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Ensuring precise estimation of creep characteristics is critical for the efficient design of 

structures prone to creep deformation. Creep is an indicator of permanent and gradual 

deformation that transpires within a material when it is continuously subjected to a 

burden for an extended duration. In addition to the temperature and duration of load 

application, the degree of creep in concrete is also affected by the material's inherent 

properties and the length of time it has been exposed to the load. The enduring 

consequences of creep might result in significant distortions that give rise to structural 

deficiencies inside the edifice. Multiple factors, including the concrete's mixing ratios 

and compressive strength, affect the initial hardening of the material. The data 

pertaining to the early creep behaviour of high-strength concrete were gathered from 

relevant literature sources for the purposes of this study. The research utilised artificial 

neural network methodology and relative importance analysis to ascertain the most 

influential parameters on the early creep behaviour of high-strength concrete. 

Understanding the components that contribute to creep is crucial in mitigating the 

detrimental effects of creep on concrete and concrete structures. 
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1. INTRODUCTION

The objective of this study is to ascertain, by employing 

artificial neural network (ANN) models, the pivotal factors 

that significantly influence the creep behaviour of high 

strength concrete at an early age [1]. ANN, which is classified 

as a type of artificial intelligence, determines the correlation 

between the mean value of a particular variable (e.g., output) 

and the corresponding values of other variables through the 

use of regression analysis [2]. This approach allows for the 

inclusion of multiple variables as inputs to generate a single 

output or variable. The aim of this research is to investigate the 

diverse factors that impact the initial creep characteristics of 

high-strength concrete. This will be achieved by gathering 

relevant information from existing literature sources [3], 

employing artificial neural networks as a computational tool, 

and conducting a relative importance analysis. 

During the early phases following the casting procedure, the 

volume of the concrete is subject to changes due to various 

environmental influences, including temperature variations, 

applied stresses, and the drying process [4, 5]. The 

aforementioned alterations exhibit effectiveness in the early 

phases of the concrete's lifespan. The influence of creep on the 

resistance of concrete to cracking is substantial, as it 

efficiently reduces pressure and, consequently, the probability 

of early-age cracking in concrete structures. The occurrence of 

cracking at a young age has the potential to compromise the 

structural integrity of many materials [6]. Over time, the 

presence of cracks can facilitate the ingress of hostile 

substances, hence expediting degrading processes such as 

corrosion, for instance, through carbonation. The structural 

integrity of the building is compromised, leading to a decrease 

in its durability [7]. Consequently, substantial financial 

resources may be necessary to do the necessary renovations 

and restore the damaged structure. Furthermore, the act of 

cracking also serves to amplify the occurrence of leakage, so 

potentially diminishing the overall effectiveness or efficiency. 

The topic under consideration is the serviceability of various 

structures, such as the containment vessel in a nuclear power 

plant and petrol tanks, among others. Additionally, the 

presence of weak areas can give rise to the potential for re-

tearing if subjected to unintentional loading [8]. The 

investigation of the effects of coarse aggregate 

montmorillonite clay content on a range of mechanical 

properties, including the shrinkage and creep characteristics of 

early-aged concrete [9]. The present inquiry was conducted 

utilising an extensive array of experimental methodologies. 

The potential cause for the observed decrease in mechanical 

properties, along with the observed increases in shrinkage and 

creep, is the degradation of the interface transition zone 

resulting from the coarse aggregate's adhesion to 

montmorillonite clay. The inquiry undertaken in the research 

paper was centred on the empirical examination of tensile 

creep [10]. The early phases of the development process of 

high-performance concrete (HPC) incorporating mineral 

admixtures are investigated in this study [11, 12]. In the 

preliminary phases of examining high-performance concrete 

(HPC) containing mineral admixtures, a notable fundamental 
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tensile creep rate was observed within the initial twenty hours 

of loading [13]. Following that, this rate of encroachment 

exhibited a gradual decline and approached a critical value. 

High strength concrete (HSC) possesses a notable capacity for 

resisting compressive forces and exhibits a larger modulus of 

elasticity, hence endowing it with the ability to endure greater 

loads [14]. When the force generated by the loads is exerted 

against the system When concrete is subjected to external 

forces, it experiences strain. The initial strain exhibits elastic 

behaviour, characterised by its ability to return to its original 

state upon removal of applied stresses. The cumulative strain 

observed in concrete is the result of creep, contraction, and 

elastic strain acting in concert [15]. The phenomenon of creep 

in high strength concrete is accountable for the occurrence of 

cracking and deflection, albeit without a definitive impact on 

the structural integrity [16]. Consequently, comprehending the 

various components that influence creep in high strength 

concrete holds significant importance. The significance of 

implementing The Human Systems Compatibility (HSC) 

framework exhibited variation among the heterogeneous 

group of collaborators engaged in the innovative endeavours 

[17]. The principal factors that held the greatest significance 

for the proprietor were an elongated lifespan of the structures, 

reduced concrete quantities and expenses, a compressed 

construction period, and improved comfort and luxury in tall 

edifices via the alleviation of wavering [18]. When it comes to 

developing a visually enticing and effective design, colour 

selection is critical. The colour scheme can significantly 

influence the message and overall aesthetic of a design. Hence, 

it was determined that the improvement of specific attributes, 

including compressive strength, E-modulus, durability, and 

accelerated ultimate creep, in addition to the decrease in dead 

load, were of considerable importance [19]. Significant 

considerations for the contractor included cost-effective 

solutions and expedited construction. With respect to the 

concrete manufacturer, the implementation of sophisticated 

technological approaches during production has resulted in 

heightened profitability and market penetration, as well as 

advantageous consequences for traditional manufacturing 

processes [20]. Furthermore, considering the environmental 

perspective, the conservation of cement and aggregate 

resources, as well as the extended lifespan of the materials, 

have made notable contributions towards achieving a more 

sustainable form of development [21].  
 

 

2. ARTIFICIAL NEURAL NETWORKS 
 

A domain within computer science and artificial 

intelligence, artificial neural networks are specifically 

engineered to emulate the complex operations of a fully 

developed human brain. These systems possess the ability to 

store and retrieve data, enabling them to tackle intricate 

information and acquire knowledge through experiential 

learning. The system incorporates a symbolic approach to do 

intelligent computations and employs soft computing 

techniques for data processing. The field of civil engineering 

offers a diverse array of advantages and has garnered 

significant attention as a subject of scholarly investigation [22]. 

A multitude of studies concerning the application of neural 

networks in the domains of civil and structural engineering 

have revealed that the multilayer feed-forward neural network 

architecture is commonly utilised due to its efficient capacity 

for generalization [23]. Numerous authors have depicted the 

organisation and composition The functioning of artificial 

neural networks (ANNs) has been extensively studied [24]. A 

common configuration of artificial neural networks (ANNs) 

comprises many processing elements (Pes), also known as 

nodes, frequently organised in strata [25]. Typically, these 

layers consist of an input layer, an output layer, and potentially 

one or more concealed layers (refer to Figure 1). 

 

 
 

Figure 1. Input layer, an output layer in ANNs 

 

 
 

Figure 2. Ever-changing the slope tanö and intercept â of the 

line 

 

 
 

Figure 3. One linear input one linear output 

 

Similar to a number of conventional applied mathematics 

models, ANN modelling attempts to represent the correlation 

between a specified collection of past model inputs and their 

corresponding outputs. To illustrate, let us contemplate a 

dataset comprising a collection of x-values accompanied by 

their corresponding y-values in a two-dimensional coordinate 

system, with y being a function of x. The objective is to locate 

the illusive function f that relates the input variable x to the 

output variable y. The function f can be derived within a 

regression model through the manipulation of the intercept and 

slope tan of the line illustrated in Figure 2. The purpose of this 

adjustment is to reduce the deviation between the predicted 

and actual outputs of the line. An analogous concept is 

implemented in models of artificial neural networks (ANN). 

As illustrated in Figure 3, artificial neural networks are a 

category of regression models distinguished by their singular 

input and output, absence of hidden layer nodes, and linear 

transfer function. The affiliation weight, represented in the 

Artificial Neural Network (ANN) model as w, is comparable 

to the linear regression model's slope, tan∅. In a similar vein, 

the intercept, denoted as β, in the linear regression model is 
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equivalent to the threshold, denoted as θ, in the ANN model. 

By iteratively exposing their weights to samples of input-

output pairs, artificial neural networks (ANNs) attempt to 

minimise a prescribed error function that quantifies the 

discrepancy between the ANN model's predicted desired 

outputs and the historical outputs [22]. 
 

 
 

Figure 4. The distribution of the input values 
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Artificial neural networks (ANNs) possess the ability to 

exhibit a considerable degree of generalisation based on the 

patterns they have been trained on. The process of training 

involves the neural network being exposed to a series of input-

output patterns. The information provided pertains to the 

operation of a multi-layered feed forward neural network 

exclusively in the forward direction. As data progresses, it 

undergoes a straightforward procedure within the neurons and 

along the neural connections. The neural network engages in 

sequential iterations to adjust the weights of each individual 

neuron in order to achieve the desired outputs with a specified 

level of precision. The process of modifying the weights of 

neurons is employed with the aim of minimising the network 

error, which is defined as the measure of the discrepancies 

between the computed output patterns and the desired target 

output patterns. Once the artificial neural network (ANN) has 

undergone sufficient training and testing, it demonstrates the 

ability to extrapolate rules and effectively handle unfamiliar 

input data in order to make predictions within the domain 

defined by the training patterns. The data utilised in this study 

were obtained from the existing literature [26]. A collection of 

342 data points was obtained. The artificial neural network 

(ANN) models were provided with seven parameters as inputs. 

Table 1 shows all the input parameters that have the potential 

to influence the creep properties of concrete. The illustration 

of the input value distribution is presented in Figure 4. As 

adopted by the majority of researchers, the experimental data 

for the artificial neural network model was divided into three 

groups: training data (80%), validation data (10%), and test 

data (10%) [27]. The Levenberg-Marquardt (LM) method, 

which was implemented in this study, belongs to the category 

of conjugate gradient algorithms. In comparison to 

conventional gradient-type algorithms, the LM algorithm is 

among the quickest for training artificial neural networks. 

Prior to utilisation, all input data to the model must be scaled, 

and the predicted output should reflect the unscaled values. 

The input values were scaled between -1 and 1. The process of 

scaling the training datasets was carried out utilising Eq. (1): 
 

𝑦 =
2(𝑥 − 𝑥𝑚𝑎𝑥)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
+ 1 (1) 

 

On the other hand, the periods of 0 and 1 were used for 

scaling the output data. The Eq. (2) used to measure the output 

data: 
 

𝑦 =
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
 (2) 

 

In order to achieve a secure model, various neural network 

architectures were evaluated during model training by 

adjusting the number of neurons in the hidden layer and the 

coefficients of the training function. The log-sigmoid function 

for the output and the tan-sigmoid function for the concealed 

layer were used as activation functions. The architecture of the 

used ANN model is shown in Figure 5. 

 

Table 1. Details of the inputs 

 
 Minimum Maximum Mean Standard Deviation 

Water-cement ratio by weight 0.20 0.30 0.25 0.0409 

Aggregate-cement ratio by weight 2.48 4.88 3.5149 0.7373 

Cement content without additives, in kg/m3 374 665 517.7515 86.5973 

Silica fume content in % of cement weight 5.18 25 11.3325 1.5023 

Age at loading, in days 1 7 4.4561 2.3019 

Temperature, in ℃ 20 90 48.7719 25.3124 

Mean compressive strength of concrete at 28 days of age in MPa 59 118 72.1664 16.6112 

 
 

Figure 5. The architecture of the ANN model 
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The MATLAB software was utilised to generate the code 

for the neural network model described in this study. The 

ultimate trained network was utilised to approximate the 

output. Figure 6 demonstrates a strong positive correlation 

coefficient (R) between the empirical data and the values 

projected by the neural network. This indicated a precise 

correspondence between the results (i.e., for both training and 

test data) and those computed by a linear regression model. 

The histogram in Figure 7 illustrates the distribution of errors 

created by the artificial neural network model. It is evident that 

the errors cluster around zero, indicating the model's 

effectiveness in making accurate predictions. 

Figure 6. Comparison of experimental and predicted creep 

Figure 7. Error histogram for the output 

3. RELATIVE IMPORTANCE ANALYSIS 

(INFLUENCE PARAMETERS IDENTIFICATION) 

One notable benefit of artificial neural networks lies in their 

capacity to do parametric analysis of the inputs through the 

manipulation of link weights. This study employed parametric 

analysis of the artificial neural network to ascertain the relative 

significance of various input parameters. The methodology 

was initially suggested and was subsequently executed [1, 28]. 

This methodology involves the partitioning of the synaptic 

strengths between each hidden neuron in the hidden layer and 

the neuron in the output layer into relative components that are 

in accordance with the input neurons. By adhering to the 

symbolic rule that regulates the weight adjustment process, we 

shall analyse a neural network consisting of K output neurons, 

I input neurons, and J concealed neurons, all of which have 

connection weights. 

The computational procedure for the neural network is 

outlined as follows [1, 28]: 

1. The product of connecting weights

For each hidden neuron in the experiment, the absolute

value of the connection weight between the input and hidden 

layer is multiplied by the absolute value of the connection 

weight between the hidden neuron and the output layer. 

i. Compute the value of Uji for each input variable i.

ii. Determine the products of the connection weights. The

equation can be expressed as Uji=│Wji║Wkj│. 

2. The proportion of items derived from connection weights

i. 

i. To calculate Vji, divide Uji by the total of all the input

parameters for each hidden neuron. The percentage of items of 

connection weight: 

𝑉𝑗𝑖 =
𝑈𝑗𝑖

∑ 𝑈𝑗𝑖I
𝑖=1

(3) 

where, I=number of input neurons. 

3. Sum of percentage of products of connection weights Ci

i. For each input neuron, calculate the summation of Vji to

obtain (Ci). Sum of percentage of products of connection 

weights: 

𝐶𝑖 =∑𝑉𝑗𝑖

𝐽

𝑗=1

 (4) 

where, J=number of hidden neurons. 

4. Relative Importance (RI)i

i. Divide Ci by the sum of Ci for each input neuron and

express in term of percentage to obtain the relative importance 

for each input neuron relative importance: 

(𝑅𝐼)𝑖 =
𝐶𝑖

∑ 𝐶𝑖I
𝐼=1

(5) 

Figure 8. Influence of input factors on the output 

The output of this procedure is depicted in Figure 8, which 

illustrates that the parameters with the greatest impact on early 

age creep for the high strength concrete utilised in the research 

are the aggregate cement ratio (14.78%), silica fume content 
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(16.66%), and duration of test (13.6%). Early-age creep is 

influenced by the compressive strength of concrete by 12.16%, 

whereas the combined impact of cement content and age 

loading is approximately 11.5%. 

 

 

4. CONCLUSIONS 

 

Using literature-derived data, an artificial neural network 

(ANN) approach was used to investigate early age 

encroachment, with the ANN approach employing ANNs. 

Furthermore, an approach called relative importance analysis 

was employed to ascertain the influence of high-strength 

concrete constituents on creep at an early age. The findings 

derived from this inquiry are outlined below: Following an 

examination of the impact of seven variables on the early creep 

characteristics of concrete, it was determined that the 

proportion of silica haze (16.66%) had the greatest influence 

on the creep of high-strength concrete. In comparison to the 

other determinants concerning the creep behaviour of high-

strength concrete, the influence of ambient temperature (8.75 

percent) was found to be comparatively negligible. The 

application of artificial neural networks for predicting early-

age creep in reinforced concrete has been deemed a viable 

approach. However, it is imperative to emphasise that relative 

importance analysis is an exceptionally well-suited technique 

for examining the impact of ambient conditions and concrete 

components on creep in early-age concrete. 
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