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The present study explores multi-compartment FDE models with modified conditions 

for pharmacokinetics of anomalous drug diffusion in Caputo derivative sense. The 

Adomian decomposition method is implemented for analysis of non-commensurate 

model to depict the concentration of a single dose of enteric coated drug, in particular, 

Diclofenac in the blood plasma in two-compartment. Non-linear regression is used for 

parameter estimation. In the present text, authors validated the model showcasing the 

best-fit for the experimental in-vivo data from the existing literature to ensure 

eradication of toxicity and ineffective treatment risk. Statistical analysis is performed 

using Mathematica to understand significance of each estimated parameter in the 

regression model. Stability analysis in graphical sense is examined for decision making. 

The authors have justified existence and uniqueness by Picard-Lindelöf theorem. 
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1. INTRODUCTION

Leibniz and L'Hôspital introduced the notion of 

differentiation for non-integer orders in 1695. Ionescu et al. [1] 

found that fractional differential equation (FDE) is used for 

diffusion-related processes. Mainly in the compartmental 

study of drug diffusion, the transition rate is considered to be 

proportional to the contents of that compartment [2]. Instead, 

these conversion rates are expected to be proportional to 

complex functions of insertions of the compartment and time 

[3]. Dokoumetzidis and Macheras [4] introduced fractional 

calculus through one-compartment pharmacokinetics and drug 

dissolution applications. For the diffusion process which 

demonstrates characteristics of the memory effect, fractional 

calculus is recommended as an expedient tool for multi-

compartmental modelling [5]. Researchers [6-10] analyzed 

two and three-compartment models with different analytic and 

numerical methods. 

Some researchers [11-14] described the theorems based on 

stability, existence, and uniqueness of the solutions for 

commensurate and non-commensurate linear and non-linear 

FDE. The techniques used in the literature to solve FDE are 

ADM [15, 16], fractional differential transform method [17], 

power series method [18], variational iteration method and 

fractional difference method [19]. Also, some analytic 

methods like transforms of Laplace, Fourier, and Mellin as 

well as fractional Green's function have been explored for 

linear FDE [20]. ADM has been applied to several types of 

systems of differential equations in studies [21-29] 

successfully. The convergence of the solutions for FDE system 

is presented by Hosseini and Nasabzadeh [30]. The approach 

of ADM is an analytical continuous approximation that 

converges extremely quickly [31] and displays the 

dependencies, providing a glimpse into the nature and 

behavior of the solution similar to a closed-form solution. This 

computational technique produces analytical results and does 

not require linearization if the problem turns non-linear. 

Moreover, as discretization is not used, there are no rounding-

off errors, and it does not need a lot of computer power or 

memory [29]. 

In the current study, authors have implemented two and 

three-compartmental models for the drug diffusion process. A 

two-compartmental model is explored further with the 

experimentation data of Diclofenac concentration in the 

bloodstream. The authors have analyzed the analytic solution 

obtained from ADM and further demonstrated efficacy and 

accuracy of the model through statistical and sensitivity 

analysis. 

2. PRELIMINARY RESULTS

Podlubny [20] defined Caputo’s fractional derivative as: 
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for 𝑛 − 1 < 𝛼 < 𝑛,  where 𝛼  is an order of the fractional 

derivative, 𝑛 ∈ ℕ and 𝛼 is the lower limit of 𝑡. 
Linearity property of Caputo derivative [20] is given as: 
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where, 𝑝  and 𝑞  are arbitrary constants, 𝜙(𝑡)  and 𝜑(𝑡)  are 

continuous functions. 

Riemann-Liouville left-sided fractional integral of order 

𝛼 > 0 of a function 𝜙(𝑡) is given from [30] as: 
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Also from literature [20, 30], we get: 
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Podlubny [20] presented that Mittag-Leffler function for 

one parameter is defined by: 
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Mittag-Leffler function for two parameters is specified as: 
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Assuming the whole-body immitates as uniform 

compartment, the point of application of the drug is considered 

as the central compartment as shown in Figure 1. In single-

compartment model, the fractional view of first order 

clearance process after intravenous bolus injection described 

by Dokoumetzidis and Macheras [4], drug concentration 𝑦1 of 

drug at time 𝑡 is given by the relation: 

 

1 1 1( ) ( )dD y t k y t = −  (8) 

 

where, 𝑘𝑑1  is a constant of rate elimination from first 

compartment with unit as (ℎ)−𝛼. 

 

 
 

Figure 1. One-compartmental model 

 

In Figure 2, a two-compartment biological system is 

deliberated in subsequence to the application of paravascular 

drug. The second compartment is characterized by the kinetics 

of the drug having movement in the body with the uniformity 

of plasma. Drugs can have local effects in the stomach, but the 

majority of them are circulated throughout the body via the 

bloodstream [28]. Diclofenac, an oral medication, encounters 

a biological barrier in the stomach’s acidic environment, 

denaturing or depurinating the molecules delivered and 

significantly reducing their efficacy [29]. Gastric enzymes like 

pepsin and gelatinase, in addition to stomach acid, can 

decompose biopharmaceuticals. 

Popović et al. [5] presented a system of FDE that is used to 

describe two-compartments as: 

 

1 21 1( ) ( )D y t k y t = −  (9) 

 

2 21 1 02 2( ) ( ) ( )D y t k y t k y t = −  (10) 

 

with initial conditions given by: 

 

1 2(0) , (0) 0y l y= =  (11) 

 

where, 𝑦1 and 𝑦2 are the concentration of drug at time 𝑡 in first 

and second compartments respectively. 𝑘21 is normalized rate 

of drug transfer from compartment 1 to 2 and 𝑘02  is the 

elimination rate of drug. Writing the system (9)-(10) using 

Caputo derivatives is preferred for set initial conditions related 

to the variable as in (11) are accepted by an qFDE with Caputo 

derivatives, unlike R-L derivatives, which requires initial 

conditions on the variable's derivative which is incompatible 

to the existing scenerio. Caputo derivative of a constant is 

always zero, whereas in R-L derivatives, 0𝐷𝑡
𝛼𝐶 =

𝐶𝑡−𝛼

𝛤(1−𝛼)
 is not 

zero [20]. 

 

 
 

Figure 2. Bi-compartmental model 

 

Hosseini and Nasabzadeh [30] have presented ADM on the 

FDE system in the form of: 

 

𝐷𝛼𝑗𝑦𝑗(𝑡) = 𝑁𝑖(𝑡, 𝑦1 , ⋯ , 𝑦𝑛),  

  ( ) (0)m j

j my c= , 

0 ≤ 𝑚 ≤ [𝛼𝑗] 

(12) 

 

where, 1 ≤ 𝑗 ≤ 𝑛, 𝛼𝑗 ∈ ℝ+ 

 

The solution for (12) is represented by the series: 
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where, 𝑦𝑗0(𝑡) = ∑ 𝑐𝑚
𝑗[𝛼𝑗]

𝑚=0

𝑡𝑚

𝑚!
 and 𝑦𝑗,𝑘+1(𝑡) = 𝐼

𝛼𝑗[𝐴𝑗𝑘] for all 

values k=0,1,2,... 
Also 
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where, 𝐴𝑗𝑘 are Adomian polynomials. 
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In the study carried by Odibat [32] stated the theorem for 

stability of commensurate FDE concluding the components of 

the solution decay towards zero. 

 

Theorem 1 The system 𝐷𝛼𝑦 = 𝐴𝑦 is asymptotically stable 

if and only if | 𝑎𝑟𝑔( 𝑒𝑖𝑔(𝐴))| >
𝛼𝜋

2
, where 𝒚 =

(𝑦1, 𝑦2, ⋯ , 𝑦𝑛) [32]. 

It may be noted that the eigenvalues of the matrix defined 

by Eberly [33] proves physical stability of the linear system. 

Every solution of the system 𝐷𝛼𝑦 = 𝐴𝑦  is stable 

asymptotically, if real part of all the eigenvalues of the given 

matrix are negative [34]. Thus for negative real part 

| 𝑎𝑟𝑔( 𝑒𝑖𝑔( 𝐴))| >
𝜋

2
 and for 0<α<2,| 𝑎𝑟𝑔( 𝑒𝑖𝑔(𝐴))| >

𝛼𝜋

2
. 

 

 

3. MAIN RESULTS OF FDE 

 

This section focusses on drug level modelling. The 

observations from experimental data [5] indicate that the 

concentration in delayed release drugs occur after a certain 

delay. The ADM method elaborated by Jafari and Daftardar-

Gejji [28] is re-structured by considering new set of initial 

conditions. 

A non-linear FDE with initial condition is represented as: 

 

𝐷𝛼𝑗𝑦𝑗(𝑡) = 𝑁𝑖(𝑡, 𝑦1, ⋯ , 𝑦𝑛), 𝑦𝑗
(𝑚)
(𝑏) = 𝑐𝑚

𝑗
, 0 ≤ 𝑚 ≤ [𝛼𝑗] (15) 

 

where, 1 ≤ 𝑗 ≤ 𝑛, 𝛼𝑗 ∈ ℝ+. 

Applying 𝐼𝛼𝑗 on (15), we obtain: 

 

𝑦𝑗(𝑡) = ∑ 𝑐𝑚
𝑗

[𝛼𝑗]

𝑚=0

(𝑡 − 𝑏)𝑚

𝑚!
+ 𝐼𝛼𝑗𝑁𝑗(𝑡, 𝑦1, 𝑦2, ⋯ , 𝑦𝑛) (16) 

 

for 𝑗 = 1,2,⋯ , 𝑛. 

Let 𝑦𝑗(𝑡), 𝑁𝑗(𝑡, 𝑦1 , 𝑦2, ⋯ , 𝑦𝑛) as described in (13) and (14). 

For determining 𝐴𝑗𝑘, (14) can be written as: 
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where, 𝜇 is the parameter. 

From (17), we obtain: 
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and representing: 
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(20) 

Thus, the solution of (15) system turns out to be a series as 

shown in (13). 

Once drug is injected, (8) describes drug disposition in the 

body, distribution throughout the compartment (body) and 

elimination either by kidney or metabolism in liver. 

After certain time lag (𝑡𝑙), drug concentration increases as 

indicated in (21), as the process of absorption does not start 

right away in all the subjects. The FDE single-compartment 

model (8) with modified initial condition (21) is solved using 

ADM: 

 

( )1 ly t l=  (21) 

 

To solve (8) and (21) using ADM, consider: 
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Adomian polynomials, using (18) are calculated as follows: 

 

i d 1 iA =-k  c .  (23) 

 

According to Eqs. (19) and (20), 
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Evaluating (24), we get: 
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Considering the values of Eq. (25), we obtain the solution 

of Caputo FDE as: 
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The relation (26) can be represented as: 

 

( )( )1 1d ly lE k t t


= − −  (27) 

 

drug concentration in the human body at 𝑡. 
A study on two-compartmental model is further analysed 

based on analytic way using ADM and used to assess the 

pharmacokinetics of Diclofenac in a small sample of healthy 

persons participating in a bioequivalence trial. The enteric 

coated delayed release drug, Diclofenac delays the release of 

the drug's active ingredients after administration. This 

mathematical representation with parts of human body, 

signified by compartments give an insight into 

pharmacological kinetic properties. Drug applied in first 

compartment (𝑦1), passing through interconnected organs and 

tissues in series of compartmental arrangement. The region in 

the body, where the drug kinetics is uniform like plasma, is 

regarded as the second compartment (𝑦2) . Both the 

compartments can be expressed by the system of FDE (9)-(10) 

with initial conditions (28). The dose given to all subjects is 

same but the volume of compartment differs in every subject 

thus the initial concentration ‘𝑙’ is treated as the parameter. 

Experimental data shows that the absorption/release of the 
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drug starts not immediately but after certain delay which is 

again not common in all the subjects. Thus to maintain 

individuality the initial time is not considered as zero but a 

parameter 𝑡𝑙. 
 

( ) ( )1 2, 0l ly t l y t= =  (28) 

 

Let 𝑦1 and 𝑁1 be as considered in (22) with 𝑑 = 2. 
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Adomian polynomials are calculated as (23) for 𝑦1. For 𝑦2 

using (18) and initial conditions (28), it is as follows: 

 

0 21B k l= ; 
21 02 , .i i iB k c k d i= −   (30) 

 

Solution for 𝑦1 is given as (27) with 𝑑 = 2. According to 

(19) and (20), 
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(34) 

 

and so on till 𝑑𝑛. 

Combining (32)-(34) in particular for 𝛼 = 𝛽, the solution is 

shown in (35), 
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(35) 

 

The closed form of the solution is obtained as  

 

𝑦2 =
𝑘21𝑙

𝑘21 − 𝑘02
 

[𝐸𝛼(−𝑘02(𝑡 − 𝑡𝑙)
𝛼) − 𝐸𝛼(−𝑘21(𝑡 − 𝑡𝑙)

𝛼)] 
(36) 

 

provides the instantaneous estimate of Diclofenac 

concentration in second compartment (𝑦2) through solution of 

the compartmental model. Solution of two-compartmental 

model (36) is investigated further for the parameters such as 

integer order of the differential, rate of transfer, rate of 

elimination and time delay using software Mathematica 13.0. 

The essential factors such as loading capacity and release rate 

can be analysed using Table 1 parameters. 

In Figure 3, the smooth curve shows the Diclofenac 

concentration-time profile as a result of (36) and dots shows 

the experimental data points from Popović’s research [5]. 
 

Table 1. Parameters estimation for (36) 
 

Sub α k₂₁ k₀₂ l(mg/ltr) tl (h) MSE 

1 0.95 (0.0147) 2.83 (6.5115) 2.59 (5.905) 9.79 (0.302) 1.42 (0.00645) 0.11049 

2 0.936 (0.0197) 2.14 (4.726) 1.88 (3.986) 17.15 (0.545) 1.46 (0.00659) 0.04823 

3 1.17 (0.0497)  0.31 (1.79) 0.28 (1.635) 6.64 (0.536) 1.9 (0.134) 0.1649 

4 0.97 (0.059) 0.779 (2.569) 0.63 (2.022) 11.04 (0.8288) 1.42 (0.06265) 0.29198 

5 1 (0.0001) 0.36 (1.657) 0.325 (1.502) 7.48 (0.389) 2.17 (0.07198) 0.05823 

6 0.95 (0.0438) 1.037 (1.188) 0.676 (0.726) 7.94 (0.409) 0.99 (0.033) 0.11 

Mean±SD 0.996±0.088 1.24±1.02 1.06±0.948 10.0067±3.85 1.56±0.415   
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Figure 3. Plots of Diclofenac concentration verses time 

(hours) for subjects 1-6 

 

 
 

Figure 4. Concentration level over time for varying 𝛼-values 

 

Assuming parameters estimated from the data-fit as 

constant, in Figure 4, it is observed that the drop in 

concentration increases gradually with the fractional order 

value approaching the first order, for varying values of 𝛼 

ranging from 0 to 1. 

In three-compartment model, plasma (𝑔1) is considered to 

be first compartment, highly (𝑔2) and scarcely (𝑔3) perfused 

organs and tissues are considered to be the peripheral 

compartments. 

 

1 21 1

2 21 1 32 2

3 32 2 03 3

D g k g

D g k g k g

D g k g k g







= −


= − 
= − 

 (37) 

 

with initial conditions 

 

1 2 3(0) , (0) 0, (0) 0g l g g= = =  (38) 

 

Let 𝑔1, 𝑔2 be as considered in (22) and (29) respectively: 

𝑔3 = ∑ 𝑒𝑖
∞
𝑖=0 , 

𝑁1 = −𝑘21𝑔1 = ∑ 𝐴𝑖
∞
𝑖=0 , 𝑁2 = 𝑘21𝑔1 − 𝑘32𝑔2 = ∑ 𝐵𝑖

∞
𝑖=0 , 

𝑁3 = 𝑘32𝑔2 − 𝑘03𝑔3 = ∑ 𝐶𝑖
∞
𝑖=0 . 

 

Adomian polynomials are calculated as (23) for 𝑦1 and (30) 

for 𝑦2 . For 𝑦3  using (18) and initial condition (38), it is as 

follows: 

 

0

32 03
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, .i i i

C

C k d k e i

= 


= −  
 (39) 

 

Solution for 𝑦1  is given as (27) with 𝑑 = 2  whereas 

solution for 𝑦2 is given as (36) with change as 𝑘02 = 𝑘32. 

According to (19) and (20), 𝑒0 = 0  and 𝑒𝑖+1 = 𝐼
𝛾𝐶𝑖 ,  𝑖 ∈

{0} ∪ ℕ. 𝑒𝑖’s are evaluated as: 

 

𝑒1 = 𝐼
𝛾𝐶0 = 0; 

𝑒2 = 𝐼
𝛾𝐶1 = 𝑘21𝑘32

𝑙𝑡𝛽+𝛾

𝛤(1+𝛽+𝛾)
. 

𝑒3 = 𝐼
𝛾𝐶2 = −𝑘21

2 𝑘32
𝑙𝑡𝛼+𝛽+𝛾

𝛤(1 + 𝛼 + 𝛽 + 𝛾)

− 𝑘21𝑘32
2

𝑙𝑡2𝛽+𝛾

𝛤(1 + 2𝛽 + 𝛾)

− 𝑘21𝑘32𝑘03
𝑙𝑡𝛽+2𝛾

𝛤(1 + 𝛽 + 2𝛾)
 

𝑒4 = 𝐼
𝛾𝐶3 = 𝑘21

3 𝑘32𝑙
𝑡2𝛼+𝛽+𝛾

𝛤(1 + 2𝛼 + 𝛽 + 𝛾)

+ 𝑘21
2 𝑘32

2 𝑙
𝑡𝛼+2𝛽+𝛾

𝛤(1 + 𝛼 + 2𝛽 + 𝛾)

+ 𝑘21𝑘32
3 𝑙

𝑡3𝛽+𝛾

𝛤(1 + 3𝛽 + 𝛾)

+ 𝑘21
2 𝑘32𝑘03𝑙

𝑡𝛼+𝛽+2𝛾

𝛤(1 + 𝛼 + 𝛽 + 2𝛾)

+ 𝑘21𝑘32
2 𝑘03𝑙

𝑡2𝛽+2𝛾

𝛤(1 + 2𝛽 + 2𝛾)

+ 𝑘21𝑘32𝑘03
2 𝑙

𝑡𝛽+3𝛾

𝛤(1 + 𝛽 + 3𝛾)
 

 

and so on till 𝑒𝑛, which are combined to get the solution for 

𝛼 = 𝛽, 

 

𝑔3 = 𝑘21𝑘32𝑙

(

 
 
 
 

𝑡2𝛼

𝛤(1 + 2𝛼)
−

𝑘21𝑡
3𝛼

𝛤(1 + 3𝛼)
−

𝑘32𝑡
3𝛼

𝛤(1 + 3𝛼)
−

𝑘03𝑡
3𝛼

𝛤(1 + 3𝛼)

+
𝑘21
2 𝑡4𝛼

𝛤(1 + 4𝛼)
+
𝑘21𝑘32𝑡

4𝛼

𝛤(1 + 4𝛼)
+

𝑘32
2 𝑡4𝛼

𝛤(1 + 4𝛼)
+
𝑘21𝑘03𝑡

4𝛼

𝛤(1 + 4𝛼)

+
𝑘32𝑘03𝑡

4𝛼

𝛤(1 + 4𝛼)
+

𝑘03
2 𝑡4𝛼

𝛤(1 + 4𝛼)
+⋯

)

 
 
 
 

 (40) 

 

The closed form of (40) can be written as: 

 

𝑔3 = 𝑘21𝑘32𝑙

(

 
 

1

𝑘32 − 𝑘21
𝐸𝛼(−𝑘21𝑡

𝛼) +
1

(𝑘32 − 𝑘21)(𝑘32 − 𝑘03)
𝐸𝛼(−𝑘32𝑡

𝛼)

+
1

(𝑘03 − 𝑘21)(𝑘03 − 𝑘32)
𝐸𝛼(−𝑘03𝑡

𝛼)
)

 
 
 (41) 

 

The drug concentration in the third compartment is given by 

(41). 

Using ADM technique in this context, provides a 

convergent series solution to the FDE system (8), (9), (10) and 

(37) with the initial conditions (21), (28) and (38) respectively. 

The solution is a convergent series with readily quantifiable 

constituents, which is further written in the closed form (exact 

solution) analogous to (27), (36) and (41). 
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4. STATISTICAL ANALYSIS 

 
In this section, regression analysis is performed using 

Mathematica to understand significance of each parameter in 

the regression model. Tables 2-7 suggest that the parameters 

𝛼, 𝑙 and 𝒕𝑙 are significant predictors in the model, as they have 

high t-statistic and low p-value for all the six subjects. The 

lower values of MSE in Table 1, shows the approximations of 

predicted values to that of the actual values. It may be observed 

through the Tables 2-7, R2 (R-squared) value tending to 1, 

displays higher percentage of the variance in the dependent 

variable which may be predictable from the independent 

variables considered in the model. 

Further the model is validated through the t-test on the 

residuals considering null-hypothesis as the mean of the 

residuals which is zero. The mod of t-value is compared with 

the t-table for the value at 95% LOS and ‘n minus parameters’ 

degree of freedom. Thus, the combination of these tests 

verifies the goodness-of-fit for the considered model with the 

experimental data. 
 

Table 2. Regression analysis for Subject 1 
 

Sub 1 t-Stats p-Value Confidence Interval R2 t-Test on Residual 

α 64.7502 5.50597*10-11 
{0.91715, 

0.98667} 

0.991593 0.161552 

k₂₁ 0.434075 0.682326 {-13.9121, 19.5651} 

k₀₂ 0.438997 0.678986 {-12.5883, 17.7734} 

l 32.42 6.87249*10-9 
{9.07788, 

10.5063} 

tl 221.01 1.02493*10-14 
{1.41089, 

1.44141} 

 

Table 3. Regression analysis for Subject 2 
 

Sub 2 t-Stats p-Value Confidence Interval R2 t-Test on Residual 

α 47.4197 4.8514*10-10 {0.889826, 0.983227} 

0.989459 -0.542947 

k₂₁ 0.453952 0.668888 {-10.0041, 14.2952} 

k₀₂ 0.471766 0.656963 {-8.36727, 12.1288} 

l 31.4566 8.47752*10-9 {15.862, 18.4406} 

tl 222.411 9.80598*10-15 {1.45031, 1.48148} 
 

Table 4. Regression analysis for Subject 3 
 

Sub 3 t-Stats p-Value Confidence Interval R2 t-Test on Residual 

α 23.5564 3.84049*10-7 {1.04918, 1.29242} 

0.877688 0.318133 

k₂₁ 0.176775 0.868275 {-1.9157, 2.5487} 

k₀₂ 0.177034 0.868085 {-1.59249, 2.12138} 

l 12.3879 0.000016888 {5.32904, 7.95246} 

tl 13.4589 0.0000104252 {1.47856, 2.13565} 

 

Table 5. Regression analysis for Subject 4 
 

Sub 4 t-Stats p-Value Confidence Interval R2 t-Test on Residual 

α 16.3862 1.93856*10-7 {0.835407, 1.10905} 

0.902456 -0.257336 

k₂₁ 0.303402 0.771829 {-5.50843, 7.06781} 

k₀₂ 0.313406 0.764581 {-4.31482, 5.58249} 

l 13.3227 9.62803*10-7 {9.13112, 12.9538} 

tl 22.7836 1.45992*10-8 {1.28304, 1.57201} 

 

Table 6. Regression analysis for Subject 5 
 

Sub 5 t-Stats p-Value Confidence Interval R2 t-Test on Residual 

α 9.56027*10^8 3.61813*10-61 {1., 1.} 

0.944988 -0.242391 

k₂₁ 0.216063 0.837477 {-3.9026, 4.61884} 

k₀₂ 0.215559 0.837849 {-3.53893, 4.18678} 

l 19.2113 2.57919*10-7 {6.56332, 8.4058} 

tl 30.2153 1.12166*10-8 {2.00496, 2.34542} 
 

Table 7. Regression analysis for Subject 6 
 

Sub 6 t-Stats p-Value Confidence Interval R2 t-Test on Residual 

α 21.7497 4.32822*10-9 {0.854387, 1.05275} 

0.945409 0.0420123 

k₂₁ 0.87268 0.41177 {-1.77269, 3.84648} 

k₀₂ 0.930133 0.383258 {-1.04251, 2.39444} 

l 19.3927 1.19152*10-8 {7.01581, 8.86874} 

tl 30.0038 2.48087*10-10 {0.916361, 1.06581} 
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As the parameters 𝛼 , 𝑙  and 𝑡𝑙  display to be significant 

predictors of the model, authors have included a sensitivity 

analysis on these parameters to understand their impact on the 

drug concentration profile. 
 

 
 

(a) 

 

 
 

(b) 

 
 

(c) 

 

Figure 5. The impact of 𝛼,𝑙 and 𝑡𝑙 on the drug concentration 

for Subject 1 

 

The concentration in the second compartment rises quickly 

for all values of 𝛼 as observed in Figure 5 (a), but it falls down 

slowly as the 𝛼  value decreases, while keeping all other 

parameters fixed. As initial amount of drug in the first 

compartment at time 𝑡𝑙 decreases, the AUC of drug profile in 

the second compartment reduces. Understanding how drugs 

disseminate throughout the body and how dosage adjustments/ 

initial doses may influence the drug's concentration in various 

tissues over time are dependent as seen in Figure 5 (b). With 

the varying value of 𝑡𝑙, the AUC remains unchanged and only 

the time-concentration curve translates along the time-axis, 

Figure 5 (c). Similar analysis is illustrated for the remaining 

subjects as mentioned in the ‘Annexure’ at the concluding text. 

The present situation demonstrates the significance of 

comprehending the interactions between pharmacokinetic 

factors in order to preserve the intended level of drug exposure 

in the context of variations in individual parameters. 

Modifications in dosage may account for variations in 

distribution, clearance, or elimination to attain the expected 

therapeutic result. 

The analysis on stability, existence and uniqueness is 

explored in the next sections. 

 

 

5. STABILITY 

 

In this study, a fractional differential system (9)-(10) and 

(28) for prediction of concentration of Diclofenac in body is 

investigated. To examine the sensitivity of FDE, stability 

analysis proves to be a useful tool in improving the 

performance prediction ensuring an appropriate application of 

model [35]. A stable model (36) of differential equation in 

physical problem, supports decision making in drug 

manufacturing. The methodology for assessment of stability 

for commensurate and non-commensurate FDE is discussed 

by Odibat [32]. Using values in Table 1 for subjects 1-6 with 

respective initial conditions, solution components of the 

system (9)-(10) and (28) with 𝛼 = 𝛽 for different subjects are 

analysed considering 𝑐1  and 𝑐2  as arbitrary constants and 

𝒚(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡)). 
 

Subject 1: 
 

𝒚(𝑡) = 𝑐1 (
0.0845023
−0.996423

)𝐸𝛼(−2.83𝑡
𝛼) + 𝑐2 (

0
1
)𝐸𝛼(−2.59𝑡

𝛼) 

with 
1 118.577c = ,

2 118.153c =  
(42) 

 

Subject 2: 
 

𝒚(𝑡) = 𝑐1 (
0.120608
−0.9927

)𝐸𝛼(−2.14𝑡
𝛼) + 𝑐2 (

0
1
)𝐸𝛼(−1.88𝑡

𝛼) 

with 
1 139.866c = ,

2 138.845c =  
(43) 

 

Subject 3: 
 

𝒚(𝑡) = 𝑐1 (
0.0963242
−0.99535

)𝐸𝛼(−0.31𝑡
𝛼) + 𝑐2 (

0
1
)𝐸𝛼(−0.28𝑡

𝛼) 

with 
1 77.0173c = ,

2 76.6592c =  
(44) 

 

Subject 4: 
 

𝒚(𝑡) = 𝑐1 (
0.187865
−0.982195

)𝐸𝛼(−0.779𝑡
𝛼) + 𝑐2 (

0
1
)𝐸𝛼(−0.63𝑡

𝛼) 

with 
1 60.0697c = ,

2 59c =  
(45) 

 

Subject 5: 
 

𝒚(𝑡) = 𝑐1 (
0.096766
−0.995307

)𝐸𝛼(−0.36𝑡
𝛼) + 𝑐2 (

0
1
)𝐸𝛼(−0.325𝑡

𝛼) 

with 
1 77.1655c = ,

2 76.8034c =  
(46) 

 

Subject 6: 
 

𝒚(𝑡) = 𝑐1 (
0.328768
−0.944411

)𝐸𝛼(−1.037𝑡
𝛼) + 𝑐2 (

0
1
)𝐸𝛼(−0.676𝑡

𝛼) 

with 
1 24.1508c = ,

2 22.8083c =  
(47) 
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Figure 6. Component-wise solution verses time (hours) for 

Subjects 1-6 
 

Values of 𝑐1  and 𝑐2  for (42)-(47) are evaluated and 

presented using Mathematica 13.0. For the initial value FDE 

(9)-(10) with initial conditions (28), Figure 6 shows the 

solution components (𝑦1(𝑡), 𝑦2(𝑡))  approaches to zero as 𝑡 

increases. Moreover, the condition | 𝑎𝑟𝑔( 𝑒𝑖𝑔(𝐴))| >
𝛼𝜋

2
 

satisfies for all the subjects. Thus, the system (9)-(10) with 

initial conditions (28) is stable. One observes that the material 

is transferred from one-compartment to another over a period 

of time, the model remains stable. 
 

 

6. EXISTENCE AND UNIQUENESS 
 

As seen in this study, two-compartmental FDE (9)-(10) with 

initial condition (28) have been solved using ADM and results 

for the stability are analysed. Further, the uniqueness and 

existence of the solution is explored using Picard-Lindelöf 

theorem [11, 36]. The model is said to be the best if it predicts 

a single solution providing useful inference [37]. Having a 

unique solution in the context of the current work is essential 

to eliminate the possibility of obtaining multiple drug 

concentration values for the same time 𝑡. 
 

Theorem 2. Let 𝜙(𝑡, 𝒚): 𝑉 → ℝ2  be bounded function, 

where, 
 

( ) ( )*

1 1 1 1, ,l l lV t y t r y t r =  − +     

( ) ( )2 2 2 2, ,l ly t r y t r − +    

* 0lt   , 1 2, 0r r  . 
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If 𝜙(𝑡, 𝒚) satisfies Lipschitz condition with respect to 𝒚 =
(𝑦1, 𝑦2) i.e., 

 

‖𝜙(𝑡, 𝒚) − 𝜙(𝑡, 𝒛)‖ ≤ 𝐿‖𝒚 − 𝒛‖ (48) 
 

for all (𝑡, 𝒚) and (𝑡, 𝒛) in V and for some 𝐿 ≥ 0 then the initial 

value problem 𝐷𝛼𝒚 = 𝜙(𝑡, 𝒚),𝒚(𝑡𝑙) = 𝒚0, 0 < 𝛼 < 1 has an 

unique solution 𝒚(𝑡): [𝑡𝑙 , 𝜏] → ℝ2  where 𝜏 − 𝑡𝑙 = 𝑚𝑖𝑛 [𝜏
∗ −

𝑡𝑙 , (
𝑟𝛤(𝛼+1)

‖𝜙‖
)
1/𝛼
], 𝑟 = 𝑚𝑖𝑛{𝑟1, 𝑟2}. 

 

Proof. FDE given by systems (9)-(10) can be expressed for 

𝛼 = 𝛽 as: 
 

1 121

21 02 22

0D y yk

k k yD y





− 
= 


   
   

 
 

− 

 (49) 

 

with initial conditions as (28). 

 

( )12 1 2 12 1 02 20 ,  ( , ).D y Ay k y y k y k y t = = − + − = y  (50) 

 

Using the norm defined as ‖𝜙‖ = sup |𝜙𝑖 ∣, thus, 

 

 1 1 2 2sup ,y z y z− = − −y z  (51) 

 

We observe the value of L can be evaluated in two cases as 

follows: 

Case 1: Suppose ‖𝒚 − 𝒛‖ = |𝑦1 − 𝑧1| from Eq. (51), we get: 

 

( ) ( ), ,t t−y z   

( ) ( ) ( )21 1 1 21 1 1 02 2 2,k y z k y z k y z= − − − − −  

 21 1 1 21 1 1 02 2 2sup ,k y z k y z k y z − − + −  

21 1 1k y z= − L= −y z ; 

 

where, 𝐿 = |𝑘21|. 
One of the possibilities and the conclusion of case-1 may be: 

 

( ) ( ) 21 1 1, ,t t k y z− = −y z   (52) 

 

The second possibility and the conclusion of case-1 may be:  

 

( ) ( ) 21 1 1 02 2 2, ,t t k y z k y z− = − + −y z   

21 1 1 02 1 1k y z k y z − + −

 21 02 1 1k k y z= + − L= −y z  

(53) 

 

where, 𝐿 = |𝑘21| + |𝑘02|. 
Case 2: Suppose ‖𝒚 − 𝒛‖ = |𝑦2 − 𝑧2| from Eq. (51), we get: 

 

( ) ( ), ,t t−y z 

 21 1 1 21 1 1 02 2 2sup ,k y z k y z k y z − − + −  

21 1 1k y z= − 21 2 2k y z − L= −y z ; 

 

where 𝐿 = |𝑘21|. 
One of the possibilities and the conclusion of case-2 is 

observed in Eq. (52). 

The second possibility and the conclusion of case-2 is 

obtained from (53). 

 

( ) ( ), ,t t−y z   

21 1 1 02 2 2k y z k y z= − + −  

21 2 2 02 2 2k y z k y z − + −  

 21 02 2 2k k y z= + − L= −y z ; 

 

where 𝐿 = |𝑘21| + |𝑘02|. 
Finally, we observe inequality (48) holds true for the 

mentioned L. 

Hence the function 𝜙(𝑡, 𝒚)  is Lipschitz continuous. As 

𝜙𝑖(𝑡, 𝒚) is continuous where 𝑖 = 1,2; for 𝜖 > 0, ∃ 𝛿 > 0 such 

that: 

 

( )

( 1)
( , ) ( , )i i

l

t t
t




 



 +
− 

−
y z  

(54) 

 

whenever ‖𝒚 − 𝒛‖ < 𝛿. 

Picard-Lindelöf operator is defined as 𝐹: 𝑌 → 𝑌, where 𝑌 =
{𝒚(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡)), 𝑦𝑖 ∈ 𝐶[𝑡𝑙, 𝜏]: |𝑦𝑖(𝑡) − 𝑦𝑖(𝑡𝑙)| ≤ 𝑟},  as 

presented by Sene and Abdelmalek [38]. 

Clearly, Y is non-empty closed subset of a Banach space 

𝐶([𝑡𝑙 , 𝜏] × [𝑡𝑙, 𝜏]). 
Denote 

 

( )1 2( ) ( ), ( )F F F=y y y  (55) 

 

where,  
 

𝐹𝑖(𝒚(𝑡)) = 𝑦𝑖(𝑡𝑙) +
1

𝛤(𝛼)
∫ (𝑡 − 𝑎)(𝛼−1)
𝑡

𝑡𝑙

𝜙𝑖(𝑎, 𝒚(𝑎))𝑑𝑎. 

 

The following relation is obtained as: 

 

( )( ) lF t t−y y  

( ) ( )( 1)1
( ) ( , ( ))

( ) l

t

l l
t

t t a a a da t 


−= + − −
 y y y  

( 1)1
sup ( ) ( , ( ))

( ) i

t

i
t

t a a a da 


−= −
  y  

1

( 1)1
( ) sup ( , ( ))

( )
i

t
a t t da


 


− −

  y  

( )
( , ) ( , ) ( 1)

( 1) ( 1) ( , )
l

t t r
t r

t

  


  

 +
 − = =
 +  +

y y

y

‖ ‖ ‖ ‖

‖ ‖
. 

 

Hence 

 

( )( ) lF t t r− y y  (56) 

 

Thus inequality (56) concludes that Picard’s operator maps 

Y into itself. 
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( ) ( )F t F t−y z‖ ‖ 

( 1)1
( ) [ ( , ( )) ( , ( ))]

( ) l

t

t
t a a a a a da  


−= − −

  y z  

 ( 1)1
sup ( ) ( , ( )) ( , ( ))

( ) l

t

i i
t

t a a a a a da  


−= − −
  y z  

( 1)1
( ) sup ( , ( )) ( , ( ))

( ) l
i i

t
a t t t t da


  


− − −

  y z  

( )
( )

( 1) 1
.

( 1)
l

l

t
t










 +
 − =

 +−

 

 

Thus 

 

( ) ( )F t F t− y z‖ ‖  (57) 

 

shows that the Picard’s operator is continuous. 

Further to prove that Picard’s operator is Lipschitz 

continuous, the following relation is considered from 

inequality (57). 

 

( ) ( )F t F t−y z‖ ‖ 

( 1)1
( ) sup ( , ( )) ( , ( ))

( ) l
i i

t
a t t t t da


  


− − −

  y z  

1

( 1)1
( ) ( , ) ( , )

( ) t
a t t da


  


− − −

  y z‖ ‖  

( )
1

( , ) ( , )
( 1)

lt t t


  


 − −
 +

y z‖ ‖ 

 

Hence 

 

( ) ( )F t F t−y z‖ ‖ 

( )
1

( , ) ( , )
( 1)

lt t t


  


 − −
 +

y z‖ ‖ (58) 

 

Thus inequality (58) shows that Picard’s operator is 

Lipschitz continuous. By Banach fixed point theorem, the 

solution (36) of FDE (9)-(10) with initial conditions (28) exists 

and is unique. 

 

 

7. DISCUSSION 

 

In the present study authors have demonstrated analytic 

solution of drug diffusion non-commensurate model for 

Diclofenac (9)-(10) with initial conditions (28) using ADM. 

As claimed, the results of the current study incorporate all α, 

greater than, less than or equal to 1. The linear two-

compartmental FDE results (estimated parameters) suits best 

(gives less Mean square error and high R2 value) to the 

experimental dataset of Diclofenac. 

The loss of standard error while estimating the five 

parameters was faced while using Mathematica 13.0 which has 

been overcome by fixing two parameters considering the least 

MSE, and the remaining parameters were estimated. While 

finding standard error for the fixed parameters, other estimated 

parameters were used in the same build-in symbol, keeping 

previously assigned fixed parameters unknowns. 

Significant fluctuations in drug concentration can lead to 

harmful issues like toxicity or inefficient treatment. Control 

rate as in Table 1, enhances accurate dosing, adequacy and 

health stability while regulating desired drug concentration. 

The transition rates are complex functions of time and the 

contents of various compartment levels. Solutions (36) and 

(41) of compartment models (8), (9), (10) with initial 

conditions (28) and (37) are the combination of Mittag-Leffler 

functions of 𝑡 whose special case is exponential function. The 

appropriate fits in pharmacokinetics can also be dealt with 

non-linear FDE. In further studies, non-linear compartmental 

FDE can be discussed to represent the ADME process. 

 

 

8. CONCLUSIONS 

 

Multi-compartmental fractional models for drug absorption 

and disposition in PK/PD are solved using ADM. Using 

analytic method ADM, a closed solution to non-commensurate 

FDE models are obtained in the study. Non-linear regression 

is used for parameter estimation. Stability, existence and 

uniqueness for two-compartment model is exploited in the 

present study. The regression model is further validated 

statistically so that the mathematical model for drug diffusion 

in this context, forms a tool to comprehend the elements of 

bio-transport processes. Also ADM demonstrates its 

effectiveness in solving FDE, both linear and non-linear, with 

reasonable computation and accuracy. In the concluding 

section, the authors illustration through analytic model is 

robust than the previous studies as mentioned by convolution 

form, assuring enhancement of drug delivery system. 
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NOMENCLATURE 

 

t time in h 

𝜙(𝑛) 𝑛𝑡ℎorder derivative of the function 

ℕ set of natural numbers 

𝐸𝛼(𝑧) Mittag-Leffler function of 𝑧 with order 𝛼 

𝑘𝑖𝑗 transfer rate of drug from 𝑗th  compartment to 

𝑗th compartment 

𝑘0𝑗 elimination Rate of drug from 𝑗th compartment 

[] greatest integer not greater than 

! factorial 

𝑒𝑖𝑔( 𝐴) eigenvalues of matrix 𝐴 

𝒕𝑙 time lag 

MSE mean square error 

ℝ2 set of order pairs with real elements 

|| || norm of the function in a normed space 

Sup supremum 

 

Greek symbols 

 

𝛼, 𝛽 non-integer order 

𝛤 Gamma function 

∑ summation 

 

 

APPENDIX 

 

The continuation of statistical analysis of the subjects 2-6 

with parameters 𝛼, 𝑙  and 𝑡𝑙  based on sensitivity analysis for 

the drug concentration profile is presented: 

 

Subject 2 

 

 

 

 
 

Subject 3 

 

 

 

 
 

Subject 4: 
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