioning model based on InceptiBesNetv2, a deep convolutional neural netwo
(DCNN) based on residual blocks, and the doddyer gated recurrent unit (GRWgtwork.

The proposed model extracts the features from the original image with the Indeptibet

v2. To overcome the stochasticity of random text encoding, the neural network modellit
performed to create word embedding features for sparse woed.ddeixt, the extracted deep
convoluted image features were mapped to the word embedding feature space. Fini
doublelayer GRU network was trained with the image features and word embedding fei
yielding the Chinese image captioning modeleTroposed model was proved throu

experiment as capable of generating Chinese text for images. In addition, our model pe
excellently in the objective evaluation with indices like Perplexity, BLEU and RCGUG
Specifically, the Perplexity score o@ir model was 4.922, the BLEU BLEU-2, BLEU-3 and
BLEU-4 results were 0.674, 0.533, 0.416 and 0.330, respectively, and the RDUG@GE
0.635. All of these were better than the results of the other models like the natural
captioning (NIC) model

1. INTRODUCTION 2.BASIC PRINCIPLE AND

METHOD

IMPLEMENTATION

The concept of alt text was first proposed by Farhadi et al.
[2], with the aim to facilitate the grasp of image content despite 2.1 Extraction of image features
the complexity of visual scenes. The alt text can greatly
facilitate the organization of image data, as well as the mining The performance of an alt text writing model can be
of large amounts of data through information retrievidie determined by the expressiveness of the extracted image
writing techniques of English alt text are relatively mature, features. With the emergence of AlexNet [6], the DCNN has
such as the depth semantic alignment model [3], the guidingattracted much attention for its excellence in image feature
the longshort term memory model (gLSTM) [4nd the extraction and image classidfiton [7]. In this paper, the
natural image captioning () model [5]. By contrast, the  DCNN model is selected to extract image feature descriptors,
research on Chinese alt text is far less advanced, due to theonsidering its advantages over the traditional manual feature
difficulty in encoding Chinese sentences. After all, a Chinese extraction: (1) The kernel parameters of the DCNN are self
sentence is much more ambiguous in semantics, and harder ttearned, eliminating human interference;) (@ith many
segment into words than an English ofiae writing of an convolution kernels and multiple layers, the DCNN can learn
effective Chinese alt text requires the integration between a huge number of features and extract features on high levels;
computer vision and natural language processing. The alt textln this way, the deep features obtained through integration will
should include a tag about the image category, and a highly be more expressive and richer in semantic information.
readable sentence that sums up the image content [1]. Nevertheless, the numerous network layers may cause

Takingthe 2017Al Challenger Competition image caption problems like vanishing gradient and exploding gradient. In
datsetasthe training data, this paper designs a novel Chinesethis case, the DCNN converges slowly and even does not
alt text writing model based on the encoding and decoding converge during training. The vanishing gradient problem can
ideas of the NIC model. The model encodes and decodes RGBe solved simply by regulaing the initial terms, but this
images and generatgShinese sentences, using the deep solution will lead to network degradation. The ResNet [8]
convolutional neural network (DCNN) and douldger gated offers a better solution called long skip connections, which
recurrent unit (GRU) network. To overcome the sparsity of activates the network from a certain layer, and provides
word codes, the sparse word vectors were modelled and themmediate feedbacks to the deeper layers. Tasichunits of
word embedding features were extracted by tleural the solution are residual blocks. As shown in Figureal,
network language model (NNLM), thereby reducing the typical residual block involves the summationxoWith the
dimensionality without sacrificing the semantic relations residual functionF(x) on two weight layers beyond the
among sentences. original network, followed by the nonlinear activation by

ReLU function. The design of the residual block is equivalent



to keeping the derivative of the block above one in gradient

backpropagation, thus eliminating vanishing gradient. Feature Map
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Figure 1. Structure of a typical residual block

. Figure 4. ReductiorA module
Go o g | efitisnRdsNetv2 network [9] was selected to d

extract image features. The core component of the network is  \y/ith the aid of thenceptionResNetv2 network, the image
the Inception Architecture, which acquires different local (o, res were extracted in the following steps: '

sensory fields with 1*1, 3*3 and 5*5 kernels, and extracts and Step 1: The InceptiofResNetv2 network was prérained
fuses features on multipkxales. In this paper, the Inception with ImageNet dataset, and the jrained weight biases were
Architecture is combined with residual block into the saved for further use. '

InceptionResNetX module. The introduction of residual Step 2: The images of AICGaining set were imported into
block prevents the degradation of network performance causeqhe InceptiorResNetv2 network for feature extraction, each
by multiple network layers (i.e. the deep depftthe network). 516 image was normalized into the size of 229%229*3,
As shown in Figure 2, the final network model was created by 1o pretrained weight biases were loaded into the network,
integrating 20 similar modules of the InceptiBesNetv2 and the softmax classification layer was reghv
network. Two submodules of InceptidtesNetv2 network Step 3 Based on the priained weight biases, the
are described in Figures 3 and 4, respectively. InceptionResNetv2 network performed a series of
convolution and pooling operations on the images, and finally
Output: 1792 the global average pooling layer output the 1;@B8ensional
feature vector of each image.
Step 4 The image feature vectors and word feature vectors
\ 5% nception-resnet-C Module \ Output: 8*8+1792 must be consistent in dimensions. Otherwise, the sentence
T generation model cannot be trained normally. Hence, the

‘ Globa Average Pooling ‘ Output: 1792

| Red“"“"”f Module | Output: 8871792 image feature mapping vectors were obtained by mapping the
[ 10°Inception-resnet-B Module | Output: 1717896 1,792dimensional feature vemts into the 51alimensional
word vector feature space through futlgnnected operations.
\ Reduction-A Module \ Output: 17*17+896 The mapping formula can be expressed as:
/’\
‘ 5*Inception-resnet-A Module ‘ Output: 35*35* 256 T
y=W'(DCNN(I ))+b )
Output: 3535256
Input: 299%299+3 wherey is a 512dimensional feature vector obtathby fully-

connected calculatioWis a 1,792*51imensional matrix;
| is an image imported to the netwolBCNN() is a 1,792
dimensional feature vector extracted by the netwbris a
weight bias.

Figure 2. Structure of InceptiofiResNetv2 network
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2.1 NNLM
M 1*1 kemef 256 H

The NNLM [10] is a language modebnstructed on the
w3 kem 32 H PN—— ‘ neural network. The model can represent word vectors through
network optimization, and describe the word embedding with
word distribution. The word embedding matrix offers an

alternative to the sparse vector representation. In the NNLM,
the ngram construction is in the charge of the neural network.
‘ ke 37 H 11 keme 3 H Fikeme o ‘ Figure 5 illustrates the structure of tR&ILM.

The NNLM relies on its foutayer structure to predict the
m-th word based on the first 1 known words. The four layers
ReLu Activation are respectively the jut layer, the embedding layer, the
hidden layer and the output layer. The input layer receives the
] ] sparse word vectors; the embedding layer carries out word
Figure 3. Structure of InceptiofResNetA module embedding of the input vectors and splices the word
embedding vectors; the hidden layer executescomputing




task; the output laygrerformsprobability distribution ofeach
words using the softmax classifier, and outputs a probability
vector whose dimensionality equals the size of the dictionary.
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Figure 5. The structure of the NNLM
2.2 Word encoding

Word encoding aims to generate a word embedding vector
for each word in word frequency dictionary. The word
embedding vectors have many advantages overhohe
vectors. With a relatively small dimensionalitthe word
embedding vectors overcome the sparsity problem ohone
vectors. Since synonyms in word embedding matrix have
similar distributions, the word vectors in word embedding

[w*Cl1#1536 Of the embedding layer. This embedding vector
was sent to the hidden layer for nonlineativation, and then
transmitted to the output layer.

Step 6: In the NNLM, the number of output layer neurons
equal the size of the word frequency dictionary. The
nonlinearly activated embedding vector underwent
probabilistic interpretation in the output layer by the softmax
function. At the end of training,na8,560dimensional vector
was outputted by the network. Each number in the vector
represents the predicted probability of each word in the
dictionary. Meanwhile, the parameters of the network model
were updated, and the weight biases of the embedding laye
were taken as the word embedding matrix.

Step 7: Word embedding and the NNLM were trained
jointly. With the training of language model, the word
embedding parameters were constantly updated until the
model converged. Then, the trained word embeddingixmat
was obtained. During sentence generation, eactmoneector
searched for its corresponding word embedding vector in the
word embedding matrix based on the index of word vectors.
The word embedding vectors thus obtained were taken as
inputs of the NNIM.

2.3 GRU

As a variant of the longhort term memory model (LSTM),
the GRU is a recurrent neural network capable of solvinglong
term dependency problems [12, 13]. Compared with the
LSTM, the GRU has a simple network structure, relatively few
network paameters, good network performance and fast data
training.

Based on the LSTM structure, the GRU neural network

matrix can express semantics, enhancing the relevance ofnerges the cell state and hidden state, as well as the forget gate

sentences. Consideg these advantages, our model relies on
the NNLM to simulate ondaot vectors and replace them with
word embedding vectors. The replacement reduces the
training cost and improves the readability of the output
sentences. The word encoding was implementedthie
following steps:

Stepl: The set of Chinese alt texts was processed by the
Chinese word segmentation tool Jieba [11]. This set contains
many lowfrequency words, which should be filtered out.
Otherwise, these words will dampen the convergence of the
model, rather than promote the training effect.

Step 2: he words with frequency greater than 4 were
selected and compiled into the word frequency dictionary,
which serves as the index of word vectors.

Step 3: The <_START> and <_END> were defined to
idertify the start and end of each sentence. The two identifiers
occupy one index bit. Through the above processing, the word
frequency dictionary developed from the set of Chinese alt
texts contains a total of 8,560 words.

Step 4:The words in the dictionary were subjected to-one
hot encoding. The dimensionality of each dwe vector
equals the size of the dictionary. In each word vector, the bit
numberof 1 represents the index value of the word in the
dictionary. Pakismpot i®er woma
vector should be encoded as
the index value is 3 in the dictionary.

Step 5: A word embedding matrix C8560*512 was
randomly initialized. Based on trigram, a special case of-the n
gram, threeword vectorswi+gseso Were mapped through the
matrix Cgseo*s12 into the projection vectorsmf Clis12. The
three projection vectors were spliced into the output

and the input gate. There are only two gates in the GRU,
namely, the reset gate and the update gate. Like the LSTM, the
GRU uses the two gates to screen and retain information. The
screening andetainment are performed using a threshold in
0~1 set by sigmoid function. The reset gate controls how much

the previous state of the hidden layer is forgotten. The value

of the reset gate is negatively correlated with the amount of
state information bempforgotten. Meanwhile, the update gate
controls how much the previous state of the hidden layer is
retained in the current state of that layer. The value of the
update gate is positively correlated with the amount of state
information being retained. Withe above structure, the GRU
avoids the vanishing gradient problem, which often arises in
backward derivation during the training of recurrent neural
network (RNN), and prevents the loss of leéegm memory in
backward propagation. The structure of thelGRodel is
described in Figure 6, whelg; andh; are the previous and
current states of the hidden layer, respectively.

h
hl-l L
tAnce,
[0 O O B560, becau

X,

Figure 6. Structure of the GRU model



The GRU network updates the hidden state through t
gates. The specific steps are as follows:

Step 1: e reset gate: controls how much the previous
state of the hidden layer is forgotten. The forgetting degree
helps to capture the shagdrm dependencies in the sequence
data. The value af can be calculated by:

o =s (W g1, %)) 2)

where, is the sigmoidunction; W is the weight bias of the
reset gate layeh is the previous state of the hidden layer;
is the current input.

Step 2: The update gatecontrols how much the previous
state of the hidden layer is retained in the current state of that
layer, i.e. the degree of impact of the previous state of the
hidden layer on the current state of that layer. This impact
degree helps to capture the letegm dependencies in the
sequence data. The valuezofan be calculated by:

7 =s(W, dnh..,x)) (3)

where, is the sigmoidunction; W, is the weight bias of the
update gate layeh.; is the previous state of the hidden layer;
X is the current input.

Step 3: The candidate state of the hidden layer refers to the Figure 7. Structureof doublelayer GRU network
state of the hidden layer to be retained at the current time. To
determinghe candidate state of the hidden layer, the previous Layer 1 integrates image features with word embedding
state of the hidden layer is filtered at the reset gate throughteatres, and inputs the results into Layer 2. According to the
point multiplication between the value of the reset gate and the,ggjits from Layer 1Layer 2 predicts and generates words by

previous state of the hidden layer. The closeness of the resefeatyre inference and decoding. The information flow in the
gate valueto zero describes how much the previous state is odel can be described as follows.

forgotten. In essence, the candidate state of the hidden layeris at 1= Layer 1 receives (1) the image features obtained

determined by multiplying the previous state of the hidden through feature mapping and (2) the word embedding features

layer hi. and the current input with the weight bias, and then qptined through secondary encoding of encoded sparse words.
compressed into-1, 1) with the tanh function. The candidate \jeanwhile, Layer 1 produces (1) the hidden layer input of

state of the hidden layer can be expressed as: Layer 1 at=1and (2) the actual input of Layer 2ta0.
- _ Att=0, Layer 2 receives (1) the hidden layer output of Layer
h = tanl{WC[)rt * h[_l,xt]) (4) 1 and (2) the initibhidden layer value of Layer 2. Meanwhile,

Layer 2 produces (1) the actual output of Layer 2@t and
(2) the hidden layer input of Layer 2tal.

whereWis the candidate weight biasjs the reset gaté.; is )
g as) garsi The sentence generation model was constructed through the

the previous state of the hidden layelis the current input. i
P yels P following steps:

Step 4: The current state of the hidden lalgeis the real L
b aet Stepl: The features of theriginal image were extracted by

output of the GRU network at the current time. To determine h d sub: dtof ! h i
the current state of the hidden layer, the previous state of the"e DCNN, and subjected to feature mapping. The resulting

hidden layer and the candidate state of the hidden layer areBlZ—dimerf\sLonal feature vekctor P was taken as the input of
updated by the update gate. The closeness of the update gate?Ye' 1 g the GRU network. dded g
value to one describes how much the previous state is retained, Step 2 The string <_START> was added to a tagge

If the update gate equals one, then the previous state of théﬁhmese sentenc;_cog_tammg;vordsé? |(_jfeﬂt|fy the starthof
hidden &yer will not attenuate over time and be retained fully e sentence, and its bit was denotewgéf the sentence has

to the current time. The current state of the hidden layer can'€Wer thanmwords, the vacant positions should be filled up
be expressed as: with zeros). The tagged sentence was subjected to word

segmentation, and then converted into tedlishdex values of
the words (e.g. [0, 1, 2, 5, 199, 0]). According to the index

h= (1' Zt)* hitz*h (5) values in the list, the word embedding vector of each word in
the sentence was looked for in the text feature mapping matrix
2.4 Sentence generation model Ws12:g560 IN this way, the word embedding vertof all the

words in the sentence was determinetgs\,, 8, (The
In this paper, the segrice generation model is created based feature space of the word embedding vector has 512
on the doubldayer GRU network, and used to predict words. dimensions).
The doublelayer GRUnetwork (Figure 7) was selected, for Step 3: At time t=0, the image feature vecRars1, was
the model with more layers can learn deeper text features andnputted to Layer 1 to produce the hidden layer stajeand
acquire stronger fitting ability, makg the sentences more ho. Among themho: was taken as the hidden layer input of
accurate. Layer 1 at t=]andho, as the actual input of Layer 2 at t=0



Step 4: At time t=1, the word embedding vedd (start valued one, which corresponds to the index value of the word
identifier) was taken as the input to the input layer of Layer 1 in the dictionary. Al the other bits in the row are zeros. The
at t=1. The reset gate; obtained the reset threshalg by model outputP of Step 7 is also arfn, 8,560) matrix, in
formula (2), while the update gate obtained the update  which each row specifies the probability values of all 8,560
thresholdz;; by formula (3). The11 controlled the forgetting wordsin the dictionary.
degree ohg,, and computed the candidate state of the hidden Step 9: The loss function was constructed based on the
h, sparse matriandthe model output. Considering the specific
tasks of the sentence generation model, the @aepy loss
function was selected:

layer hy, according towp and formula (4). They: controlled
the retainment degree kd; andho,, and calculated the hidden
layer stateh; .
Step 5:Taking thehs; as he actual input to the input layer o batchmenw count
of Layer 2 at t=1, the hidden layer state lni2 ayer 2 at t=1 L(y,, p)=- _é A ‘a y Iog(p-)
was obtained through Steps 3 and 4, considering the hidden e o o o) !
layer statehg, at t=0. : ()
Step 6:Taking theh;1 as the hidden layer input of Layer 1 i .
at t=2, the hidden layer stéig of Layer 1 at=2was obtained ~ Wheren_batchis the batch number of the training dataset;
through Steps 3 and 4, considering the actual iWub the is the sentence IerIgth;ls the minibatch, i.e. the number of
input layer of Layer 1 at t=2. ta}gged sentences ina batch of qlm@cqunﬂs the size of the
Step 7: The above steps were repeated at each time step untfiictionary (8,560)y; is the value atth bit of the word vector;
the last time step(t=m). The final output of Layer 2 was thus  Pi IS the probability value at theth bit of the model output
obtained asy.. In each time step, the hidden layer stasef vector. _
Layer 2 (the output of Layer 2 has 512 dimensions) was Crossentropy reflects the distance between the actual
subjectedo fully-connected calculation. The fultonnected ~ ©utputand the expected output. The smaller the @osspy,
layer has 8,560 neurons. In addition, any output from the-fully the closer the two probability distributions. In this paper, the
connected layer must go through probabilistic interpretation Crossentropy loss function is optimized such that the

on the softmax layer. The softmax function can be expressedProbability to correctly prediai word is close to one. In other
as: words, the optimization goal is to maximize the probability

that the index value and the word occupy the same bit.
Step 10: During model training, the network parameters
were updated by timbased baclpropagation algoritim [14].
é g After the training, the original image was imported into the
) (6) model to generate the alt text. The model firstly mapped the
image features, and then took the image coding vectathand
wherex; is the output of each neuron on the fudlynnected  start identifier <_START>as the input of the doublayer
layer; ] is the total number of neurons on the fudgnnected  GRU retwork att=1. In light of the trained weight biases, the
layer. GRU network generated an 8,5@nensional predicted word
The softmaxlayer was added to ensure that the model vector, and saved the word with the highest probability as the
outputs a probability vector, whose dimensionality is the size input att=2. In this way, the network predicted and outputted
of the dictionary, at each time step. The vector reflects thea word at eactime step, until reaching the end identifier
probability that each of the 8,560 words is correct at the current<_ END> or the preset lengti. Finally, all generated words
moment. The probabilit vectors produced at all time steps were combined into the Chinese alt text of the original image.

were saved to construct the loss function. The structure of the sentence generation model is illustrated
Step 8: The tagged sentence was segmented into words, anigh Figure 8 below.

converted to ondot vectors, forming a sparse matyibof the
size (m*n, 8,560). Only one bit in each row of the niatis

softmax(x) =

Football | Up - .. | —, | Football —4 [ < END>
pitch I I ! -
Test image | A I | |
P A | | 1
I I
GRU —p|{ GRU : » GRU +—» GRU > . :)I GRU
r T+ttt
| | | !
DCNN GRU » GRU +—»{ GRU : » GRU 1 ) :) GRU
[ I
I e e e A |
I
Football [ I
<sTART>  |" | pitch = | D) | Football

Figure 8. The structure of the sentence generation model



3. EXPERIMENT AND RESULTS ANALYSIS (1) Forward propagation
The TFRecordile was loaded into the memory to parse the
3.1 Sample preparation and experimental environment image information. Then, the image data were imported in
batches to the InceptdResNetv2 network for feature
Our Chinese alt text writing model was designed on Ubuntu extraction. Meanwhilethe dictionary of words describing the
17.10, written in Python, and constructed under TensorFlow images was created, and then the wembedding vector was
1.1.0. Once constructed, the model was trained and evaluatedooked for in the word embedding matrix based on the index
with the AICC Chinese alt text dataset. The training set was value. On this basis, the image feature vector and word
divided into a seof 210,000 images and a set of Chinese alt embedding vector were inputted to the dotlaier GRU
texts for these images. Each image has five alt texts. Figure detwork. Taking the image featuratt=0 as the initialization
shows part of the training set. coefficient of the hidden layer state, the words in the dictionary
To facilitate training, the data in the training set were were embedded into matrid\f, W,... W] and imported into
converted into the TFRecord format that can be exedwgjed the network step by step=(Q, 2,...,m). The network derived
TensorFlow. After conversion, each piece of data contains thean 8,56@dimensional probability vector in each time step,
number, binary code, storage path and name of the originaluntil outputting the final feature vector at tiveth time step.
image and a list of Chinese alt texts, which have undergoneThe vector predicted in each time step was saved and spliced
word segmentation. into an 8560Mm-dimensional matrix. The matrix wautputted
In addition, the data in the AICC testing set wayawerted as the prediction result, making the end of the forward
into the same format as those in the AICC training set, suchpropagation.
that the model performance can be evaluated by the perplexity
index. The AICC testing set consists of a set of 30,000 images(2) Backpropagation
and a set of 150,000 Chinese alt texts. During backpropagation, the gradient descent algorithm is
often employed to update the network parameters. In the
traditional batch gradient descent aitfum, the parameters
are updated with all training data in each iteration. If applied
to train deep learning models, this algorithm often faces
problems like slow training and memory overflow. To solve
the problems, the entire training set is usually saged into
subsets called mifiatches, before applying the algorithm for
big data training of deep learning networks. The rhatich
based training algorithm is known as the rbaich gradient
descent algorithm. This algorithm updates network parameters
in the following way:
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where—is the parameter to be updateds the learning rate;
R Jis a function about-

Coupled with learning rate attenuation strategy, rtiei-
batch gradient descent algorithm can update the parameters of
most models. However, the algorithm still suffers from
extreme point oscillation and slow convergence. Hence, many
optimization algorithms have been developed to speed up the
optimize rateof the deep learning models, including adaptive
gradient (Adagrad) [15], momentum gradient descent, root
mean square prop (RMS prop), and Adam [16]. The Adam
optimization algorithm was adopted to train our model. This
universal algorithm combines the meribf momentum
gradient descent and RMSprop. The calculation process of
Adam algorithm can be explained as:

300dcob7b730
8tipg

Vaw = bivaw + (L= £y )dw 9)

where vy is the weighted moving average of gradiemt,
1 =0.9 is a hypepamameter.

Siw = DoSg + (1 5, )W (10)

Figure 9. Part of the training set

o where sy is the weighted moving average of the gradient
3.2Model training squaredw?; T =0.999 is a hypeparameter.

The model was trained through forward propagation and
backpropagation.



correct _ _, Vaw 3.3 Objective evaluation indices

Vaw 1- bt
! (11) 3.3.1 Perplexity
Perplexity is an index that measures the quality of the
where 0 is the bias correction of the first moment language model in natural language processing JNLP
estimatiorvaw, t is the number of iterations Designed on the features of the language model, the index can
be mathematically expressed as an exponent of-erdsspy:
Sgcv)vrrect - Saw N
- by (12) -5 togp(x")
PPL=e "= (14)
wherei is the bias correction of the second moment
estimationsqy; t is the number of iterations wheremis the number of sentences in the testingxat) is
The weight biasv can be updated by: the probability of the-th sentence. The greater the product of
the probabilitiegp(x?) of all sentenceg? in the testing set, the
Vgsvffect better the model performs on the testing set. The valp@®f
W=W- 8 ———=— can be obtained by:
correct
v Saw +e (13)
(i))_ .
where- =108 is a hypesparameter to prevent the parameter p(x =a vy log p;
update from being affected by insufficient bias correction. 1=l (15)

The chain derivation of loss function was carried out using
the predicted word vector and the actual word vector, and thewheren is the number of words in each sentengds the
model parameters werapdated by Adam algorithm. To  vector of the-th tagged wordp; is the predicted probability
prevent oveffitting, the dropout mechanism was adopted for of thej-th word.
the fully-connected layer, randomly killing half of all neurons. Perplexity demonstrates the ability of the language model
The maximum number of iterations was set to 13,000. Theto predict a sentence. The greater the probability of the
iteration was terminated after reaching thte aumber or sentence, the smaller the Perplexity, andhbee accurate the
model convergence. The training curves of our model and thepredicted sentence.
NIC model are shown in Figures 10 and 11, respectively. In
the two figures, the -axis represents the loss, theaxis 3.3.2 Bilingualevaluation understudy (BLEU)
represents the number of iterations, the solid line indicages th  The BLEU metric evaluates the machine translation based
loss after fitting, and the dotted line indicates the actual loss. on nword matching (the generated sentence and the example
sentence are identical in any five consecutive wordsg Th
lsses centr al idea behind the BLEU
translation is to a professional human translation, the better it
i sO. The evaluation criteria
correctness. The value of the BLEU index can be calculated

by:

. an o
B= BPcexp@ w, log R, 9
Figure 10. The training curve of our model Ci=L T (16)

5 c>r
gp=f
fe-r’e cer

17)
P a‘nmz j
a countw 18)

4000 000 5000k 000k 2 00k

whereBP is the penalty factor is the length of the predicted
sentencer is the length of the correct sentence the closest to
the length of the predicted sentendé;is the number of
consecutive words that are identical between the correct

Figure 11. The training curve of the NIC model

With the increase in the number of iterations, the loss of our
model exhibited an obvisu decline and the network . X
parameters were updated. The iteration stopped after reachin§entence and the mheted sentence (the maximum valuehof
the preset maximum number of iterations. It can be seen from's Usually set to wn=1/N; P, is the mean identical rate of
Figures 10 and 11 that our model, using the taygr GRU words between the correct sentence and the predicted sentence.
network, converged faster than the NIC modeliciwtadopts
the LSTM network.



3.3.3 Recaloriented understudy for gisting evaluation
(ROUGE}L

ROUGEL is a metric lased on the longest common
subsequence (LCS):

Roueﬁ(ci,s):w

R +b%R

19
Ie ,s”) (d)
R =max—— JThere is a man singing on the stage, holding the
j microphone in his right hand.
sl 20) icrophone in his right hand
) There isa woman singing on the stage, holding the
| microphone in her right hand.
P = .s)
1 = MaX———
i g 21)

wherd  'YZ0; [a is the length of the predicted sentence;
sj| is the length of the reference sentence in the set of alt texts.

3.4 Model testing andevaluation

3.4.1Model testing

The set of images in the AICC testing set was adopted to
test our Chinese alt text writing model and the NIC model. The
alt texts generated by the two models are recorded in Figure
12 below.

(e)
JThere is a man wearing a hat working in the room.
) There is a man wearing a hat working in the kitchen.

(@) Y: There is a womeaphoseiimhgri ng,
JThere is a woman weag a skirt performing on the stage. right hand, before two people on the stage.
) There are two people in costumes performing on the stage ) There is a woman singing on the stage, holding the

microphone in her right hand.
Figure 12 The results of model testing

In Figure 12, the alt texts marked with 1) were generated by
our model, and those marked with IlI) were produced by the
NIC model. As shown in Figure 12(a), our model outputted
more accurate description of image content than the NIC
model. From Figures 12(b)~(d), it is learned that our model

o o o could revise the mistakes the alt texts. For example, there
JThere are two men in jerseys fighting for possessioninthe 3 v ¢ it woo men fighting for po

court. _ _ of fAthreeo. 1t can be seen f
) There are three men in jerseys playing basketball in the showed better accuracy than the NIC model in the derivation
court. and summary of image content. Figure(fi2ndicates our

model outperformed the NIC model in deriving and summing
up the scenes that are difficult to describe.

In summary, our model can make intelligent inference on
image content, identify the scenes, subjects, subject actions,
and subjecbbject relations in the image, and describe the
image content with a complete and coherent Chinese alt text.

3.4.2 Model evaluation
Our model, the NIC and the M2STM were rated by
JThere are two people in sports clothes playing pingpong in objective evaluation indices of Perplexity, BLEU and
the stadium. ROUGEL. The v2LSTM was created by replacing the
) There are two people in sports clothes playing volleyball Inceptionv3 in the NIC model with the InceptieResNeiv2
in the stadium.




of our model, and used to verify the feature extraction effect new sentencgeneration model was created. On this basis, a

of the InceptiorResNetv2.

high-performance alt text writing model was obtained.

The Perplexity scores of the three models were rated afterThrough testing and objective evaluation, our model was

13,000 iterations orhe AICC testing set. The results are listed
in Table 1.

Table 1.The Perplexity scores of the three models

Name of model Perplexityscore
Our model 4.922
v2-LSTM 5.026

NIC 5.044

The Perplexity score is negatively correlated with the

proved as capable of generating Chinese alt texts for images,
and outperform the NIC model in aceay, coherence and
readability of the generated sentences
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