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A rough set theory (RST) was developed by Zdzislaw Pawlak to handle vagueness and 

uncertainty in data analysis. An approximation of a vague concept consists of two 

precise concepts a lower and an upper approximation. These approximations are two 

basic operations in rough set theory. An upper approximation contains all objects that 

may possibly belong to a concept, and a lower approximation contains all objects that 

certainly belong. The boundary region is the difference between the upper and lower 

approximations. Thus, rough set theory expresses vagueness by using a boundary region 

of a set rather than by using membership. By using the pair of sets, rough set theory 

extends traditional set theory by defining a subset of a universe. The properties of any 

set can be clearly understood if an algebraic structure is developed. This paper considers 

an approximation space with a finite universe and introduces a rough action by a 

symmetric group S|U| acting on all rough sets in this space. Also, we proved that the 

number of orbits of the symmetric group S|U| in rough sets is one. We then introduced 

the S|U|-submodule and proved that the kernel of rough homomorphism is a rough 𝑆|𝑈|

submodule. An example of how rough action can be used to find missing values in 

sample cancer data has also been provided. 
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1. INTRODUCTION

Numerous mathematical concepts are delivered exclusively 

using set theory as a key method of presenting all of 

mathematics. Rough sets were introduced by Pawlak [1]. With 

the help of lower and upper approximations, this theory can 

approximate a subset of a universe. The two main approaches 

for developing rough set theory are constructive and axiomatic. 

Using constructive methods, primitive notions, such as binary 

relations on universes, partitions of universes and 

neighborhood systems, are used to construct lower and upper 

approximation operators. In contrast, the axiomatic approach 

focuses on the primitive notions of upper and lower 

approximation operators, which are appropriate for examining 

rough set algebras. 

An algebraic structure provides a rigorous framework for 

analyzing and manipulating rough sets by formalizing 

operations and relationships. The concept of an approximation 

space is a fundamental algebraic structure in rough set theory, 

which consists of a universe of discourse, attributes, and 

binary relations that define the indiscernibility of objects. 

Furthermore, algebraic structures, including semigroups, 

monoids, and groups, have been employed in the study of 

rough sets, particularly within the context of algebraic 

approaches. By means of these algebraic systems, it becomes 

possible to study the properties and relationships of rough sets 

and their connections with other mathematical ideas. Thus, the 

algebraic structures of rough set theory provide a useful 

mathematical framework for studying the properties, 

relationships, and operations within rough sets, offering 

insights into the nature of uncertainty and approximation in 

data analysis and knowledge discovery. 

The algebraic aspects of rough set theory are proposed by 

Bonikowski [2]. The structures of the lower and upper 

approximations based on arbitrary binary relations was given 

by Liu and Zhu [3]. Rough sets and their properties were 

applied to rings, modules, semi-groups, groups, ideals, and 

graphs [4-8] 

According to Pomykala and Pomykala [9], rough sets form 

Stone algebra. Comer [10] discussed several algebras related 

to algebraic logic, including stone algebras and relation 

algebras. By considering the upper approximation, Biswas and 

Nanda [11] gave the concept rough subgroups. A rough ideal 

into a semigroup was introduced by Kuroki [12] in 1997, 

containing rough left and right ideals with appropriate 

examples. With respect to normal subgroups Kuroki and Wang 

[13] explored lower and upper approximations. The roughness

of gamma subsemigroups and ideals in gamma-semigroups

were discussed by Jun [14]. In addition, rough ideals are

discussed as a generalization of ideals in BCK-algebras by Jun

[15].

A topological approach was given by Al-Shami [16] to 

generate new rough set models. Through ideals, Guler et al. 

[17] provided rough approximations based on different

topologies. The concept of generalized rough approximation

spaces based on maximal neighborhoods and ideals was

discussed by Hosny et al. [18]. A power set approximation

operator for a given set was defined by Mordeson in 2001 [19]
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using covers of the universal set. The roughness based on 

fuzzy ideals given by Davvaz [20]. An introduction to rough 

prime ideals and rough fuzzy prime ideals in a semigroup was 

made by Xiao and Zhang in 2006 [21]. Sangeetha and Sathish 

[22] defined rough groups using upper and lower 

approximations to rough sets within a finite universe. 

Bağırmaz et al. [23] introduced the notion of topological rough 

groups, and Altassan et al. [24] introduced rough action on 

topological rough groups. 

In this paper, we present a rough action by a symmetric 

group 𝑆|𝑈| acting on all rough sets in an approximation space 

with a finite universe. Moreover, we prove that number of 𝑆|𝑈| 

orbits in rough sets is 1. This led us to introduce a rough 𝑆|𝑈| 

submodules and prove results related to some 

homomorphisms. We have also provided an example of using 

rough action to find missing values in cancer sample data. 

A brief review of rough set theory and rough groups is 

provided in Section 2 of this paper. In Section 3, we presented 

rough actions and their properties along with suitable 

examples. Our discussion of rough 𝑆|𝑈|  submodules cover 

Section 4. An example of rough action is provided in Section 

5. Conclusion explains the relevance of this work. 

 

 

2. BASICS OF ROUGH SET THEORY 

 

Approximation space, lower and upper approximations of a 

given set and results relating to approximations and rough 

groups are discussed in this section. 

 

Definition 2.1 [1] 

Approximation space is composed of a finite set "Λ" (≠ 𝜙) 

called universe set along with "𝜁"an equivalence relation on 

"Λ" and is represented by 𝐾 = ("Λ", "𝜁"). 

 

Definition 2.2 [1] 

A family of subsets 𝐸 = {𝐸1, 𝐸2, E … … 𝐸𝑛} of "Λ" are said 

to be a classification of "Λ" if 
 

• 𝐸 ∪ 𝐸2 ∪. . . . .∪ 𝐸𝑛 = "Λ" 

• 𝐸𝑖 ∩ 𝐸𝑗 =ϕ, for 𝑖 ≠ 𝑗 

 

Definition 2.3 [1] 

Consider an approximation space 𝐾 = ("Λ", "𝜁"). And 𝐴 is 

any subset of Λ, then 

 

• "Λ"𝐴 = {𝑎𝑖|[𝑎𝑖]ζ ∩ 𝐴 ≠ 𝜙} 

• "Λ"𝐴 = {𝑎𝑖|[𝑎𝑖]ζ ⊆ 𝐴} 

• 𝐵𝑁𝐴 = "Λ"𝐴 − "Λ"𝐴 

 

are called approximations of upper, lower & boundary region 

of 𝐴 with respect to "𝜁", respectively, and 𝐴 is said to be rough 

if 𝐵𝑁𝐴 is non empty otherwise it is crisp. 

 

Definition 2.4 [1] 

If 𝐴, 𝐵 ⊆ "Λ", then the following results are due to [1]: 
 

• "Λ"𝐴 ⊆ 𝐴 ⊆ "Λ"𝐴 

• "Λ"𝐴∩𝐵 = "Λ"𝐴 ∩ "Λ"𝐵  

• "Λ"𝐴∪𝐵 ⊇ "Λ"𝐴 ∪ "Λ"𝐵  

• "Λ"𝐴∪𝐵 = "Λ"𝐴 ∪ "Λ"𝐵 

• "Λ"𝐴∩𝐵 ⊆ "Λ"𝐴 ∩ "Λ"𝐵 

• 𝐴 ⊆ 𝐵 ⟹ "Λ"𝐴 ⊆ "Λ"𝐵&"Λ"𝐴 ⊆ "Λ"𝐵  

Definition 2.5 [25] Group 

Groups are non-empty sets with binary operation ∗ that 

satisfy closure, associativity, identity, and inverse properties 

under ∗. 

 

Definition 2.6 [25] Power Set 

Collection of all possible subsets of 𝐺 forms a Power set 

represented by 2𝐺  which forms an abelian group along with 

operation △. 

 

Definition 2.7 [22] Rough Group 

(𝑈, 𝑅) be an approximation space, where 𝑈 has 𝑛 elements 

(𝑛 ∈ 𝑁). (2|𝑈|,△) is an abelian group, and 𝑅(𝑈), a collection 

rough sets in 𝑈 with respect to 𝑅. 𝑅(𝑈) is a rough group if 

𝑅(𝑈) ∪ 𝑅(𝑈)  with respect to △  forms a subgroup of 

(2𝑈,△) and represented by 𝑟𝑜𝑔. 

 

Theorem 2.1 [22] 

If 𝑟𝑜𝑔1
and 𝑟𝑜𝑔2

 are two rough groups then 𝑟𝑜𝑔1
∩ 𝑟𝑜𝑔2

 is 

also rough group. 

 

Theorem 2.2 [22] 

If 𝑟𝑜𝑔1
and 𝑟𝑜𝑔2

 are two rough groups then 𝑟𝑜𝑔1
∩ 𝑟𝑜𝑔2

⊆

𝑟𝑜𝑔1
∩ 𝑟𝑜𝑔2

. 

 

Theorem 2.3 [22] 

If 𝑟𝑜𝑔1
and 𝑟𝑜𝑔2

 are two rough groups then 𝑟𝑜𝑔1
∪ 𝑟𝑜𝑔2

⊆

𝑟𝑜𝑔1
∪ 𝑟𝑜𝑔2

. 

 

Theorem 2.4 [22] 

If 𝑟𝑜𝑔1
and 𝑟𝑜𝑔2

 are two rough groups then 𝑟𝑜𝑔1
∩ 𝑟𝑜𝑔2

=

𝑟𝑜𝑔1
∩ 𝑟𝑜𝑔2

. 

 

 

3. ROUGH ACTION 

 

This section introduces rough action, rough stabilizer, rough 

orbit, and rough homomorphism. 

 

Definition 3.1 [25] 𝑮-Set 

Let 𝐺 be a group and 𝐽 be any set. 𝐺 acts on 𝐽 if ∶ 𝐺 × 𝐽 →
𝐽 given by (𝑔, 𝑗) → 𝑔 ⋅ 𝑗 ∈ 𝐽, also, 

 

𝑒 ⋅ 𝑗 = 𝑗, ∀𝑗 ∈ 𝐽; 𝑔 ⋅ (ℎ ⋅ 𝑗) = (𝑔 ⋅ ℎ) ⋅ 𝑗 

 

Then 𝐽 is said to be 𝐺-Set. 

 

Definition 3.2 

Let (𝑈, 𝑅)  be an approximation space. 𝑆|𝑈|  be symmetric 

group on |𝑈| elements. 𝑅𝑜(𝑈) be the set of all rough sets. We 

say 𝑆|𝑈|  acts on 𝑅𝑜(𝑈)  if ∶ 𝑆|𝑈| × 𝑅𝑜(𝑈) → 𝑅𝑜(𝑈)  where 

(𝜎, 𝑊) → 𝜎{𝑊} = {𝜎(𝑤𝑛)} ∈ 𝑅𝑜(𝑈), such that: 

 

𝑒 ⋅ 𝐴𝑖 = 𝐴𝑖 , ∀𝐴𝑖 ∈ 𝑅𝑜(𝑈) 

𝜎1 ⋅ (𝜎2 ⋅ 𝐴𝑖) = (𝜎1𝜎2) ⋅ 𝐴𝑖 

 

Definition 3.3 Rough 𝝈-Stabilizer 

𝑅𝑜(𝑈1), set of all rough sets in 𝑈1with respect to 𝑅1 and 

𝑆|𝑈|  acts on 𝑅𝑜(𝑈1) . Let 𝑋𝑛 ∈ 𝑅𝑜(𝑈1)  then 𝑋𝜎 = {𝑋𝑛 ∈

𝑅𝑜(𝑈1)|𝜎(𝑥𝑛) = 𝑥𝑛 , ∀𝑥𝑛 ∈ 𝑋𝑛}. 
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Definition 3.4 

If 𝑊 ∈ 𝑅𝑜(𝑈1)  then, ∑ |𝑊𝑔|𝑔∈𝑆|𝑈1|
= |𝑆|𝑈1|| . As 

demonstrated in the following example, this result is true. 
 

Example 3.1 

Given 𝑈1 = {1,2,3} and 𝑅 be any equivalence relation on 

𝑈1. 

Equivalence class of 𝑈1with respect to 𝑅 is given by: 
 

𝑈1/𝑅 = {{1,2}, {3}} 

2𝑈1 = {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, 𝜙} 

 

represented as 𝑋𝑖 , where 𝑖 = 1,2,3, … 8. 

The rough sets are given by 𝑅𝑜(𝑈) = {𝑋1, 𝑋2, 𝑋5, 𝑋6} , 

where, 
 

𝑋1 = {1}, 𝑋2 = {2}, 𝑋5 = {1,3}, 𝑋6 = {2,3} 
 

• 𝑅𝑋1 = {1,2}& 𝑅𝑋1
= 𝜙 

• 𝑅𝑋2 = {1,2}& 𝑅𝑋2
= 𝜙 

• 𝑅𝑋5 = {1,2,3}& 𝑅𝑋5
= {3} 

• 𝑅𝑋6 = {1,2,3}& 𝑅𝑋6
= {3} 

 

𝑅(𝑈) ∪ 𝑅(𝑈) = {𝜙, {3}, {1,2}, {1,2,3}} 

 

where, 

𝑅(𝑈) = {{1}, {2}, {1,3}, {2,3}}, 

𝑅(𝑈) = {{1,2}, {1,2,3}} 

𝑅(𝑈) = {𝜙, {3}} 

 

(𝑅(𝑈) ∪ 𝑅(𝑈),△) forms subgroup of (2|𝑈|,△). 

 

Table 1. Cayley table of 𝑅(𝑈1) 
 

 𝝓 {3} {1,2} {1,2,3} 

𝜙 𝜙 {3} {1,2} {1,2,3} 

{3} {3} 𝜙 {1,2,3} {1,2} 

{1,2} {1,2} {1,2,3} 𝜙 {3} 

{1,2,3} {1,2,3} {1,2} {3} 𝜙 
 

Hence 𝑅(𝑈) is a rough group (Table 1). 

Define 𝜎. 𝑋𝑛 = 1 , if 𝜎. 𝑥 = 𝑥, ∀𝑥 ∈ 𝑋𝑛 otherwise 0 (Table 

2). 

 

Table 2. Rough action on R(U1) 

 
 𝑿𝟏 𝑿𝟐 𝑿𝟔 𝑿𝟕 

(e) 1 1 1 1 

(12) 0 0 0 0 

(13) 0 1 0 0 

(23) 1 0 0 0 

(123) 0 0 0 0 

(132) 0 0 0 0 

• 𝑋𝑒 = {𝑋1, 𝑋2, 𝑋6, 𝑋7} 

• 𝑋𝜎1 = 𝜙 

• 𝑋𝜎2 = {𝑋2} 

• 𝑋𝜎3 = {𝑋1} 

• 𝑋𝜎4 = 𝜙, 𝑋𝜎5 = 𝜙 

• ∑ |𝑋𝑔| = 6 = 𝑆|𝑈|𝑔∈𝑆|𝑈|
 

 

Then we have the following result: The number of 𝑆|𝑈| 

orbits in 𝑅(𝑈) is 1 since: 
 

∑ |𝑋𝑔|𝑔∈𝑆|𝑈|

𝑆|𝑈|
=

6

6
= 1 

 

Example 3.2 

Let 𝑈 = {1,2,3,4}, 𝑅, an equivalence on 𝑈. 
 

𝑈/𝑅 = {{1,2}, {3}, {4}} 
 

The possible subsets of 𝑈 are {1}, {2}, {3}, {4}, {1,2}, 

{1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, 

{2,3,4}, {1,2,3,4}, {} represented as 𝑊𝑖 , where i=1,2,…16. 

The upper and lower approximation of Wi are given by: 

 

𝑅𝑊1 = {1,2} & 𝑅𝑊1
= {} 

𝑅𝑊2 = {1,2} & 𝑅𝑊2
= {} 

𝑅𝑊3 = {3} & 𝑅𝑊3
= {3} 

𝑅𝑊4 = {4} & 𝑅𝑊4
= {4} 

𝑅𝑊5 = {1.2} & 𝑅𝑊5
= {1,2} 

𝑅𝑊6 = {1,2,3} & 𝑅𝑊6
= {3} 

𝑅𝑊7 = {1,2,4} & 𝑅𝑊7
= {4} 

𝑅𝑊8 = {1,2,3} & 𝑅𝑊8
= {3} 

𝑅𝑊9 = {1,2,4} & 𝑅𝑊1
= {4} 

𝑅𝑊10 = {3,4} & 𝑅𝑊10
= {3,4} 

𝑅𝑊11 = {1,2,3} & 𝑅𝑊1
= {1,2,3} 

𝑅𝑊12 = {1,2,4} & 𝑅𝑊12
= {1,2,4} 

𝑅𝑊13 = {1,2,3,4} & 𝑅𝑊13
= {3,4} 

𝑅𝑊14 = {1,2,3,4} & 𝑅𝑊14
= {3,4} 

𝑅𝑊15 = {1,2,3,4} & 𝑅𝑊15
= {1,2,3,4} 

𝑅𝑊16 = {} & 𝑅𝑊13
= {} 

 

The Rough sets are given by: 
 

𝑅𝑜(𝑈) = {𝑊1, 𝑊2, 𝑊6, 𝑊7, 𝑊8, 𝑊9, 𝑊13, 𝑊14} 

𝑊1 = {1}, 𝑊2 = {2}, 𝑊6 = {1,3}, 𝑊7 = {1,4} 

𝑊8 = {1,2,3}, 𝑊9 = {2,4}, 𝑊13 = {1,3,4}, 𝑊14 = {2,3,4} 

𝑅(𝑈) = {{1,2}, {1,2,3}, {1,2,4}, {1,2,3,4} 

𝑅(𝑈) = {𝜙, {3}, {4}, {3,4}} 

𝑅(𝑈) ∪ 𝑅(𝑈) = {𝜙, {3}, {4}, {3,4}, {1,2}, {1,2,3}, {1,2,4}, {1,2,3,4}} 

 

(𝑅(𝑈) ∪ 𝑅(𝑈),△) forms subgroup of (2|𝑈|,△) (Table 3).

 

Table 3. Cayley table of rough group 𝑅(𝑈2) 
 

△ 𝝓 {𝟑} {4} {3,4} {1,2} {1,2,3} {1,2,4} {1,2,3,4} 

𝜙 𝜙 {3} {4} {3,4} {1,2} {1,2,3} {1,2,4} {1,2,3,4} 
{3} {3} 𝜙 {3,4} {4} {1,2,3} {1,2} {1,2,3,4} {1,2,4} 

{4} {4} {3,4,} 𝜙 {3} {1,2,4} {1,2,3,4} {1,2} {1,2,3} 

{3,4} {3,4} {4} {3} 𝜙 {1,2,3,4} {1,2,4} {1,2,3} {1,2} 

{1,2} {1,2} {1,2,3} {1,2,4} {1,2,3,4} 𝜙 {3} {4} {3,4} 

{1,2,3} {1,2,3} {1,2} {1,2,4} {1,2} {3} 𝜙 {3,4} {4} 

{1,2,4} {1,2,4} {1,2,3,4} {1,2,} {1,2,3} {4} {3,4} 𝝓 {3} 

{1,2,3,4} {1,2,3,4} {1,2,4} {1,2,3} {1,2} {3,4} {4} {3} 𝜙 
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Define 𝜎. 𝑊𝑛 = 𝑠, if 𝜎. 𝑥 = 𝑥, ∀𝑥 ∈ 𝑊𝑛, otherwise (Table 

4). 

 

Table 4. Rough action on 𝑅(𝑈2) 

 
 W1 W2 W6 W7 W8 W9 W13 W14 

Identity s S s S s s s s 

permu1 - - - - - - - - 

permu2 - S - - - - - - 

permu3 - - - - - - - - 

permu4 - - - - - - - - 

permu5 - - - - - - - - 

permu6 - - - - - - - - 

permu7 - - - - - - - - 

permu8 - - - - - - - - 

permu9 - s - - - - - - 

permu10 - - - - - - - - 

permu11 s - - - - - - - 

permu12 - - - - - - - - 

permu13 - s - - s - - - 

permu14 - - - - - - - - 

permu15 s - - - - - - - 

permu16 - - - - - - - - 

permu17 s - - - - - - - 

permu18 s s - s - - - - 

permu19 s - s - - - - - 

permu20 - s - - s - - - 

permu21 - s - - - s - - 

permu22 - - - - - - - - 

permu23 - - - - - - - - 

 

𝑊𝑒 = {𝑊1, 𝑊2, 𝑊6, 𝑊7, 𝑊8, 𝑊9, 𝑊13, 𝑊14} 

𝑊𝑝𝑒𝑟1 , 𝑊𝑝𝑒𝑟3 , 𝑊𝑝𝑒𝑟4 ,  𝑊𝑝𝑒𝑟5 , 𝑊𝑝𝑒𝑟6 , 𝑊𝑝𝑒𝑟7 ,
𝑊𝑝𝑒𝑟8 ,  𝑊𝑝𝑒𝑟10 , 𝑊𝑝𝑒𝑟12 ,
, 𝑊𝑝𝑒𝑟14 𝑊𝑝𝑒𝑟16 , 𝑊𝑝𝑒𝑟22  & 𝑊𝑝𝑒𝑟23 = 𝜙 

𝑊𝑝𝑒𝑟2 = {𝑊2}, 𝑊𝑝𝑒𝑟9 = {𝑊2}, 𝑊𝑝𝑒𝑟11={𝑊1}, 

𝑊𝑝𝑒𝑟13={𝑊2, 𝑊8}, 𝑊𝑝𝑒𝑟15={𝑊1}, 𝑊𝑝𝑒𝑟17={𝑊1}, 

𝑊𝑝𝑒𝑟18={𝑊1, 𝑊2, 𝑊7}, 𝑊𝑝𝑒𝑟19={𝑊1, 𝑊6}, 

𝑊𝑝𝑒𝑟20={𝑊2, 𝑊8}, 𝑊𝑝𝑒𝑟21={𝑊2, 𝑊9}, 

∑ |𝑋𝑔| = 24 = 𝑆|𝑈|

𝑔∈𝑆|𝑈|

 

 

Theorem 3.1 

Every action of 𝑆|𝑈| on 𝑅𝑜(𝑈)  induces a homomorphism 

from 𝑆|𝑈| → 𝑆𝑦𝑚(𝑅𝑜(𝑈)) 

 

Proof: 

Let 𝑆|𝑈|  acts on 𝑅𝑜(𝑈) , . ∶  𝑆|𝑈| × 𝑅𝑜(𝑈) →

𝑅𝑜(𝑈), where  (𝜎, 𝑊) → 𝜎{𝑊} ∈ 𝑅𝑜(𝑈)  such that: 𝑒. 𝑊 =
𝑊, ∀𝑊 ∈ 𝑅𝑜(𝑈); 𝜎1. (𝜎2. 𝑊) = (𝜎1𝜎2). 𝑊. 

Consider the map 𝜙: 𝑆|𝑈| → 𝑆𝑦𝑚(𝑅𝑜(𝑈)) , where, 

𝑆𝑦𝑚(𝑅𝑜(𝑈)): 𝑅𝑜(𝑈) → 𝑅𝑜(𝑈) is defined as: 
 

Σ𝜎(𝑊) = 𝜎(𝑊) 

Let Σ𝜎(𝑋) = Σ𝜎(𝑌) ⇒ 𝜎{𝑋} = 𝜎{𝑌} 

{𝜎(𝑥𝑛)} = {𝜎(𝑦𝑛)}, ∀𝑥𝑛 ∈ 𝑋&∀𝑦𝑛 ∈ 𝑌 

𝜎−1{𝜎(𝑥𝑛)} = 𝜎−1{𝜎(𝑦𝑛)}, {𝜎−1𝜎(𝑥𝑛)} = {𝜎−1𝜎(𝑦𝑛)} 

𝑋 = 𝑌 ⇒. is 1 − 1. 

∀𝑌 ∈ 𝑅𝑜(𝑈), ∃𝜎−1({𝑌}) ∈ 𝑅𝑜(𝑈) such that 

Σ𝜎𝜎−1({𝑌}) = 𝜎𝜎−1({𝑌}) = 𝑌, ⇒. is onto 
 

Hence Σ𝜎 ∈ 𝑆𝑦𝑚 (𝑅𝑜(𝑈)). 

Define 𝜙: 𝑆|𝑈| → 𝑆𝑦𝑚 (𝑅𝑜(𝑈)) as 𝜙(𝜎1𝜎2) = Σ𝜎1𝜎2
, 

Σ𝜎1𝜎2
(𝑋) = {𝜎1𝜎2(𝑋)} = 𝜎1{𝜎2(𝑋)} = Σ𝜎1

Σ𝜎2
. 

Conversely, 

Let 𝜙 ∶ 𝑆|𝑈| → 𝑆𝑦𝑚 (𝑅𝑜(𝑈))  be a homomorphism where 

𝜙(𝜎) = Σ𝜎 . 

Define . ∶ 𝑆|𝑈| × 𝑅𝑜(𝑈) → 𝑅𝑜(𝑈) as: (𝜎, 𝑊) = Σ𝜎(𝑊) 

It defines a rough action since: 

 
(𝑒, 𝑊) = Σ𝑒(𝑊) = 𝑒(𝑊) = 𝑊 

5𝜎1(𝜎2(𝑊)) = 𝜎1(Σ𝜎2
(𝑊)) 

Σ𝜎1
 . Σ𝜎2

(𝑊) = Σ𝜎1𝜎2
= 𝜎1𝜎2(𝑊) 

 

So, . defines the R Action. 

 

Definition 3.5 Stabilizer of R Action 

Approximation space is composed of a finite set 𝑈 ≠ 𝜙, has 

𝑛 elements. Let 𝑆|𝑈|  be symmetric group on n elements and 

𝑅𝑜(𝑈) collection of all rough sets. If 𝑆|𝑈| acts on 𝑅𝑜(𝑈) then 

 

𝒔𝒕𝒂𝒃(. ) = {𝝈 ∈ 𝑺|𝑼||𝝈(𝒙𝒏) = 𝒙𝒏, ∀𝒙𝒏 ∈ 𝑿, ∀𝑿 ∈ 𝑹𝒐(𝑼)} 

 

from above examples we have 𝑠𝑡𝑎𝑏(. ) = {𝑒}. 

So, in an 𝑅 Action, 𝑠𝑡𝑎𝑏(. ) is a trivial subgroup of 𝑆|𝑈|. 

 

Result 3.1 

If 𝑆|𝑈| acts on 𝑅𝑜(𝑈) then 𝜎. 𝑋 ⊆ 𝜎. 𝑋 and 𝜎. 𝑋 ⊆ 𝜎. 𝑋 

 

Example 3.3 

Given 𝑈1 = {1,2,3} and 𝑅 be any equivalence relation on 

𝑈1. 

Equivalence class of 𝑈1with respect to 𝑅 is given by: 

 

𝑈1/𝑅 = {{1,2}, {3}} 

2𝑈1 = {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, 𝜙} 

 

represented as 𝑋𝑖 , where 𝑖 = 1,2,3, … 8. The rough sets are 

given by 𝑅𝑜(𝑈) = {𝑋1, 𝑋2, 𝑋5, 𝑋6}, 

 

𝑋1 = {1}, 𝑋2 = {2}, 𝑋5 = {1,3}, 𝑋6 = {2,3} 

• 𝑅𝑋1 = {1,2}& 𝑅𝑋1
= 𝜙 

• 𝑅𝑋2 = {1,2}& 𝑅𝑋2
= 𝜙 

• 𝑅𝑋5 = {1,2,3}& 𝑅𝑋5
= {3} 

• 𝑅𝑋6 = {1,2,3}& 𝑅𝑋6
= {3} 

𝑆3 = {𝑒, (12), (13), (23), (123), (132)} 

 

Represented as 𝜎0, 𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5 . Consider 𝑋6 = {2,3} 

where 𝑋6 = {3}&𝑋6 = {1,2,3}. 

 

𝜎0. 𝑋6 = {3}, 𝜎0. 𝑋6 = {1,2,3} 

𝜎1. 𝑋6 = {3}, 𝜎1. 𝑋6 = {1,2,3} 

𝜎2. 𝑋6 = {1}, 𝜎2. 𝑋6 = {1,2,3} 

𝜎3. 𝑋6 = {2}, 𝜎3. 𝑋6 = {1,2,3} 

𝜎4. 𝑋6 = {1}, 𝜎4. 𝑋6 = {1,2,3} 

𝜎5. 𝑋6 = {2}, 𝜎5. 𝑋6 = {1,2,3} 

𝜎0. 𝑋6 = {2,3}, 𝜎0. 𝑋6 = {1,2,3} 

𝜎1. 𝑋6 = {1,3}, 𝜎1. 𝑋6 = {1,2,3} 

𝜎2. 𝑋6 = {2,1}, 𝜎2. 𝑋6 = {1,2,3} 

𝜎3. 𝑋6 = {3,2}, 𝜎3. 𝑋6 = {1,2} 

𝜎4. 𝑋6 = {3,1}, 𝜎4. 𝑋6 = {1,2,3} 

𝜎5. 𝑋6 = {1,2}, 𝜎5. 𝑋6 = {1,2} 
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From above, 𝜎𝑖 . 𝑋6 ⊆ 𝜎𝑖 . 𝑋6, and 𝜎𝑖 . 𝑋6 ⊆ 𝜎𝑖 . 𝑋6 for all 𝑖 =

0,1,2,3,4,5. 

 

 

4. ROUGH 𝑺|𝑼| SUBMODULES 

 

The rough 𝑆|𝑈| submodule, rough quotient 𝑆|𝑈| submodules 

and rough 𝑆|𝑈| homomorphism have been introduced in this 

section. 

 

Definition 4.1 [7] 

Let 𝐺 be any group and 𝑀 be any abelian group. We say 𝑀 

is 𝐺 -Module if 𝐺  acts linearly on 𝑀 . Define: 𝐺 × 𝑀 → 𝑀 

such that 

 

• 𝑒 ·  𝑥 = 𝑥, ∀𝑥 ∈ 𝑋 
• 𝑔 ·  (ℎ ·  𝑚) = (𝑔. ℎ)  ·  𝑚 

• 𝑔 ·  (𝑚1 + 𝑚2) = 𝑔 ·  𝑚1 + 𝑔 ·  𝑚2 

 

Definition 4.2 

𝑆𝑈 = {𝑓 ∶ 𝑈 → 𝑈, bijective functions}  and it forms a 

permuation group. (2𝑈, △) forms an abelian group. Define . ∶
𝑆𝑈 × 2𝑈 → 2𝑈 as 𝜎. 𝑋𝑛 = {𝜎(𝑥𝑛)}, ∀𝑥𝑛 ∈ 𝑋𝑛 such that: 

 

• 𝒆. 𝑿 = 𝑿 , ∀𝑿 ∈ 𝟐𝑼 

• 𝝈𝟏. (𝝈𝟐. 𝑿𝒏) = (𝝈𝟏𝝈𝟐). 𝑿𝒏 

• 𝝈. (𝑿 △ 𝒀) = 𝝈. 𝑿 △ 𝝈. 𝒀 

 

Then 2𝑈 𝑖𝑠 𝑆|𝑈| submodule. 

 

Definition 4.3 

Let 𝑅(𝑈) be a rough group since 𝑟𝑜𝑔 is a subgroup of 2𝑈. 

𝑅(𝑈) is said to be a rough 𝑆|𝑈|-submodule if we define: 

. ∶ 𝑆𝑈 × 𝑟𝑜𝑔 → 𝑟𝑜𝑔 such that: 

 

• 𝑒. 𝑋𝑛 = 𝑋𝑛 , ∀𝑋𝑛 ∈ 𝑟𝑜𝑔 

• 𝜎1. (𝜎2. 𝑋𝑛) = (𝜎1𝜎2). 𝑋𝑛 

• 𝜎(𝑋𝑛 △ 𝑋𝑚) = 𝜎. 𝑋𝑛 △ 𝜎. 𝑋𝑚 

 

Then 𝑅(𝑈) is a rough 𝑆|𝑈|-submodule. 

 

Theorem 4.1 

Let (𝑈, 𝑅1)  and (𝑈, 𝑅2)  are approximation spaces where 

𝑈 is a finite universe with respect to equivalence relations 𝑅1 

and 𝑅2. 𝑅1(𝑈) ∩ 𝑅2(𝑈) is a rough 𝑆|𝑈|-submodule if 𝑅1(𝑈) ∩

𝑅2(𝑈) = 𝑅1(𝑈) ∩ 𝑅2(𝑈) 

 

Proof: 

Let 𝑋, 𝑌 ∈ 𝑅1(𝑈) ∩ 𝑅2(𝑈)  𝑋, 𝑌 ∈ 𝑅1(𝑈) and  𝑅2(𝑈) ⇒

𝑋, 𝑌 ∈ 𝑅1(𝑈) and  𝑅2(𝑈) . Also 𝑋 , 𝑌 ∈ 𝑅1(𝑈)  and  𝑅2(𝑈) . 

Since, 𝑅1(𝑈) ∩ 𝑅2(𝑈) = 𝑅1(𝑈) ∩ 𝑅2(𝑈). 

 

𝑋, 𝑌 ∈ 𝑅1(𝑈) ∩ 𝑅2(𝑈) & 𝑋, 𝑌 ∈ 𝑅1(𝑈) ∩ 𝑅2(𝑈) 

𝑅1(𝑈) ∩ 𝑅2(𝑈) ∪ 𝑅1(𝑈) ∩ 𝑅2(𝑈) ≤ (2𝑈, Δ) 

 

Hence 𝑅1(𝑈) ∩ 𝑅2(𝑈) is a rough 𝑆𝑈-submodule. 

 

Definition 4.4 Rough Quotient 𝑺|𝑼| −submodule 

Let 𝑅(𝑈) be a rough 𝑆|𝑈| submodule, 𝑟𝑜𝑔  is abelian 

subgroup of (2𝑈, Δ) and hence 𝑅(𝑈)  is normal in 2𝑈. Then 

(
2𝑈

𝑅(𝑈)
, Δ) = {𝑅(𝑈)Δ𝑌 |𝑌 ∈ 2𝑈}  forms rough quotient group 

and hence it is rough quotient 𝑆|𝑈| module. 

 

Definition 4.5 Rough Homomorphism 

𝑅1(𝑈), 𝑅2(𝑈) are rough 𝑆|𝑈| submodules. 

Define 𝜙: 𝑅1(𝑈) → 𝑅2(𝑈)  by 𝜙(𝑋) = 𝑌 , if |𝑋| = |𝑌| . 

Then 𝜙 defines a homomorphism since: 

 

𝜙({}) = {} & 

𝜙(𝑋 △ 𝑌) = 𝜙(𝑋) △ 𝜙(𝑌) 

 

This homomorphism is said to be rough 𝑆|𝑈|  submodule 

homomorphism. 

 

Example 4.2 

Let 𝑼 = [𝟏, 𝟐, 𝟑} and 𝜼𝟏& 𝜼𝟐 be two equivalence relations 

on 𝑼. 
 

𝑼

𝜼𝟏

= {{𝟏, 𝟐}, {𝟑}}, 𝑼/𝜼𝟐 = {{𝟐, 𝟑}, {𝟏}} 

𝟐𝑼 = {{𝟏}, {𝟐}, {𝟑}, {𝟏, 𝟐}, {𝟏, 𝟑}, {𝟐, 𝟑}, {𝟏, 𝟐, 𝟑}, {}} 

 

With respect to 𝜼𝟏 , the rough sets are 𝑿𝟏 = {𝟏}, 𝑿𝟐 =
{𝟐}, 𝑿𝟓 = {𝟏, 𝟑}, 𝑿𝟔 = {𝟐, 𝟑}, since, 

 

• 𝜼𝟏
𝑿𝟏 = {𝟏, 𝟐},            𝜼𝟏𝑿𝟏

= {} 

• 𝜼𝟏
𝑿𝟐 = {𝟏, 𝟐}, ,            𝜼𝑿𝟐

= {} 

• 𝜼𝟏
𝑿𝟓 = {𝟏, 𝟐, 𝟑},          𝜼𝟏𝑿𝟓

= {𝟑} 

• 𝜼𝟏
𝑿𝟔 = {𝟏, 𝟐, 𝟑},           𝜼𝑿𝟔

= {𝟑} 

𝜼𝟏(𝑼) ∪ 𝜼𝟏(𝑼) = {{𝟏, 𝟐}, {𝟑}, {𝟏, 𝟐, 𝟑}, {}} 

 

With respect to 𝜼𝟐, the rough sets are 𝑿𝟐 =  {𝟐}, 𝑿𝟑 =
 {𝟑}, 𝑿𝟒 =  {𝟏, 𝟐} 𝒂𝒏𝒅 𝑿𝟓 =  {𝟏, 𝟑}. 

 

• 𝜼𝟐
𝑿𝟐 = {𝟐. 𝟑},     𝜼𝟐𝑿𝟐

= {} 

• 𝜼𝟐
𝑿𝟑 = {𝟐, 𝟑},     𝜼𝟐𝑿𝟑

= {} 

• 𝜼𝟐
𝑿𝟒 = {𝟏, 𝟐, 𝟑},   𝜼𝟐𝑿𝟒

= {𝟏} 

• 𝜼𝟐
𝑿𝟓 = {𝟏, 𝟐, 𝟑},   𝜼𝟐𝑿𝟓

= {𝟏} 

𝜼𝟏(𝑼) ∪ 𝜼𝟏(𝑼) = {{𝟐, 𝟑}, {𝟏}, {𝟏, 𝟐, 𝟑}, {}} 

 

Let ϕ be the Rough 𝑺|𝑼|  submodule homomorphism then 

from above. 

𝝓{{}} = {} 

𝝓{{𝟑}} = {𝟏} 

𝝓{{𝟏, 𝟐}} = {𝟐, 𝟑} 

𝝓{{𝟏, 𝟐, 𝟑}} = {𝟏, 𝟐, 𝟑} 

Also, 

 

ϕ({3}△{1, 2})=ϕ({1, 2, 3})={1, 2, 3} 

ϕ({3}) △ ϕ({1, `2})={1}△{2, 3}={1, 2, 3} 
 

Definition 4.6 Kernel of Rough Homomorphism 

With respect to two equivalence relations 𝑹𝟏& 𝑹𝟐 consider 

an approximation space with finite universe 𝑼. 
𝑹𝟏𝐔 & 𝑹𝟐𝐔  are rough 𝑺|𝑼|  submodules. Let 𝝓: 𝑹𝟏𝐔 →

𝑹𝟐𝐔 be rough homomorphism then kernel is defined as 

𝒌𝒆𝒓 𝝓 = {𝜼 ∈ 𝑹𝟏𝑼| 𝝓(𝜼) = {}}. 
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Theorem 4.2 

If ∗: 𝑹𝟏𝑼 → 𝑹𝟐𝑼 be rough homomorphism, then 𝒌𝒆𝒓 ∗  is 

rough 𝑺|𝑼| submodule of 𝑹𝟐𝑼. 

 

Proof: 

The mapping ·: 𝑺|𝑼| × 𝒓𝒐𝒈𝟏
→ 𝒓𝒐𝒈𝟐

 defines a rough linear 

𝑺|𝑼| action. 

 

Let 𝑻𝟏, 𝑻𝟐 ∈ 𝒌𝒆𝒓 ∗⇒∗ (𝑻𝟏) = {}, ∗ (𝑻𝟐) = {} 

Also ∗ (𝑻𝟏 △ 𝑻𝟐) =∗ (𝑻𝟏) △∗ (𝑻𝟐) = {} 

(∵∗ is rough homomorphism) ⇒ 𝑻𝟏 △ 𝐓𝟐 ∈ 𝒌𝒆𝒓𝝓. 

∴ kerϕ rough subgroup of 𝒓𝒐𝒈𝟐
. 

Define the map ·∶  𝑺𝑼 × 𝒌𝒆𝒓 ∗→ 𝒌𝒆𝒓 ∗ by (𝝈, 𝑿) →
𝝈(𝝓(𝒙𝒊)) , ∀𝒙𝒊 ∈ 𝒓𝒐𝒈𝟏

, satisfying the rough 𝑺|𝑼|  module 

conditions. Hence 𝒌𝒆𝒓 ∗ is rough 𝑺|𝑼| submodule. 

 

 

5. APPLICATION OF ROUGH ACTION 

 

A rough action example is given in this section to find 

missing cancer data values. 

 

Example 5.1 

Consider a finite universe with five patients and attributes 

Age, Gender, Treatment, and Survival Status with missing 

values in Age and Gender. The missing values are determined 

by applying a rough group action rule as follows in Table 5. 

 

Table 5. Given information system with missing values 

 
Patient Age Gender Treatment Survival Status 

P1 45 M Surgery Alive 

P2 ? F Chemotherapy Deceased 

P3 60 ? Chemotherapy Alive 

P4 38 F Surgery Alive 

P5 ? M Surgery Deceased 

 

The following decision are the decision rules with respect 

to AGE attribute: 

 

• If Age≤45 & Gender “M” & Treatment “Surgery” 

then Survival Status is “Alive.” 

• If Age≤60 & Treatment “Chemotherapy” then 

Survival Status is “Alive.” 

• If Age≤40 & Gender “F” & Treatment “Surgery” 

then Survival Status is “Alive.” 

 

Rough Group Action Rule 

For each patient, if the “Age” attribute is missing, the 

“Treatment” attribute will be changed to “Surgery” If the 

“Gender” attribute is missing, the “Treatment” attribute will 

be changed to “Chemotherapy” as shown in Table 6. 

 

Table 6. Rough action on information system 

 
Patient Age Gender Treatment Survival Status 

P1 45 M Surgery Alive 

P2 ? F Surgery Deceased 

P3 60 ? Surgery Alive 

P4 38 F Surgery Alive 

P5 ? M Chemotherapy Deceased 

 

Using the above decision rules, P2 will be of age >60 P3 

Gender will be “F” & P5 Age will be >45 (Table 7). 

Table 7. Information system without missing values 

 
Patient Age Gender Treatment Survival Status 

P1 45 M Surgery Alive 

P2 >60 F Chemotherapy Deceased 

P3 60 F Chemotherapy Alive 

P4 38 F Surgery Alive 

P5 >45 M Surgery Deceased 

 

As a result, we are able to find the missing values by using 

the Rough Group Action rule. 

 

 

6. RESULTS AND DISCUSSION 

 

It is possible to apply rough sets theory to any algebraic 

system, in particular in this paper we incorporated rough sets 

into group action concepts.  Using a finite universe 

approximation space, a rough action is introduced by 

considering a symmetric group that will act on all rough sets.  

It has been shown that every rough action of 𝑆|𝑈| on rough 

sets  induces a homomorphism on set of symmetries of rough 

sets.  In addition, we proved that rough sets have a single orbit.  

Rough 𝑆|𝑈|submodule is then introduced and proved that the 

kernel of rough homomorphism is a rough 𝑆|𝑈| submodule. 

Also, we have shown that the intersection two of rough 𝑆|𝑈| 

suhmodules 𝑅1 & 𝑅2 is a rough 𝑆|𝑈| suhmodule if intersection 

of upper approximation of 𝑅1 & 𝑅2  is equal to upper 

approximation of their intersection. We have also provided a 

sample cancer data example that illustrates how rough action 

can be used to locate missing values. 

 

 

7. CONCLUSION 

 

In a finite universe, rough groups are defined by considering 

all possible rough sets. In this paper, an introduction to rough 

𝑆|𝑈| action on rough sets of a universe and a definition of rough 

σ stabilizer has been presented. We have also shown that rough 

sets have one 𝑆|𝑈| orbit. With the help of suitable examples, 

rough 𝑆|𝑈| submodules have been introduced with their 

properties. In addition, rough action was shown to be useful in 

finding missing values in cancer data. Rough 𝑆|𝑈| submodules 

will be examined for their more expansive properties as future 

work. A rough set can also be applied to other algebraic 

structures in a similar way. 
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