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To ensure the safety and dependability of rubber components, deflection analysis and 

prediction play a crucial role in process of design. Material property testing and finite 

element analysis (FEA) are combined to forecast the maximum deflection of a railway 

elastomeric pad. IRMRA (Indian Rubber Manufacturer's Research Association) 

developed the chloroprene rubber. Using the FEA method, maximum deflections of an 

anti-vibration mount under several compressive loads are calculated. Mooney-Rivlin 

nonlinear hyperelastic three parameter model with element type Plane 182 is used for 

and FEA. Curve fitting of the uniaxial tensile test results is used to extract three 

parameter Mooney-Rivlin model constants by using FEA. Then, these Mooney-Rivlin 

model constants are used to analyze anti-vibration mount and predict the deflections at 

different compressive loads. The outcomes are contrasted with the technical 

specifications provided by the Research Designs and Standards Organization of Indian 

Railway and predicted deflections are within the limits of maximum values allowed. 

The results are also contrasted with data from literature, and 10% variation is observed 

between results obtained and literature results. This methodology can be used to predict 

deflections of any newly developed rubber at initial stage of design.  

Keywords: 

chloroprene rubber, finite element analysis, anti-

vibration mount, rubber deflection prediction 

1. INTRODUCTION

Due to their vast elastic reversible deformation, absorption 

of energy, and superior damping properties, rubbers are 

commonly used in a variety of applications. Standard uses 

contain mounts for engine and automobile tires, electric 

appliances for household, bridge rubber bearings, and 

vibration isolators for railroad wagons. The majority of these 

rubber parts are loaded both statically and dynamically while 

in use. One of the most important considerations in rubber 

parts design is operational problems prevention [1]. To ensure 

the security and dependability of mechanical rubber 

components, analysis of deflection and strength estimation are 

crucial steps in the process of design. Bench compressive tests, 

road simulation tests, and real road tests have been the main 

methods used to evaluate the compressive strength of rubber 

components [2]. The compressive strength test should always 

be performed anytime a material or geometric modification is 

made, even though these approaches have advantages in terms 

of accurate compressive strength estimation. Therefore, the 

rubber parts design requires estimation of compressive 

strength which will be obtained by tests of specimen and 

analysis of parts [3]. In this study, a methodology is 

established to forecast the deflections of railway anti-vibration 

mount under various loads with the help of tests of material 

property and FEA modeling. The objective of this work is to 

predict the deflection of an anti-vibration mount at different 

compressive loads before manufacturing the actual rubber 

mount which will helpful at early design stage. If the 

deflections of the mount are within the permissible limits, then 

only the life and working of mounts will be satisfactory. On 

the investigation and material characterization of rubber, there 

is a wide body of literature. The section that follows discusses 

some of the work. 

Yeoh [4] addressed the unique characteristics of the rubber 

Ogden strain-energy function material model, which is starting 

to gain traction among finite element analysis users. It 

illustrates why an Ogden strain-energy function produced by 

nonlinear regression analysis of stress-strain data derived from 

just one mode of deformation may be unsuitable for 

forecasting behavior in other deformation modes. It advises 

that some of the coefficients in the regression analysis be 

chosen in accordance with the behavior of rubbery materials. 

A rubber mount's fatigue life was predicted by Li et al. [5] by 

integrating FEA and property tests of material. Uniaxial tensile 

test and fatigue life tests of natural rubber were used for 

obtaining fatigue life equation of materials like natural rubber. 

In order to anticipate the rubber mount's fatigue life, total 
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maximum primary strain was employed as parameter of 

fatigue and replaced into fatigue life equation of rubber. Then, 

for verifying precision of the prediction approach of fatigue 

life, rubber mount’s fatigue lives under various loading 

conditions were tested using test rig. The rubber fatigue 

behavior is examined by Ali et al. [6] utilizing dumbbell 

specimens subjected to uniaxial strain. A damage model 

(continuum) created on the function of strain range under 

loading in cyclic nature is proposed for modeling fatigue 

damage behavior. The constitutive relationship of natural 

rubber is defined in terms of the Ogden strain energy potential. 

The effects of formulation of rubber, history of loading in 

mechanical conditions, environmental parameters and 

rubber’s constitutive response in dissipative aspects were 

reviewed by Mars and Fatemi [7] as the four main groups of 

factors that affect the life of rubber parts in mechanical fatigue. 

Primary criteria are explained for each category, and available 

literature is given and reviewed. Boyce and Arruda [8] explore 

models (constitutive) for rubbery material’s response under 

restricted deformation. Discussion and comparison of various 

statistical and continuum mechanics of rubber elasticity 

incompressible models with experimental data are presented. 

Taking into account the impacts of the mean load, Kim et al. 

[9] calculated an engine mount’s life in fatigue composed of 

rubber (natural). Using dumbbell specimens with three 

dimensions at various mean loads, load controlled fatigue tests 

were carried out to define suitable damage criterion (fatigue) 

for material like rubber. Green-Lagrange strain (maximum) 

and natural rubber equation of fatigue life curve were used to 

estimate life of rubber engine mount under fatigue loading.  

The application of an energetics method to address several 

facets of rupture and fatigue in elastomers was addressed by 

Lake [10]. Included in the discussion are cavitation, friction, 

abrasion, adhesion, (under conditions where same is primarily 

influenced by contact breaking and making), tearing, fatigue 

and crack growth, failure in tension, effects due to oxidation, 

cracking due to environmental conditions, and sharp objects 

cutting. As well as discussing the material properties tying 

different types of cohesive failure together, physical and 

chemical aspects determining fracture growth characteristics 

are also covered. The use of FEA in design of product at 

several development steps, from characterization of material 

rupture to forecasting performance of design at end, was 

discussed by Morman and Pan [11]. Oh [12] used the energy 

balance concept—that is, the energy available verses the 

energy needed to extend a tear—to establish model for the 

rubber bushing’s life in fatigue. This model and the test results 

correlated well. From the model, a design process was created 

that provides the ideal insert shape for the longest possible 

bushing life. In order to study how the hysteresis energy loss 

and input energy depended on the repeated strain, the quantity 

of deformations, the rate of extension, and temperature, 

Hirakawa et al. [13] evaluated the hysteresis energy loss and 

input energy directly in the dynamic state. They then 

correlated these to the fatigue life.  

Mullins [14] noted that rubber softens as a result of 

deformation, and that first curve of stress-strain established 

during first elongation is distinct as well as immutable. 

Repeated deformation also has the effect of bringing the stress-

strain curve of rubber asymptotically closer to equilibrium or 

a steady state. A detailed comparison of twenty models for 

hyper-elastic rubber materials is presented by Verron and 

Marckmann [15]. Analysis is done on these models' capacity 

to replicate various loading circumstances. For 25% modest 

strokes of oscillation, Cadwell et al. [16] illustrated of the 

curve of fatigue life (dynamic) showed its common 

characteristics. Rubber is found to have a minimum dynamic 

fatigue life under linear vibrations when return stroke returns 

sample to state of no strain. Saintier et al. [17] studied onset of 

fatigue flaws in a natural rubber under multi-axial non-

proportional loadings. Results of tests involving torsion, push-

pull, and compression-tension with fatigue in static torsion 

overlay are provided. Under relaxing loading circumstances, 

Le Cam et al. [18] examined development of fatigue flaws in 

a cis-1, 4-polyisoprene rubber packed with carbon black. The 

determination of the fracture growth scenario is the study's 

main objective. According to Lindley [19], energy in 

minimum quantity is required for propagation of fractures by 

the process of tearing under deformations of cyclic nature in 

which rubber (natural) is permitted to fully relax is around 

0.04kN/m, and in that case, hysteresis is not involved. 

According to Mars and Fatemi [20], rubber parts exposed to 

varying loads frequently fail as a result of propagation and 

initiation of flaws. Understanding mechanics behind failure 

process is necessary for prevention of similar failures. 

Presently available analysis methods for forecasting rubber 

life are reviewed in this research. 

According to Saintier et al. [21], the increasing usage of 

elastomers and polymers in constructions necessitates the 

development of appropriate multi-axial fatigue life standards 

for these materials. Therefore, it is crucial to comprehend the 

micro-mechanics of fatigue fracture initiation and how they 

relate to the history of local stress and/or strain. These natural 

rubber micro-mechanics have been studied with the help of 

SEM (scanning electron microscopy) and EDS (energy 

dispersive spectroscopy). The crack initiation was consistently 

accompanied by rigid inclusions. The initial damaging 

processes seen are cavitation at the poles or decohesion, 

depending on the type of inclusions (detected by EDS). The 

orientations of the cracks are compared with the history of the 

local principal stress orientation, which is derived from finite 

element computations (FE). It is demonstrated that even under 

non-proportional loading, cracks are observed to propagate 

systematically in the direction indicated by the maximal first 

primary stress reached during a cycle if big strain 

circumstances are appropriately taken into account. With the 

aim of evaluating impacts of carbon black on fatigue life, J- 

value (critical), surface morphology of fracture, and hysteresis, 

Kim and Jeong [22] experimentally investigated the rubber 

compounds (natural) filled with N990, N330 or N650. It was 

observed that square root of product of hysteresis and J-value 

(critical) and fatigue life logarithmic value were linearly 

proportional. A study by Mars and Fatemi [23] examines 

methods such as maximum main strain (or stretch), criteria of 

octahedral shear strain and density of strain energy that are 

frequently used for rubber fatigue crack nucleation 

investigation. The capacity to anticipate multi-axial fatigue 

behavior using these old equivalent criteria and a more 

contemporary equivalence criterion based on cracking energy 

density are also investigated. The theoretical underpinnings of 

the application of various fatigue life analysis methodologies 

are also introduced. Multiaxial fatigue life prediction of 

elastomers was carried out by crack initiation damage criteria. 

This method was validated by performing the experiments 

with different loading conditions and amplitudes under out of 

phase and in – phase torsion – axial tests. Based on the 

maximal normal strain plane and damage quantification by 

cracking energy density on that plane, a critical plane approach 
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was determined to be the most effective way for crack 

initiation life prediction for complicated multiaxial variable 

amplitude loading. To forecast fatigue life under varying 

amplitude loadings, Miner's linear damage rule and the 

rainflow cycle counting approach were applied. The 

component's overall fatigue life was predicted using the 

fracture mechanics approach using specimen crack growth 

data and FE simulation results. 

Elastomeric matrix composites, according to Legorju-jago 

and Bathias [24], are frequently reinforced with mineral 

particles like carbon black and occasionally with fibers of 

organic or long metallic. Rubbers are capable to categorize as 

nanocomposites in fiber absence. Elastomers are damaged by 

cyclic loading to the point that one or more cracks occur and 

spread. Compression loading is crucial because chemical 

transformations like crystallization have an impact on fatigue 

resistance. To extend the fatigue life of rubber springs, Luo 

and Wu [25] performed FEA analysis. It is demonstrated that 

utilizing nonlinear software, simulation (quasi-static) of 

springs made of rubber can offer useful insights into analysis 

of failure and design of product. It is demonstrated that 

component's profile of fatigue (virtual), which offers a clear 

picture of prospective failures, can be retrieved utilizing user 

subroutines and post-processor. Under uniaxial conditions of 

loading, Le Cam et al. [26] investigated macroscopic level 

fatigue damage in natural rubber filled with carbon black. 

Until the samples failed, conditions of uniaxial tension loading 

(non-relaxing and fully relaxing), and compression- tension 

were used. For uniaxial compression- tension and tension 

loading (uniaxial) under full relaxation circumstances, one 

form of damage due to fatigue is seen, however numerous 

other types of damage due to fatigue are seen in tension 

loading (uniaxial) under non-relaxation conditions. Various 

types of impairment that can be seen when rubber is subjected 

to tension loading (uniaxial non-relaxing) are strongly 

interrelated to extension of fatigue life. According to Verron 

and Andriyana [27], from an engineering perspective, 

predicting the onset of fatigue cracks in automobile rubber 

parts is a crucial step before designing new parts. They have 

developed a brand-new predictor for rubber fatigue fracture 

nucleation. It was created within the context of configurational 

mechanics and is inspired by microscopic mechanisms 

brought on by fatigue. Results indicate that the current 

predictor, which incorporates the predictors that have already 

been published, is able to combine data on multi-axial fatigue.  

For rubber-like materials that have undergone significant 

elastic deformation, Ali et al. [28] examined the requirements 

of various constitutive models. The constitutive models are 

frequently employed in rubber component Finite Element 

Analysis (FEA) software programs. This evaluation gave 

engineers and manufacturers a solid foundation for making 

decisions about which constitutive model to use for 

incompressible and isotropic materials out of a variety 

depending on strain energy potential. Mars and Fatemi [29] 

conducted experiments utilizing cylindrical short specimens 

with thin-walled exposed to twist and axial displacements to 

examine impact of multi-axial stress on fatigue fracture 

formation and progress in rubber (filled natural). Correlations 

between the peak maximum primary strain and fracture 

nucleation lifetimes and growth rates were discovered and are 

explored. The peak maximum primary strain is the largest 

lateral or longitudinal strain depending upon the loading 

direction. These correlations are significant because in 

comparison to the monotonic response, the cyclic stress-strain 

response shows a substantial early softening, followed by a 

more gradual additional softening. The first softening is 

thought to be caused by irreversible breakdown of different 

kinds of bonds, and the second softening is thought to be 

caused by fillers and their impact on network chain breakage. 

According to Woo and Kim [30], fatigue study and lifespan 

evaluation are crucial steps in process of design to guarantee 

security as well as dependability of parts made by rubber. By 

combining results of FEA with damage parameter of fatigue 

obtained from the test of fatigue, an approach for predicting 

life of vulcanized natural rubber was developed. The damage 

parameter of fatigue is calculated using Green-Lagrange strain 

at the crucial region identified by the finite element approach. 

According to Andriyana and Verron [31], continua cannot be 

entirely regarded as defect-less. During experimental 

interpretations, it was discovered that natural rubber has 

dispersed tiny flaws that amplify under cyclic loading. These 

findings, however, are not taken into account by the traditional 

rubber fatigue life predictions, namely strain energy, 

maximum principle stress and stretch. Inelastic constitutive 

equations are added to a predictor based on configurational 

mechanics. Then, it is applied for forecasting fatigue life. 

According to Stevenson et al. [32], integrating fatigue life 

estimations into the design process is a significant difficulty in 

design with rubber parts for automobile applications such as 

mounts for engine and suspension mounts for chassis. They 

outline the process for calculating the fatigue life of 

elastomeric parts and use a rubber bearing case study that was 

distorted by compression and shear bi-axial combination to 

demonstrate their points.  

Thus, by going through the literature survey of analysis of 

rubber like materials it is concluded that continuum-based 

mechanical models can explain materials that resemble rubber. 

The field of accurate constitutive modelling has yielded 

multiple models that describe the elastic energy in relation to 

the deformation. The models are based on stretch ratios or 

strain invariants. Many applications benefit greatly from the 

use of traditional hyperelastic material models, such as the 

Mooney-Rivlin or Ogden models. Theoretically, Ogden and 

the Mooney-Rivlin polynomial have identical outcomes. 

Regarding their formula, the approaches differ from one 

another, nonetheless. The strain energy density of the 

Mooney-Rivlin model is based on the principal strain 

invariants, while the Ogden model provides the strain energy 

density based on three principal stretches. In general, the 

number of parameters, the kind of formulation used to 

construct the models, and the domain of validity for all kinds 

of deformation are used to classify the models. Thus, 

depending on the area of deformation under consideration, the 

following models can be applied: for small, moderate, and 

large strain, respectively: the neo-Hookean model, the 

Mooney model, and the Ogden model. It is found that the 

different researcher uses a variety of mathematical models to 

predict the life or failure. There were a very few research 

groups which were used deflection due to compressive load as 

a life prediction criterion. In this work, the railway wagon anti-

vibration pads are subjected to a heavy compressive load, 

therefore, deflection due to these loads is predicted using FEA 

and material test properties which is used as basis for life 

prediction or failure of the rubber pads. 

 

 

 

 

1454



 

2. SHOCK AND VIBRATION ISOLATION PRINCIPLE 
 

A motion in which there is a sharp, unexpected shift in 

velocity is referred to as a shock. Shock typically involves a 

single, intense energy impulse with a rapid acceleration. Shock 

isolation limits the forces that are communicated to the area 

around the equipment from which the shock originates. The 

usage of isolators, which results in the storage of the shock 

energy within the isolator and its release of energy over a 

lengthy period of time, allows for the decrease of shock. The 

isolator's deflection allows for the storage of energy. Instead 

of transmissibility (like with vibration isolators), the efficiency 

of a shock isolator is determined by the transmitted force and 

the resulting deflection. Vibration is a magnitude (force, 

displacement, or acceleration) that oscillates about a mean 

reference. Shocks must be dampened, whereas vibrations can 

be isolated, hence the two are dealt with differently. Designing 

an appropriate compound and preserving modulus at a level 

that will satisfy the load-deflection requirement of a certain 

design is the responsibility of the rubber technologist. Natural 

rubber will be the best elastomer if damping is not present 

because it can be compounded to keep its ideal elastic 

properties over an extended length of service [31]. The goal of 

isolation is to reduce the amount of vibrational disturbance that 

is transmitted from the source to the receiver. 

Because of their unfeasible high frequency ratio, rubber 

mounts are typically ineffective for very low frequency 

applications. In these cases, the natural frequency of the 

isolator must be lowered, either by altering its mass (since it is 

inversely proportional to natural frequency) or its stiffness. 

Since altering the mass of the isolator is often impractical, one 

must alter the other directly proportional quantity (i.e., the 

stiffness), such as by adding fillers or cork powder (which 

coincidentally also improves damping by hysteresis), or by 

using reinforcing wires or inserts. Such situations always call 

for a unique design. For vibration isolation, an elastic 

composition is advised; nevertheless, in particular applications, 

additional dampening is desired to reduce resonance increase 

or hasten die-out in the event of shock. The key terms of the 

shock and vibration isolation principle are defined as below: 

Vibration: It can be defined as a force, displacement, or 

acceleration whose magnitude oscillates around a given 

reference point, alternating between being smaller and greater 

than the reference. Frequency in cycles per second, or Hz and 

amplitude which is the magnitude of the force, displacement, 

or acceleration, are two terms to describe vibration. 

Frequency: The quantity of full oscillation cycles that take 

place in a certain amount of time is known as frequency. 

Period: The amount of time needed for a single vibration 

cycle. 

Forcing Frequency: The number of oscillations per unit of 

time caused by an external force or movement applied to a 

system is known as the forcing frequency. 

The number of oscillations a system will undergo in a unit 

of time if it is moved from its equilibrium position and 

permitted to vibrate freely is known as its natural frequency. 

Amplitude: The zero to peak value that corresponds to the 

maximum magnitude of a harmonic vibration time-history is 

the amplitude of a harmonic vibration, such as displacement, 

velocity, or acceleration.  

Spring stiffness is defined as the ratio of a force increment 

to a corresponding spring deflection increment. 

Damping: In a vibratory system, damping is the process 

through which energy is lost. There are three types of damping 

that are commonly used: viscous, coulomb, and hysteresis. 

Coulomb Damping: A vibratory system is said to have 

coulomb, or dry friction damping if the damping force in the 

system is constant and unaffected by changes in position or 

velocity. 

Hysteresis (Inherent) Damping: Hysteresis damping is the 

type of damping that happens when a material is subjected to 

motion and is caused by the molecular structure of that 

substance. Good examples of materials with this kind of 

damping are elastomers. 

Viscous Damping: Any particle in a vibrating body is said 

to be viscously damped if it experiences a force that is 

proportionate to its velocity in a direction that is opposed to its 

velocity. 

Critical Damping: When a system is moved from its initial 

static position and most quickly returns to it without 

experiencing any over-oscillation, it is said to be critically 

damped. 

Resonance: A suspension system is said to be in resonance 

when the forcing frequency and natural frequency of the 

system coincide. 

The ratio of the dynamic output to the dynamic input is 

known as transmissibility. 

 

2.1 Vibration isolation without damping 

 

There are three components involved in the transmission of 

vibration: A source that produces an excitation force or 

displacement, a conduit that the vibratory disturbance travels 

through, and a receiver. Reducing the amount of vibrational 

disturbance that is transferred from the source to the recipient 

is the aim of isolation. Fundamental to comprehending 

vibration isolation is the one degree of freedom model, which 

describes the uniaxial behavior of a linear system composed of 

a lumped mass and spring and damping elements [3]. Figure 1 

depicts the model for the undamped situation. 

 

 
 

Figure 1. Undamped single degree of freedom model [3] 

 

When a mass, M, experience a sinusoidal excitation force, 

F, in a steady state, the displacement of the mass is: 

 

0

2

sin
F M

Y t
K

M





=
 

− 
 

 
(1) 

 

The system's natural frequency (measured in radians per 

second) is given as follows: 

 

nf K M=  (2) 
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By dividing the numerator and denominator of Eq. (2) by 

K/M and replacing for fn, the displacement of the lumped mass 

is expressed as follows: 

 

( )2 2
sin

1

o

n

F K
Y t

f



=

−
 (3) 

 

The dynamic displacement is a function of the static 

deflection divided by the ratio between the frequency of the 

sinusoidal excitation force and the natural frequency of the 

system, according to an analysis of the numerator and 

denominator in Eq. (3). The isolation system's objective is to 

lower the force communicated to the support to a level that is 

less than the excitation force acting on the mass. The force 

exerted on the support is stated by using Eq. (4) as follows: 

 

( )( )sF K Y=  (4) 

 

The ratio of the force acting on the mass to the force acting 

on the support is known as the transmissibility through the 

spring and is given by Eqs. (5) and (6) as below: 

 

( )( )
sin

s

o

K YF
T

F F t
= =  (5) 

 

( )2 2

1

1 n

T
f

=
−

 (6) 

 

Figure 2 provides a graphic representation of the magnitude 

of Eq. (6). A closer look into Eq. (6) reveals some significant 

aspects of the behavior of the undamped system. When ω/fn=1, 

there is infinite transmission. As the excitation frequency rises, 

the transmitted force decreases until it equals the excitation 

force when 
𝜔

𝑓𝑛
= √2 , at which point the transmissibility is 

unity. A positive value of transmissibility comes from Eq. (6) 

as well when ω<fn, indicating that the force acting on the 

support is in phase with the excitation force. If the reaction 

force is out of phase with the excitation when ω>fn, the 

transmissibility value will be negative. 

 

 
 

Figure 2. Undamped system transmissibility [3] 

 

The natural frequency of the system depends on the static 

deflection of the isolator caused by the weight of the attached 

body if the isolator displays a linear force vs. deflection curve. 

Transmissibility can therefore be represented as a function of 

the static deflection of the isolator because transmissibility is 

a function of the system's natural frequency and given by Eq. 

(10) as below: 

( )( )1 1000 /
2

n
n

f
f K M


=  (7) 

 

1 5.0329nf K M=  (8) 

 

1 15.76 1n sf =   (9) 

 

( )2 2

1

1 4 9804 s

T
f

=
− 

 (10) 

 

where, M= mass of the mounted body in Kg; K= stiffness of 

the isolator in N/mm; fn1= natural frequency of the system in 

Hz; f= frequency of force excitation; ∆s= static deflection of 

the isolator in mm. Eq. (10) defines the relationship between 

transmissibility and static deflection which is represented 

graphically by Figure 3. This graph is significant because it 

shows how much static deflection an isolator needs to have in 

order to achieve a particular level of isolation. 

 

 
 

Figure 3. Transmissibility as a function of static deflection 

and excitation frequency [3] 

 

2.2 Vibration isolation with viscous damping 

 

The following Figure 4 depicts the single-degree-of-

freedom model with viscous damping. 

 

 
 

Figure 4. Viscous damping model [3] 

 

The following Eq. (11) represents transmissibility for the 

damped condition: 

 

( )

( )

1 2
2 2 2

1 2
2

2 2 2

K C
T

K m C



 

+
=
 − +
  

 (11) 
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Eq. (11) can be generalized to the situation when damping 

and stiffness are both frequency-dependent as follows: 

 

K = Stiffness at frequency ( )  

C = Damping at frequency ( )  

2 2
2

2

C

K







 =  

 

nf =Natural frequency of the system 

2 o
n

K
f

M
= , where 

oK = Stiffness at frequency 
nf  

 

( )

( ) ( ) 

1 2
2

1 2
2

2 2

1

1 n o

T

f K K 



 

+
=

 − +
 

 
(12) 

 

 
 

Figure 5. Transmissibility for a damped system [3] 

 

Figure 5 depicts Eqs. (11) and (12) graphically. As can be 

seen by looking at the graph, the presence of damping in the 

system results in a higher level of transmissibility at 

frequencies higher than 𝑓𝑛 × √2, and reduces the amount of 

transmitted force at resonance. The force transmitted through 

the damping element is what causes the higher level of 

transmissibility above 𝑓𝑛 × √2. When evaluating Eq. (11), the 

magnitude of damping is stated in terms of ξ, this is the ratio 

to the critical damping Cc, and is described below [33]: 

 

2c oC K M=  (13) 

 

c

C

C
 =  

 

The value of transmissibility in Figure 5 is given in terms of 

a decibel (dB), as opposed to being expressed as an absolute 

value. Eq. (14) outlines the decibel's definition. 

 

( )Re20logdB fT T T=  (14) 

 

The basic way to achieve isolation is to keep the disturbing 

frequency's relationship to the system's natural frequency in 

check. The inherent frequency of the isolator, or more 

accurately, the inherent frequency of the system made up of 

the isolator and mounted equipment, is one of its features. 

Every degree of freedom in a system generally has a natural 

frequency; the single-degree-of-freedom system has a single 

natural frequency. As, C=Cc in case of a critical damped 

system, therefore, there is no natural frequency of oscillation 

and returns to equilibrium without oscillation if relocated. 

An isolator's features are frequently defined using the idea 

of static deflection. The isolator's deflection under the 

stationary or deadweight force of the attached equipment is 

known as static deflection. Thus, it seems that monitoring the 

static deflection alone can yield the natural frequency of a 

single-degree-of-freedom system. With certain qualifications, 

this is accurate. First, there must be a straight line on the force 

vs. deflection graph for the spring to be considered linear. 

Second, the elasticity of the robust material needs to be the 

same in both static and dynamic settings. This latter condition 

is typically satisfied by metallic springs, although many 

organic materials utilized in isolators do not. These materials 

have a higher dynamic modulus of elasticity than static 

modulus; as a result, the natural frequency of the isolator is 

somewhat higher than that determined just by static deflection.  

If the system will be in resonance and then the disturbance 

forces will be enhanced rather than decreased when it is 

excited at its natural frequency. It is therefore highly desirable 

to choose the appropriate isolator such that its natural 

frequency will not coincide with any equipment critical 

frequencies and will be excited as little as possible when in use. 

Most isolators have dampening of one kind or another. 

Because damping helps to limit transmissibility, it is useful 

when the mounted system is working at or near its native 

frequency. Take an internal combustion engine, for instance, 

that is supported by steel springs that don't provide much 

dampening. The engine's disturbing frequency will eventually 

match the spring-mass system's inherent frequency upon 

engine start-up and as engine RPM increases. Light damping 

will result in a very big build-up of forces from the engine to 

the support, which will increase transmissibility. Serious 

damage to the engine or support chassis may occur if the 

engines idle RPM falls within the range of the spring-mass 

system's inherent frequency. On the other side, resonance 

amplification would be significantly reduced if the designer 

chose an elastomeric isolator with a higher damping degree. 

 
 

3. CHARACTERIZATION OF MATERIAL 
 

3.1 Chloroprene rubber hyperelastic material modeling 
 

First and foremost, a good anti-vibration material should 

have a high damping factor that does not significantly rise with 

frequency. It should also not have any significant frequency-

dependent increases in its dynamic modulus. The different 

materials used for anti-vibration mounts are natural rubber or 

polyisoprene (NR), synthetic isoprene (IR), styrene-butadiene 

(SBR), butyl or polyisobutylene (IIR, CIIR), poly-urethane, 

silicon (VMQ), and neoprene (polychloroprene). Each 

material has their own advantages and disadvantages. Natural 

rubber is good at absorbing vibrations because of its high 

elasticity and dampening qualities. It isn't as resistant to heat, 

oil, and some chemicals, though, as some synthetic rubber 

varieties are. The chloroprene rubber falls under the category 

neoprene (polychloroprene). Chloroprene is a synthetic rubber 

with a broad temperature range of flexibility and strong 

chemical resilience. It may be used in tough locations because 
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it is resistant to chemicals and oil. Chloroprene rubber has 

moderate resistance to solvents, outstanding ageing properties 

and resistance to fire. It also addresses the wide range of NR 

and IR technical features as compared to other type of rubbers. 

Therefore, due to these advantages, the chloroprene rubber is 

selected for the railway wagon anti-vibration mount. 

 

 
 

Figure 6. Photograph of an anti-vibration mount 

 

A rubber material made of chloroprene is developed by 

IRMRA, Thane, for a railway elastomeric pad shown in Figure 

6 as per the specified properties by Research Designs and 

Standards Organizations, Lucknow. An elastomeric pad's 

rubber material is rubber made of chloroprene in vulcanized 

form, with 66 Shore A hardness. The technical details of the 

above mentioned anti-vibration mounts are as below: 

Material: Rubber pads – Chloroprene rubber, Steel plates- 

IS: 2062-Fe 410 WA (modulus of elasticity, E = 2×105 N/mm2, 

Poison’s ratio, υ=0.3), Manufacturing Process–Injection 

molding process. Rubber material made of Chloroprene can be 

observed as hyperelastic behavior because of its 

incompressibility and extremely nonlinear elastic isotropic 

behavior. In case of hyperelastic material a correlation 

between stress and strain is commonly characterized by strain 

energy potentials, which is necessary for the FEA of rubber 

components [34]. To characterize the hyperelastic material 

behavior, or the constitutive relation, experimental test data 

are required to determine the material properties in the strain 

energy potential. 

A constitutive model can be used to describe any material. 

This model represents the traditional link between strain and 

stress. While this approximation holds true for certain 

materials, stress is dependent on factors other than strain in 

other materials. This is the situation with materials that 

resemble rubber and have extremely intricate material 

behavior. The majority of engineered rubber-like materials 

show significant material damping in addition to their 

nonlinear elastic behavior, which causes a hysteretic reaction 

to cyclic loading. In addition to the strain level, the current 

strain rate and strain history also affect this dynamic reaction. 

When a harmonic load is applied to the material, for example, 

this behavior can be seen in the dependence on frequency and 

amplitude, respectively. These dependences can result in 

variations in the dynamic modulus and damping of common 

engineering rubber-like materials of several hundred percent. 

Mooney's theory, which was developed in 1940, was one of 

the early phonological theories that addressed major 

deformations. It was widely recognized and had a significant 

impact on the development of this subject. The foundation of 

Mooney's theory is the presumption that the Hook's law is 

followed in simple shear and that the elastomer is 

incompressible and isotropic in the undeformed shape. As 

most elastomers are thought to be almost incompressible, the 

first assumption accurately captures the reality. Regarding the 

second supposition, simple shear up to moderate deformations 

are rather adequately described by Hook's law. Rivlin 

expanded on the phonological technique to explain the 

hyperelastic behavior of materials that resemble rubber. Rivlin 

contended that the power series should be used to approximate 

the strain energy function for an isotropic material. In this 

study, constitutive model of the chloroprene rubber material is 

specified using Mooney-Rivlin function. Mooney-Rivlin 

model's strain energy potential can be stated as [35]: 

 

1 2 31
( 3) ( 3) ( 3)i j k

ijki j k
W C I I I



+ + =
= − − −  (15) 

 

where, set of constants Cijk are calculated by material testing 

and first, second and third order invariants of strain I1, I2 and 

I3 respectively are expressed as: 

 
2 2 2

1 1 2 3I   = + +  (16) 

 
2 2 2

2 1 2 2 3 3 1( ) ( ) ( )I      = + +  (17) 

 
2

3 1 2 3( )I   =  (18) 

 

Principal stretch ratios λ1, λ2, and λ3 in uniaxial stress state, 

are represented as:  

 

 
1 2 3 1, 1u    = = =  (19) 

 

The values (I1-3), (I2-3) and (I3-3) are used instead of I1, I2 

and I3 to ensure, by convention, that the strain energy function 

has a value of zero in the unstrained condition. In a similar 

manner, the parameter C000 in the same state is assumed to be 

zero. The third invariant I3 can be understood in physical terms 

as the square of the ratio between a material element's volumes 

in its deformed and undeformed states. Thus, it may be 

inferred that, with respect to incompressible materials, 

λ1λ2λ3=1 and I3=1.  

In loading direction, principal stretch ratio is λu and stretch 

ratios (principal) along loading direction perpendicular planes 

are λ2 and λ3. In order to increase stability, Mooney-Rivlin 

model with three variables provided by Eq. (20) is chosen in 

this work to characterize the chloroprene rubber’s constitutive 

model. 
 

10 1 01 2 11 1 2( 3) ( 3) ( 3)( 3)W C I C I C I I= − + − + − −  (20) 

 

The strain energy density function of a material and its 

hyperelastic constants dictate the material's mechanical 

reaction. Therefore, it is essential to precisely evaluate the 

material constants of the materials under examination to 

achieve successful results during a hyperelastic study. 

Typically, experimental stress-strain data of the material under 

consideration is utilized to derive the material constants. It is 

advised that test data be collected throughout a broad range of 

strain values and from multiple modes of deformation. It has 

been noted that to attain stability, test data in at least as many 

deformation states as will be encountered during the analysis 

should be used to match the material constants. A basic 

deformation test (uniaxial tension) is typically employed for 
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hyperelastic materials to precisely characterize the material 

constants. ANSYS software is utilized to perform hyperelastic 

material curve fitting on the uniaxial tensile stress-strain data 

acquired during the test. This process determines the material 

constants in the nonlinear three-parameter Mooney-Rivlin 

model. The test data of rubber made of chloroprene under 

uniaxial tensile loading shown by graphical form in Figure 7 

are used to calculate constants C10, C01, and C11. Uniaxial 

tensile test’s data fitting; we determined that C10= 0.1414791, 

C01=-0.1163389, and C11=0.01248255. 

 

 
 

Figure 7. Developed rubber's stress-strain curves under uniaxial tensile load 

 

3.2 Chloroprene rubber test of compression 

 

A test is carried out on chloroprene rubber cylindrical 

samples under compressive loading to study the load-

deflection characteristics of rubber pad. Dimensions of the 

developed rubber specimen are ϕ 29×12 mm [36]. The 

compression test specimen shown in Figure 8 is manufactured 

by molding process. The Universal Testing Machine (Instron 

3365) is used for the compression test. The gradual 

compressive load is applied on the specimen up to a maximum 

load of 353.44 kgf. After compression test the diameter of the 

specimen increases by 0.5 mm and height decreases by 0.25 

mm approximately. The output data is stored in the computer 

and the same is represented by graphical form in Figure 9 

which indicates the non-linear behavior of developed rubber. 

The compression test results are given in Table 1. 
 

 
 

Figure 8. Compression test specimen 

 
 

Figure 9. Variation of experimental load and deflection 

characteristic 

 

Table 1. Experimental compression test results 

 
Sr. No. Load (in kgf) Deflection (in mm) 

1 50 0.98 

2 100 1.83 

3 150 2.75 

4 200 3.47 

5 250 3.98 

6 300 4.36 

7 353.44 (Max.) 4.95 
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It is evident that the general curve shape of rubber material 

differs from that of a metallic material. For this type of 

material, Young's Modulus is not a significant property 

because there is no clear linear relationship. To understand 

how a rubber material will respond to a specific compressive 

load, one needs consult a CFD curve. Unlike metals, strains 

cannot be predicted using a straightforward linear connection. 

The compression test results are used to compare the 

deflections of anti-vibration pad calculated by using ANSYS 

software. Both the results show the non-linear load – 

deflection curves. The deflections observed in the 

compression test at different compressive loads are within the 

limit for the developed chloroprene rubber [20]. The 

compression test is useful to decide whether the developed 

rubber falls within the expected compression deflection range. 

 

 

4. FEA OF AN ANTI-VIBRATION MOUNT 

 

Under Indian Railways track conditions, the elastomeric 

pad positioned between the side frame and adapter experiences 

compressive and shear loads generated in freight bogies 

installed in wagons with axle loads of up to 25 tons. Half of 

the axle load—that is, the load on the wheel sets—is 

experienced by the EM pad when the vehicle is stationary. 

This force is amplified under the dynamic situations. The main 

purpose of the elastomeric pad is to lessen wheel wear. It also 

serves as an anti-vibration component and improves the 

steering capability of a three-piece freight stock bogie. In this 

work the deflection characteristics of anti-vibration mount 

under compressive loads are studied. Two rubber pads made 

of chloroprene and three plates of mild steel divide an 

elastomeric pad. These various materials are thought to be 

completely linked to one another. Plane 182 element with four 

nodes is chosen for the model. Solid structure 2-D modeling is 

done with PLANE182 element. The element can be utilized as 

an axisymmetric element or as a plane element (plane stress, 

plane strain, or generalized plane strain). Four nodes, each 

with two degrees of freedom—translations in the nodal x and 

y directions—define it. The element can withstand large 

deflection, large strain, stress stiffening, plasticity, and 

hyperelasticity. Additionally, it can simulate the deformations 

of fully incompressible hyperelastic materials and virtually 

incompressible elastoplastic materials using mixed 

formulation capabilities. The study used the nonlinear 

Mooney-Rivlin model with three parameters for hyperelastic 

materials [36]. ANSYS software analyzes anti-vibration 

mount model that is depicted in Figure 10. The deformation 

shape and resultant deflection contour is shown in Figure 11. 

The resultant maximum deflection of the elastomeric pad 

observed is 6.352 mm for 10-ton compressive load. 

 

 
 

Figure 10. Anti-vibration mount FEA model 

 
 

Figure 11. Deformation FEA results for 10-ton compressive 

load 

 

 
 

Figure 12. Load deflection characteristic of the pad by FEA 

 

Table 2. Predicted maximum deflection of an anti-vibration 

mount 

 
Load Ton 10 12.5 15 17.5 20 

Max. Deflection in mm 6.35 7.10 7.75 8.08 7.60 

 

The load deflection characteristic of the chloroprene rubber 

pad by FEA is shown in Figure 12 and experimental load 

deflection characteristic is shown in Figure 9. From these 

results it is pointed out that the deflection increases as the load 

on the pad increases to a certain value and then decreases. 

From experimental results as well as FEA results, the non-

linear load deflection characteristic of developed rubber is 

observed.  

The non-linear behavior of developed chloroprene rubber is 

observed from the experimental and FEA results. Table 2 

shows predicted maximum deflection at different compressive 

loads. The predicted maximum deflection observed is 8.081 

mm at 17.5 tone compressive load. It is observed that the 

difference between the predicted deflections by FEA and 

compression test results is below 15% which validates the 

FEA model. This difference between the experimental and 

FEA results is observed because only three parameter Moony-

Rivlin FEA model is only considered. As we increase the 

number of parameters in Mooney-Rivlin model then the 
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accuracy of the model will increase but the computation time 

required for FEA will increase. The difference between the 

FEA results and the experimental results will be also 

minimized by improving the physical properties and geometry 

accuracy of developed rubber specimens. The predicted load 

deflection characteristic of chloroprene rubber shows the non-

linear behavior. The maximum deflection decides whether the 

developed rubber sustain for the required period or not. The 

predicted maximum deflection also decides the required 

stiffness of the anti-vibration mount. Thus, the predicted 

maximum deflection, non-linear behavior of chloroprene 

rubber, and rubber stiffness are useful parameters for design 

of the anti-vibration mount at an early stage.  

 

 

5. CONCLUSIONS 

 

To ensure safety and reliability, a methodology is developed 

to predict the maximum deflection of an anti-vibration mount 

using an integration of material property tests and analysis by 

finite element modeling in primary design process. Maximum 

deflection of the mount must be predicted before the prototype 

or actual component is created since rubber made of 

chloroprene material is a recently designed material for an 

anti-vibration mount to match stated nominal standards. The 

maximum deflection is seen to increase till a specific limit and 

decrease afterwards as compressive force on an anti-vibration 

mount increase, demonstrating the non-linearity of the rubber 

material. The rubber filler's mechanical response was very 

different from the rubber matrix's, which could be one reason 

for this. Because of this, the filler network did not deform as 

quickly as its rubber matrix counterpart. Rubber typically 

displays considerable nonlinear behavior when subjected to 

mechanical loads because of both geometrical and material 

nonlinearities.  

Predicted maximum deflection of an anti-vibration mount 

in the given load range is 8.081mm. This satisfies the 

maximum deflection requirement of the Research 

Development and Standards Organizations (RDSO) of Indian 

Railway which mentioned the limit of the maximum deflection 

in the given load range as 10 mm. The difference between the 

experimental compression test on the developed rubber 

samples and the results obtained by FEA model is below 15 % 

which validates the established methodology. The predicted 

deflection and experimental characteristics match with the 

results available in the literature [20]. Three more problems 

make structural analysis of such material using the finite 

element approach more difficult: In the process of deformation 

analysis, (1) improper element formulation may result in the 

locking phenomena, which could lead to incorrect conclusions; 

(2) polynomial-form constitutive equations may produce 

material instability; and (3) the usage of low order elements 

may cause pressure instability. The methodology developed in 

this study is useful to predict the deflection of any anti-

vibration mount with material and geometry which will be 

helpful at early design stage. The future work of this study is 

to perform the experimentation on the actual anti-vibration 

developed and compare the deflection results with the FEA 

model. In this study the deflections are not calculated by 

testing anti-vibration mount as it is in the early design stage. 

The accuracy of the FEA model can be increased by increasing 

the number of parameters in the Mooney- Rivlin model with 

high computation facilities which will also increase the overall 

cost of the work. 
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NOMENCLATURE 

 

M mass, Kg 

K stiffness, N/mm 

F force, N 

f frequency, Hz 

t time, sec  

Y displacement, mm 

T transmissibility 

C constant 

E modulus of elasticity, N/mm2 

I strain invariant 

W strain energy potential 

 

Greek symbols 

 

ω angular frequency of vibration, cycle/sec 

∆ deflection, mm 

δ deformation, mm 

ξ damping ratio 

υ Poison’s ratio 

∞ infinity 
  stretch ratio 

 

Subscripts 

 

o initial 

n natural 

s static 

ijk vector directions 
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