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This paper introduces a novel approach to enhancing multi-level security using 

steganography, a method of concealing information within non-secret data. This paper 

introduces an innovative approach to multi-level security enhancement using 

steganography, the art of concealing information within non-obvious data. Our 

proposed method uniquely combines Dynamic Least Significant Bit (DLSB) 

steganography with Wavelet Obtained Weights (WOW) steganographic algorithms, 

forging a sophisticated and adaptable system for secret data embedding. In our 

enhanced approach, we start by embedding text into an image using an optimized 

version of DLSB steganography. This refined technique adapts intelligently to the 

image's local contrast, thereby preserving its visual quality and ensuring the integrity of 

the embedded information. Subsequently, the payload image is merged with a cover 

image through the WOW algorithm. This step optimally selects pixels for data 

embedding, creating a steganographic image that is virtually indistinguishable from the 

original. The novelty of our work lies in the seamless integration of these two advanced 

steganographic techniques, which significantly elevates the security and invisibility 

aspects beyond the current state-of-the-art methods in digital steganography. For 

validation, we utilized a pretrained MobileNet model to differentiate between original 

and stego images. This model plays a crucial role in demonstrating the indetectability 

of our method, achieving an impressive accuracy of 85% in distinguishing stego images 

from their originals. Our rigorous testing across various metrics — including Peak 

Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Bit Error 

Rate (BER), and Mean Squared Error (MSE) — showcases the effectiveness of our 

approach. The results indicate a robust performance, marking a significant advancement 

in secure digital communication. In this paper, we focus primarily on the detailed 

presentation of our results and the significant contributions of our current research, 

setting a strong foundation for future exploration in increasing robustness against 

steganalysis and improving the statistical invisibility of the steganography process. 
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1. INTRODUCTION

The common ease of connectivity made possible by the 

growth of digital communication has significantly increased 

the number of active users. However, when sending data over 

a public network, this convenience presents security issues. 

Digital watermarking and steganography are the two main 

methods that have been used to overcome these issues and 

guarantee data security. 

A pioneering method in this area, digital watermarking, was 

created to protect the transmission of personal data. Digital 

watermarking has been suggested as a number of ways to 

protect communication privacy. Its goal is to secure the 

validity, integrity, and protection of concealed information by 

embedding it into a carrier. 

On the other hand, steganography entails transforming a 

message into a format that is absolutely undetected within the 

carrier. It seeks to maintain the human visual system’s (HVS) 

incapability to detect any concealed information [1]. The terms 

“steganos” (which means covered, veiled, or protected) and 

“graphein” (which means write) are the roots of the phrase 

“steganography” [2]. In contrast to cryptography, which 

scrambles data to change its meaning and quality for 

unauthorized users, steganography primarily focuses on 

hiding the presence of hidden information [3]. Steganography, 

which involves silently concealing information inside media 

carriers such that it is invisible to and undiscovered by the 

human visual system (HVS), is both a science and an art of 
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clandestine communication [1, 4]. The term "steganography" 

has its roots in the Greek words "steganos," meaning 

"covered" or "hidden," and "graphein," which translates to 

"write." Essentially, it refers to the art of secret writing. While 

steganography focuses on concealing the very presence of 

secret information, cryptography, on the other hand, 

transforms data to appear nonsensical to unauthorized viewers. 

Several aspects are taken into account in order to evaluate 

the steganographic techniques’ advantages and disadvantages. 

These characteristics include capacity, security, and 

invisibility. The capacity of a cover object is the maximum 

amount of hidden data that may be stored there without 

materially affecting the quality of the images. Bits per pixel 

(bpp) are commonly used to quantify a steganographic 

technique’s capabilities [5, 6]. Another essential quality is 

security, as a good steganography method should be 

impervious to steganalysis assaults. The attribute connected to 

the image’s quality and transparency is imperceptibility. The 

stego-picture may degrade slightly from the original image 

after hiding the secret data under the cover image, but 

maintaining high quality and transparency is the major 

objective. 

The imperceptibility of the stego-picture is frequently 

assessed using the Peak Signal-to-Noise Ratio (PSNR), with 

higher PSNR values indicating better image quality [7]. 

Data is hidden via steganography within a carrier media, 

such as music, video, or text [7]. Depending on the kind of 

carrier media, many steganography techniques exist, such as 

picture, video, text, and audio steganography [8, 9]. In 

steganography, the carrier medium is referred to as the cover 

object, and the concealed data is referred to as the payload 

capacity. The amount of secret data to be inserted determines 

the type of cover object to use, and the resilience of the system 

determines how undetectable the secret message will be. Since 

they are so widely utilized and so redundant, images are 

frequently employed as cover items. 

The final image that includes the concealed data is known 

as the stego image. Spatial domain methods and transform 

domain methods are the two primary kinds of approaches in 

picture steganography [10]. 

Security, capacity, and imperceptibility concerns must be 

addressed in order for a steganography technique to be 

effective. Among these issues, imperceptibility significantly 

affects how difficult it is to tell if a hidden message is present 

or not. Techniques like odd/even pixels distribution formats 

are frequently used to achieve imperceptibility. A 

steganography system’s security is its resistance against 

outside threats. The largest amount of data that may be 

securely contained in a cover picture without significantly 

distorting it or impairing data detection is referred to as 

capacity. These issues with the current steganography systems 

are intended to be addressed by the suggested technique [11, 

12]. 

In this paper, we propose a novel application of multilevel 

security through steganography, targeting the enhancement of 

data privacy and security. Our methodology centers around a 

two-tiered approach. The first tier involves embedding text 

within an image, creating an initial layer of hidden information. 

This process not only conceals the data but also preserves the 

integrity and quality of the image. In the second tier, we take 

this 'embedded image' and further embed it within another 

image. This layered embedding technique, leveraging Binary 

Image Texts (BITS), ensures a more sophisticated and secure 

method of data concealment. The BITS technique involves 

converting text into a binary format and then embedding this 

binary data into images at various levels, significantly 

enhancing the security of the embedded information. 

The effectiveness of our approach stems from the intricate 

embedding process. The two-tiered strategy multiplies the 

security barriers, making the detection and deciphering of the 

embedded data increasingly challenging. The first tier masks 

the presence of hidden data within the primary image, while 

the second tier adds an additional layer of obfuscation by 

embedding this altered image into another. This approach not 

only complicates potential steganalysis but also maintains the 

visual quality of the images, a crucial aspect in steganographic 

practices. 

The remainder of this paper is organized as follows: Section 

2 delves into the theoretical underpinnings of our 

steganographic method, including a detailed explanation of 

Binary Image Texts and their role in enhancing security. 

Section 3 outlines our methodological approach, describing 

the step-by-step process of the two-tiered embedding 

technique. In Section 4, we present a series of experiments and 

results, demonstrating the efficacy of our approach. Section 5 

discusses the potential application scenarios, highlighting how 

this method can be effectively utilized in various fields 

requiring secure data transmission. Finally, Section 6 

concludes the paper with a summary of our findings and 

suggestions for future research in this domain. 

 

1.1 Problem statement 

 

Despite the existing methodologies for secure 

communication, there is a pressing issue regarding the 

potential vulnerability of single-layer steganography. While 

these techniques have traditionally provided a degree of 

security by concealing data within an image, they are 

increasingly susceptible to steganalysis, a process of detecting 

hidden information within digital media. Additionally, single-

layer steganography techniques often face limitations in the 

volume of data that can be concealed, which restricts their 

applicability in various scenarios where large-scale secure data 

transmission is required. 

The problem, therefore, lies in enhancing the security and 

capacity of current steganographic techniques to overcome 

these vulnerabilities. This paper proposes a multilevel 

steganographic technique as a potential solution. However, 

implementing such a technique presents its own set of 

challenges. These include ensuring the integrity and 

recoverability of the hidden data, managing the increased 

computational complexity that comes with multiple layers of 

steganography, and maintaining the perceptual invisibility of 

the carrier image despite the added layers of embedded 

information. A comprehensive exploration and evaluation of 

these complexities form the problem statement of this paper. 

 

1.2 Contribution 

 

In this paper, we make a significant contribution to the field 

of secure data transmission by introducing a novel, multilevel 

steganographic technique. Our approach is distinguished by 

the innovative use of multiple Binary Image Texts (BITS) and 

an advanced multilevel concealment strategy. By leveraging 

BITS, we scatter concealed information throughout different 

parts of an image, effectively minimizing the risk of detection. 

This technique dilutes any sharp transitions in the image that 

might otherwise draw attention, thereby reducing detectability. 
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Moreover, using multiple BITS allows us to embed larger 

volumes of data compared to traditional methods, substantially 

increasing the capacity for data hiding. 

In addition to the BITS strategy, we introduce a pioneering 

method of multilevel concealment. This involves embedding 

an image containing hidden data within another image, 

creating a complex layered effect. Each layer of embedding 

adds a level of obscurity, significantly increasing the challenge 

for adversaries in detecting and extracting the concealed 

information. This multilayer approach is a marked progression 

from conventional single-layer steganography, effectively 

countering the growing sophistication of steganalysis 

techniques. 

Another critical aspect of our contribution is the 

incorporation of the MobileNet deep learning model into our 

detection process. MobileNet, known for its efficiency and 

compact architecture, is adept at differentiating between cover 

images and stego images. We have extensively trained this 

model to recognize the subtle differences introduced by our 

steganographic process. Through rigorous testing, we 

demonstrate that MobileNet effectively identifies stego 

images, providing a robust means to evaluate the stealthiness 

of our method. The successful application of MobileNet in our 

experiments underlines the effectiveness of our multilevel 

steganographic approach, showcasing its potential as a highly 

secure method of data concealment. 

Our work not only addresses the current challenges in 

steganography but also sets a new benchmark for secure 

communication methodologies. By introducing these novel 

techniques and demonstrating their effectiveness, we 

contribute significantly to the evolution of data security 

practices. 

 

 

2. RELATED WORK 

 

In the realm of visual cryptography which entailed 

exploiting cover-based semi-groups to improve picture 

contrast, was first proposed by Naor and Shamir [13] in 1994. 

They also introduced the visual cryptography method VCS (k, 

n) [14]. 

The integration of deep learning with steganography, by 

combining steganographic methods with deep learning and 

visual cryptography, Seuti et al. [15] suggested a revolutionary 

method in the realm of picture steganography. By using the 

LSB technique, for example, where the buried information 

might be easily retrieved if the location is known, they sought 

to overcome the security issues with conventional techniques. 

The authors devised a multi-step procedure for concealing a 

hidden image under a cover photo in order to get around these 

restrictions. First, they used an autoencoder, which combines 

an encoder and a decoder, to process the secret picture. The 

security of the secret image was increased by this 

autoencoder’s compression and unrecognizability. The next 

step was to use visual cryptography. To achieve this, the 

authors performed an exclusive OR (XOR) operation on the 

compressed secret picture with a randomly generated image 

called mask1. The hidden image’s content was further 

obscured by this visual encryption stage. Finally, the authors 

hid the encrypted secret picture within the carrier or cover 

image using the LSB approach. By using deep learning and 

visual cryptography, this guaranteed that the secret picture 

stayed concealed within the cover image while adding an extra 

degree of protection. The authors tested the suggested method 

and used image quality criteria to determine how consistently 

the stego picture was produced. The experimental findings 

showed that, in comparison to current technologies, the 

suggested strategy improved security. A comparative study 

was also conducted to show how much better the authors’ 

approach is than most other approaches used today. The 

authors’ method of merging visual cryptography, deep 

learning, and steganography presents a possible remedy to the 

security issues with existing picture steganography techniques. 

Their findings demonstrate the potency and excellence of their 

suggested method, pointing to its potential for use in secure 

communication and information concealment. 

Digital watermarking with visual cryptography mechanisms 

was also carried out [16]. A visual cryptography approach for 

copyright security in watermarking was presented by 

Tijedjadjine et al. [17]. 

An adaptive fuzzy inference technique for color picture 

steganography was put out in a 2021 study. This approach 

considered picture complexity elements as brightness, color 

sensitivity, and pixel similarity [18]. A hybrid data 

transmission technique that included steganography and 

encryption was presented at around the same time by Gupta 

and Saxena. Additionally, they created a program that uses 

steganography and cryptography to hide data [19, 20]. 

A steganography method that used the LSB approach to 

conceal data and pictures within other images was proposed 

by Shekhawat et al. [20] in 2020. 

Encoding the secret message in the least significant bit 

(LSB) of each pixel is a widely used technique in the field of 

picture steganography. This technique is widely used since 

changing the LSB has little effect on the carrier picture 

because it is challenging for the human eye to distinguish 

between the original and changed cover images. 

In order to evaluate several LSB-based steganography 

techniques and determine if a person could tell the difference 

between the stego picture and the original cover image, 

Chandramouli and Memon [21] carried out research. 

Karim et al. [22] offered a brand-new LSB-based method 

for concealing a secret picture utilizing a cover image and a 

secret key. Based on the secret key, the cover image layer was 

selected in this technique to cover the concealed picture. The 

stego key was transformed into a 1D circular array bitstream, 

and then the secret picture was put to it. The LSB of the first 

red layer pixel and the first bit of the stego key were both 

subjected to operations throughout the encoding process. If the 

last bit was 1, the green layer of the cover picture was chosen 

to hide the concealed image’s single bit. If the outcome bit was 

0, on the other hand, the blue layer of the cover picture was 

picked. The next red layer pixel and the next bit of the stego 

key were both taken into consideration as the concealed 

image’s succeeding bits were processed in the same manner. 

The LSB of the red layer and the matching pixel of the secret 

key were used in an XOR operation to decode the secret 

picture. If the outcome bit was 1, the green layer’s LSB 

contained the hidden information. The LSB of the blue layer 

was used to retrieve the secret information if the resulting bit 

was 0. To successfully recover the secret picture, the 

information was then reorganized into a 2D binary image 

matrix. 

Three steganography techniques, each with its unique traits, 

were introduced by Hossain et al. [23]. These methods made 

use of tools to estimate the smooth and angular regions of a 

picture while taking into consideration the bit’s dependence on 

its surroundings and psychovisual redundancy. The initial 
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method involves embedding three bits per pixel in smooth 

zones, taking advantage of their uniformity to conceal extra 

information. The second method, on the other hand, used 

variable-rate pixel embedding, changing the embedding rate 

dependent on the complexity of the region, in edged sections 

where there are more changes. Although these techniques 

proved they could create high-quality stego pictures, it should 

be highlighted that they did not use any particular security 

measures. The fundamental goal of these methods was to 

provide the best possible images while maintaining the visual 

imperceptibility of the hidden information. However, in order 

to secure the concealed data from being easily recovered or 

identified, more security measures would be required in terms 

of resilience against assaults or illegal access. 

Płachta et al. [24] suggested addressing the issue of spotting 

steganographically altered JPEG photos. They looked at the 

effectiveness of several shallow and deep learning techniques 

for detecting picture steganography. They used photos from 

the BOSS database that had been processed using three well-

known steganographic algorithms: nsF5, uniform embedding 

revisited distortion (UERD), and JPEG universal wavelet 

relative distortion (J-Uniward). At two different densities, the 

steganographic methods were used. In an effort to increase the 

detection accuracy, the authors investigated several feature 

spaces. They discovered that the Gabor filter residuals (GFR) 

and discrete cosine transform residuals (DCTR) generated the 

most encouraging outcomes. At a density of 0.4 bpnzac 

(99.9% accuracy), they specifically obtained virtually perfect 

detection accuracy for the nsF5 method. However, with a 

maximum accuracy of just 56.3%, finding J-Uniward at a 

density of 0.1 bpnzac proved to be quite difficult. The authors’ 

investigation also took into account ensemble classifiers as a 

deep learning-based detection technique substitute. The 

ensemble classifiers produced encouraging results, indicating 

their potential as successful steganography detection 

strategies. The study of the authors clarifies the issue of 

identifying steganographically altered JPEG photographs. 

They investigated numerous feature spaces, tested the 

accuracy of various steganographic techniques, and evaluated 

the performance of several shallow and deep learning 

algorithms. Their research adds to the corpus of knowledge 

and sheds light on the efficiency of ensemble classifiers in the 

detection of steganography. 

Duan et al. [25] suggested a novel deep learning-based high-

capacity picture steganography technique. They set out to 

overcome the drawbacks of conventional methods of picture 

steganography, which frequently prioritize the safe embedding 

of sensitive information while ignoring the payload capacity 

and steganographic image quality for the Human Visual 

System (HVS). The authors’ suggested technique involved 

transforming the secret picture using the discrete cosine 

transform (DCT). The generated steganographic picture was 

then encrypted with Elliptic Curve Cryptography (ECC) to 

improve its anti-detection capabilities. The SegNet Deep 

Neural Network, which was made up of a collection of Hiding 

and Extraction networks, was used by the authors to increase 

the steganographic capability. This framework made full-size 

picture extraction and effective steganography possible. The 

trial outcomes showed how well the suggested technique 

worked to assign each pixel in the image to a location that 

would result in a relative steganographic capability of 1. The 

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM) values of the steganographic pictures produced 

by this approach were also greater, reaching 40dB and 0.96, 

respectively. 

In recent years, the field of optical communications has seen 

a myriad of advancements. Notably, the optical vortex has 

garnered significant attention among researchers, primarily 

due to its multi-faceted applications. It is an intriguing feature 

in optics that has been employed in diverse fields like optical 

tweezers, microscopy, quantum information processing, 

optical trapping, and laser machining. More than just a 

fascinating phenomenon, an optical vortex carries a helical 

wavefront, an intrinsic characteristic that allows it to transport 

orbital angular momentum. This unique property is pivotal, 

especially when applied to heralded single-photon transfer in 

the transverse amplitude. 

Each study mentioned has been pivotal in its own right. For 

instance, the use of visual cryptography [13, 14] laid the 

groundwork for future developments in image-based security. 

The LSB-based techniques used by Shekhawat et al. [26] and 

Chandramouli and Memon [21] were significant for 

demonstrating how subtle changes can be effectively used for 

data concealment. In deep learning, the studies cited in studies 

[15, 25] showed how integrating AI can substantially enhance 

steganographic capabilities. The optical communication 

techniques used by Ghazi et al. [27] and Alayedi et al. [28] 

represented a leap in increasing the capacity and security of 

communication channels. 

The relationship between these studies is integral to 

understanding the evolution of steganographic and optical 

communication techniques. Each study builds upon the 

findings of previous works, progressively advancing the field. 

Our research aims to bridge the gaps identified in these studies, 

particularly in terms of security, efficiency, and capacity. 

Comparatively, visual cryptography is foundational but 

somewhat limited in scope. LSB-based steganography offers 

simplicity and effectiveness but can be vulnerable to detection. 

Deep learning approaches, while more complex, provide 

enhanced security and adaptability. Optical communication 

techniques, though not directly related to steganography, 

demonstrate the potential for high-capacity secure 

transmissions. Our work seeks to synthesize these various 

approaches, combining the best aspects of each to create a 

more comprehensive and secure steganographic method. 

The advancements in optical communications, a pivotal 

study [27] delved deep into integrating the optical vortex with 

optical-CDMA (optical code-division multiple-access). This 

combination was further enhanced by integrating with WDM 

(wavelength division multiplexing). The primary objective 

behind this amalgamation was to amplify both the capacity and 

security facets of optical communication. By adopting 

Laguerre-Gaussian (LG) modes and leveraging the optical 

vortex based on a one-dimensional zero cross-correlation 

(ZCC) code, the study revealed a substantial decrease in mode 

coupling. This reduction proved consequential in augmenting 

channel performance and response. In a more comprehensive 

scope, the study evaluated LG modes grounded on the 1D-

ZCC code, which were then propagated over a multi-mode 

fiber (MMF) incorporating the optical vortex. The outcomes 

were promising, showcasing a significant mitigation in 

channel effects. Collectively, the results pointed towards the 

potential development of a hybrid WDM-Optical-CDMA 

system utilizing the optical vortex over MMF. 

Parallelly, another significant contribution [28] to the field 

was made through the introduction of a novel zero cross 

correlation (ZCC) code, specifically tailored for spectral 

amplitude coding-optical code division multiple access (SAC-
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OCDMA) systems. This code, uniquely initiated from the 

identity matrix, showcases multiple advantages, especially 

when emphasizing its simplicity and adaptability. In terms of 

performance metrics, this proposed ZCC code not only adapts 

seamlessly with SAC-OCDMA systems but also flaunts a high 

SNR value. When benchmarked against previously 

established codes, notably the modified quadratic congruence 

(MQC) and modified double weight (MDW) codes, the novel 

ZCC code outperformed them by reaching 3.18 and 1.84 

times of the system capacity, respectively. 

Figure 1. General flowchart 

3. METHODOLOGY

Our methodology as illustrate in Figure 1 initiates with the 

division of a dataset into cover and payload images. 

Subsequently, we employ a novel approach termed “Dynamic 

Least Significant Bit” to embed text into the payload images, 

constituting the first layer of our multilevel steganographic 

technique. Further advancing the complexity, the manipulated 

payload image, now embedded with hidden text, is concealed 

within the cover image, forming the second layer of 

obfuscation. Upon successful embedding, the original and 

stego images are consolidated into a single dataset and divided 

into training and testing sets. This data is utilized to train and 

evaluate the performance of a pretrained deep learning model, 

MobileNet, renowned for its efficiency in mobile and 

embedded vision applications. After training, the model’s 

proficiency is gauged by its accuracy in distinguishing 

between the original and stego images in the testing set, thus 

validating the effectiveness of our proposed multilevel 

steganographic technique. 

3.1 Dataset 

In this subsection, we introduce the use of a specific dataset, 

“BOSSBase 1.01”. This dataset, containing a total of 1500 

images, forms the basis for our multilevel steganographic 

experiment. Our methodology commences with loading this 

substantial dataset into our system. 

To effectively utilize these images for our steganographic 

purposes, we implement a strategic division of the loaded 

dataset into two distinct sets. Of the total 1500 images, we 

earmark 1000 images to serve as ’cover’ images. These images 

play a crucial role in our strategy as they function as the 

outermost layer or facade, beneath which our multilevel 

concealed data resides. 

The remaining 500 images from the dataset are designated 

as ’payload’ images. These images form the core of our data 

hiding operation. The selected text will be skillfully embedded 

within these payload images, which are subsequently 

embedded within the cover images. This arrangement is 

essential to our multilevel steganographic approach as it 
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allows for an additional layer of data hiding and hence, an 

enhanced level of security. 

Our methodology, leveraging the BOSSBase 1.01 dataset 

and the systematic division of images into cover and payload 

sets, provides the foundation for the effective execution and 

evaluation of our multilevel steganographic technique. 

In selecting the BOSSBase 1.01 dataset for our research, we 

were guided by several critical factors that make it particularly 

suitable for our multilevel steganographic experiment. 

Primarily, the BOSSBase 1.01 dataset is renowned for its 

diversity and representativeness, encompassing a wide range 

of image types and content. This variety ensures that our 

methodology and results are not biased towards a specific type 

of image or limited by a narrow data scope. Furthermore, the 

dataset is a standard benchmark in the field of steganography, 

frequently used by researchers to test and validate 

steganographic algorithms. This widespread adoption in the 

research community lends credibility to our experiments and 

allows for meaningful comparisons with existing studies. The 

high quality and resolution of the images in the dataset are also 

crucial, as they provide the necessary detail and complexity 

for effective data embedding and concealment. By using the 

BOSSBase 1.01 dataset, we ensure that our findings are robust, 

reproducible, and relevant to current steganographic practices. 

3.2 Text steganography 

The second stage (Figure 2) in our methodology is the 

process of embedding text into the payload images. In order to 

do this, we utilize an innovative technique that has its roots in 

the traditional Least Significant Bit (LSB) steganography 

method. 

Figure 2. Text steganography 

i. Standard LSB: The researchers employed the standard or

general Least Significant Bit (LSB) [29] technique as a

basis for their embedding process. In this technique, the

aim is to replace the least significant bit—the final bit—

in a certain number of bytes within the cover file with a

sequence of bytes containing the hidden data. Given that

the LSB is the smallest and least consequential bit within

a byte, modifying it incurs minimal impact on the file.

This subtlety ensures that the alterations to the file remain

largely imperceptible to human senses, offering a discreet

method for data concealment. This traditional LSB

technique, though simple in its approach, forms the core

of the researchers’ advanced steganographic

methodology.

ii. LSB Optimization: Additionally, the researchers adopted

an enhanced version of the standard LSB method [30].

This refined technique, known as the LSB optimization,

expands upon the conventional approach by utilizing the

two least significant bits (2 bits) in a byte for the

embedding process, as opposed to just the last bit. This

modification facilitates the hiding of more data within the

cover file, effectively doubling the capacity of concealed

information compared to the standard LSB technique. 

This optimized method not only maintains the subtlety 

and undetectability of the traditional LSB technique, but 

also significantly improves upon its data hiding 

capabilities, paving the way for more complex and 

information-dense steganographic operations. 

iii. Dynamic Least Significant Bit: We propose an innovative

method termed as Dynamic Least Significant Bits

(DLSB) steganography. This method takes the traditional

LSB approach and enhances it by incorporating a dynamic

component based on a contrast metric and a

hyperparameter threshold.

In DLSB steganography, we employ a contrast measure that 

helps us dynamically ascertain the number of bits we should 

manipulate for hiding the data. This is achieved by comparing 

the contrast of each portion of the image to a predetermined 

threshold. If the contrast in a certain part of the image is below 

the threshold, we can manipulate more bits in that area without 

significantly altering the image’s visual properties. 

Conversely, if the contrast is above the threshold, we limit the 

number of bits we manipulate, preserving the image’s fidelity. 

This dynamic adaptation of the number of least significant 

bits used for data hiding offers a more flexible and nuanced 

approach compared to traditional LSB techniques. It provides 

an optimized balance between effective data concealment and 

maintaining image quality, enhancing the overall performance 

and robustness of our steganographic method. Through this 

innovative DLSB steganography, we are able to adapt to the 

image’s characteristics and achieve more effective and secure 

data hiding. The Dynamic Least Significant Bits (DLSB) 

technique we're suggesting starts by measuring the contrast 

between a particular pixel and those surrounding it. In simple 

terms, this involves finding the absolute difference in value 

between our main pixel, which we call Pixel (x, y), and its 

neighbors, which we label as Pixel (nx, ny). For those who 

appreciate the specifics, this can be captured in LaTeX 

notation as: 

Contrast(n) = |Pixel(x,y) − Pixel(nx,ny)| (1) 

Once the contrast for each neighboring pixel is calculated, 

we proceed by accumulating these individual contrast values 

to obtain a total contrast sum, mathematically represented as: 

ContrastSum = XContrast(n) (2) 

Next, we calculate the average contrast. This is done by 

taking the total of all the contrast values and dividing it by the 

number of pixels surrounding our main pixel: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑠𝑢𝑚

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑒𝑞
(3) 

In the last step, we decide how many least significant bits 

we should use, depending on whether the average contrast 

goes above or stays below a set threshold. If the average 

contrast is below that mark, we opt for one bit. But if it's on 

the threshold or goes beyond it, we go with two bits: 

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝐿𝑆𝐵𝑠𝑘

= { 1 𝑖𝑓 𝐴𝑉𝐺𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 <  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
2 𝑖𝑓 𝐴𝑉𝐺𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ≥  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(4) 
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Essentially, this adaptive strategy enables us to select the 

number of least significant bits for steganographic embedding 

in a dynamic fashion, based on the local contrast of each pixel. 

As a result, this method allows for a better preservation of the 

visual quality of the image while hiding data within it. 

To elucidate the practical applications and advantages of 

Dynamic Least Significant Bit (DLSB) steganography, 

consider a real-world example. Imagine we have an image of 

a natural landscape, containing areas of both high and low 

contrast—bright skies and shadowed forests, respectively. 

Using DLSB steganography, in the areas of the image with 

lower contrast, like the dark, shadowed sections of the forest, 

we can safely manipulate more bits to hide our data. This is 

possible because the human eye is less sensitive to variations 

in darker areas. Thus, we can embed a larger amount of data 

in these parts without noticeably affecting the image's 

appearance. 

Conversely, in high-contrast areas, such as the bright sky, 

our method automatically restricts the data embedding to 

fewer bits, maintaining the integrity and visual quality of these 

more noticeable parts of the image. This adaptability ensures 

that the embedded data remains undetectable, preserving the 

original look and feel of the image while maximizing the 

amount of data hidden. 

This approach starkly contrasts with traditional LSB 

methods, which would apply a uniform bit manipulation 

across the entire image, potentially compromising the visual 

quality in high-contrast areas or underutilizing the data hiding 

capacity in low-contrast regions. Our DLSB method, therefore, 

offers a more sophisticated, context-sensitive approach to data 

embedding, leading to enhanced security and improved 

preservation of the image's aesthetic quality. 

 

3.3 Image steganography 

 

The subsequent phase of our methodology involves the 

integration of the manipulated payload image, now bearing 

hidden text, into the cover image. This marks the 

implementation of the second layer in our multilevel 

steganographic technique. The process of embedding the 

payload image into the cover image forms the final 

steganographic construct, significantly bolstering the security 

of the concealed data. 

 

 
 

Figure 3. Image steganography 

 

In this stage (Figure 3), the payload image that is embedded 

with text using our dynamic LSB technique is further 

concealed within a seemingly innocent cover image. This 

embedding procedure employs advanced techniques to ensure 

that the final steganographic image appears indistinguishable 

from the original cover image to an untrained observer. This 

gives the illusion of a normal image, while in reality, it secretly 

conceals another image with hidden text. 

The resulting image embodies the essence of steganography, 

where an image that looks ordinary to a casual observer 

secretly harbors a payload image embedded with hidden text. 

This intricate, multilayered concealment technique further 

obscures the presence of hidden data, offering enhanced 

protection against detection and unauthorized access. Wavelet 

Obtained Weights (WOW). 

The next step in our methodology utilizes the WOW [31] 

steganographic algorithm, a highly revered method known for 

its exceptional capacity to maintain the statistical 

characteristics of the cover image while concealing data. This 

algorithm operates within the wavelet domain, harnessing the 

natural attributes of wavelet transformation for data hiding 

purposes. The primary task of the WOW algorithm in our 

context is the selection of optimal pixels for data embedding. 

This is achieved by attributing a cost to each pixel that 

quantifies the level of statistical disruption it would incur if 

altered. Consequently, pixels with lower cost - those causing 

minimal statistical perturbation upon modification - are 

preferred for data embedding. 

This intelligent pixel selection facilitates better preservation 

of the visual and statistical properties of the original image, 

thereby rendering the final steganographic image virtually 

identical to the cover image. The hidden data within the image, 

consequently, becomes remarkably difficult to detect, 

providing an added level of security to our concealed data. The 

strategic use of the WOW algorithm, therefore, significantly 

enhances the robustness and imperceptibility of our multilevel 

steganographic technique. 

In selecting the WOW algorithm for our image 

steganography process, we carefully considered its advantages 

over other prevalent techniques. Unlike many conventional 

steganography methods that focus solely on spatial domain 

manipulations, the WOW algorithm operates within the 

wavelet domain. This allows for a more nuanced and 

sophisticated approach to data embedding, taking advantage 

of the multi-resolution analysis provided by wavelets. 

Wavelets are particularly effective in representing image data, 

capturing both frequency and location information, which is 

crucial for maintaining image quality while embedding data. 

The WOW algorithm stands out due to its ability to analyze 

and utilize the inherent characteristics of the wavelet transform. 

It assigns weights to different pixels based on their suitability 

for data embedding, prioritizing those that will cause the least 

statistical disturbance. This selection process is not random but 

is informed by the underlying wavelet coefficients, which 

reflect the image's texture and intensity variations. By 

embedding data in pixels where it will least affect the overall 

wavelet structure of the image, the WOW method ensures that 

the steganographic modifications are virtually imperceptible, 

both visually and statistically. 

This approach contrasts markedly with other methods that 

might disrupt the statistical profile of the image or cause 

noticeable visual artifacts, making the hidden data more 

susceptible to detection. The WOW algorithm's capacity to 

blend hidden data seamlessly within the natural wavelet 

structure of the image provides a level of subtlety and security 

that is difficult to achieve with other techniques. Thus, its 

integration into our methodology not only strengthens the 

concealment of data but also upholds the integrity and quality 

of the cover image, making our steganographic system more 

robust and reliable. 

 

3.4 Deep learning 

 

In the concluding phase of our methodology, we will 

1409



 

assemble a comprehensive dataset comprising both the 

original and stego images. This dataset will subsequently be 

split into two subsets: a training set, utilized for model training, 

and a testing set, designated for performance evaluation. 

Our model of choice for classification is MobileNet [32], a 

pre-trained deep learning model renowned for its efficiency 

and accuracy. Specifically engineered for mobile and 

embedded vision applications, MobileNet stands as a 

lightweight, yet highly efficient convolutional neural network. 

Upon successful model training using the training set, we 

will proceed to evaluate the performance of our model using 

the testing set. The key metric for this evaluation will be the 

model’s accuracy in distinguishing between untouched 

original images and manipulated stego images. This 

assessment will provide us with valuable insights into the 

effectiveness and reliability of our multilevel steganographic 

technique. 

The choice of MobileNet as our deep learning model for this 

study was driven by several critical factors. Primarily, 

MobileNet is renowned for its balance of efficiency and 

performance, particularly in environments with limited 

computational resources. Its streamlined architecture, based 

on depthwise separable convolutions, makes it an ideal choice 

for our application, where processing speed and model size are 

crucial considerations. This efficiency allows for faster 

training and evaluation times, an essential aspect given the 

extensive dataset we are working with. 

Furthermore, despite its compact nature, MobileNet does 

not significantly compromise on accuracy, making it suitable 

for the nuanced task of differentiating between original and 

stego images. Its proven effectiveness in image classification 

tasks reassures us of its potential to deliver reliable results in 

our context. However, it is also essential to acknowledge the 

limitations of MobileNet, particularly its potential 

susceptibility to overfitting due to the high similarity between 

original and stego images in our dataset. To mitigate this, we 

have implemented rigorous cross-validation and 

regularization techniques to ensure that our model generalizes 

well to unseen data. 

By leveraging MobileNet's strengths and addressing its 

limitations, we aim to accurately assess the imperceptibility of 

our steganographic method, thus validating the efficacy of our 

multilevel steganographic approach in maintaining the 

confidentiality of embedded data while ensuring its detection 

remains challenging. 

 

3.5 Evaluation 

 

To evaluate the efficacy of our multilevel steganographic 

method and its detection using MobileNet, we will employ 

various performance metrics. These metrics will provide a 

quantitative measure of our model’s accuracy in distinguishing 

between untouched original images and manipulated stego 

images. 

The primary metric used will be Accuracy, which gives the 

proportion of total predictions that were correct. This helps in 

measuring the overall performance of the model. However, 

Accuracy alone might not present a complete picture, 

especially if our dataset is imbalanced. 

Therefore, we will also calculate the Precision of our model, 

which measures the proportion of positive identifications (i.e., 

stego images) that were actually correct. This helps us 

understand the reliability of our model when it predicts an 

image as a stego image. 

Next, we will determine the Recall (or Sensitivity), which 

gives the proportion of actual positives (stego images) that 

were identified correctly. It helps us understand how good our 

model is at detecting stego images. 

To get a balanced view of Precision and Recall, we will 

calculate the F1 Score. The F1 Score is the harmonic mean of 

Precision and Recall and provides a more balanced measure 

when the class distribution is uneven. 

Beyond our primary evaluations, we'll also create a 

Confusion Matrix to give a clear picture of our model's 

performance. This matrix will display the true positives, true 

negatives, false positives, and false negatives, offering a full 

snapshot of the model's accuracy. Through these assessment 

tools, we can gain a deeper insight into how our model fares 

and gauge the success of our steganographic approach. 

To counteract these limitations and enhance the validity of 

our evaluation, we have employed cross-validation techniques. 

Specifically, we've implemented k-fold cross-validation, 

where our dataset is divided into k subsets. The model is 

trained on k-1 subsets and tested on the remaining subset, and 

this process is repeated k times with different subsets serving 

as the test set each time. This approach ensures that our model 

is tested on all parts of the dataset, significantly reducing the 

risk of overfitting and providing a more accurate estimate of 

its performance. 

Additionally, we've utilized stratified sampling in our cross-

validation process to maintain the same proportion of classes 

in each fold as in the entire dataset. This step is crucial for 

handling the imbalance in our dataset, ensuring that each fold 

is representative of the overall class distribution. By 

incorporating these rigorous validation techniques, we aim to 

achieve a more comprehensive and reliable evaluation of our 

model, thereby confirming the effectiveness of our multilevel 

steganographic method. 

 

 

4. RESULTS 

 

4.1 Least significant bit 

 

i. General LSB: The outcomes of the general LSB method 

are quantified using four metrics: Peak Signal-to-Noise 

Ratio (PSNR), Structural Similarity Index Measure 

(SSIM), Bit Error Rate (BER), and Mean Squared Error 

(MSE). 

The PSNR, calculated using the equation below, offers an 

estimation of the quality of the reconstructed (stego) image 

compared to the original image. With a high PSNR value of 

79.66 dB, we can conclude that the stego image quality is very 

similar to the original image quality. 

 

𝑃𝑆𝑁𝑅 = 20 ⋅ log10 (
𝑀𝐴𝑋𝐼

√𝑀𝑆𝐸
) (5) 

 

The SSIM, determined using its specific formula, measures 

the perceptual similarity between the original and the stego 

image. The close-to-one SSIM index of 0.99 signifies that the 

structural similarity between the original and stego images is 

very high. 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2μ𝑥μ𝑦 + 𝑐1)(2σ𝑥𝑦 + 𝑐2)

(μ𝑥
2 + μ𝑦

2 + 𝑐1)(σ𝑥
2 + σ𝑦

2 + 𝑐2)
 (6) 

 

The BER is the ratio of incorrectly decoded bits to the total 
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number of transferred bits, indicating the bit-level accuracy of 

the steganographic process. With a remarkably low BER value 

of 8.78e-05, we can infer that the proposed LSB 

steganography method is highly accurate. 

 

𝐵𝐸𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑏𝑖𝑡_𝑒𝑟𝑟𝑜𝑟𝑠

𝑇𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑_𝑏𝑖𝑡𝑠
 (7) 

 

The MSE, calculated as per the formula given below, 

reflects the average squared differences between the pixel 

intensities of the original and stego images. The incredibly low 

MSE of 1.081e-08 demonstrates a high degree of similarity 

between the two images. 

 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (8) 

 

As we observe in these results, the general LSB method 

exhibits high performance in maintaining image quality and 

data fidelity, as indicated by the exceptionally high PSNR and 

SSIM values and remarkably low BER and MSE values. 

ii. Dynamic LSB: We carried out experiments using the 

DLSB steganography method with three different 

threshold values, namely 50, 20, and 15. The quantitative 

results obtained for each threshold are presented in the 

table below. The metrics used for evaluation include 

PSNR, SSIM, BER, and MSE (Table 1). 

 

Table 1. DLSB results for different thresholds 

 

Threshold PSNR (dB) SSIM BER MSE 

50 36.103 0.979 31.204 0.00024 

20 43.9 0.991 23.524 4.073e-05 

15 81.24 0.999 0.0046 7.5098e-09 

 

Looking at the results, as the threshold decreases from 50 to 

15, we observe a clear improvement in all four metrics. 

Specifically, the PSNR, which estimates the quality of the 

reconstructed image compared to the original one, increases 

significantly, indicating an improved quality of the stego 

image. The SSIM index also increases, suggesting better 

perceptual similarity between the original and the stego image. 

Furthermore, both the BER and MSE values decrease as the 

threshold is reduced, signaling a high degree of similarity 

between the two images and a more accurate steganography 

process. The results demonstrate the effectiveness of the 

dynamic LSB method and highlight the influence of the 

threshold parameter on the steganographic performance 

(Figure 4). 

 

iii. Comparison: Comparing the results (Figure 5) obtained 

from the General LSB and Dynamic LSB methods 

provides interesting insights. 

The PSNR of the Dynamic LSB at a threshold of 15, which 

stands at 81.24, significantly outperforms the General LSB’s 

PSNR of 79.66. This demonstrates a substantial improvement 

in the quality of the steganographic image produced by the 

Dynamic LSB method. This trend extends to the SSIM index 

as well, with the Dynamic LSB producing a score of 0.999 

compared to the General LSB’s 0.99. This suggests that 

images generated using the Dynamic LSB method bear a 

closer structural similarity to the original image than those 

generated by the General LSB method. 

 

 
 

Figure 4. PSNR value variation based on contrast threshold 

 

In comparing the Bit Error Rate (BER) values between the 

general LSB and dynamic LSB methods, an important 

observation emerges. Contrary to our initial expectation, the 

BER for the dynamic LSB method at a threshold of 15 is 

recorded at 0.0046, which is actually higher than the BER for 

the general LSB method, measured at 8.78e-05. This finding 

suggests that while the dynamic LSB method enhances image 

quality (as indicated by improved PSNR and SSIM values), it 

does so at the cost of increased error rates in bit decoding. This 

trade-off highlights a critical aspect of steganographic 

methods: enhancing visual similarity and image quality can 

sometimes lead to a compromise in the accuracy of the hidden 

data retrieval. The higher BER in the dynamic LSB method 

points to a greater likelihood of bit-level inaccuracies during 

the data extraction process. This outcome necessitates a 

careful consideration of the method's application, particularly 

in scenarios where the precision of data extraction is as crucial 

as the imperceptibility of the steganographic process. 

In summary, the Dynamic LSB, especially at a lower 

threshold, is a clear improvement over the General LSB 

method. It offers enhanced quality and accuracy in 

steganographic embedding while maintaining a strong 

resemblance to the original image, thereby effectively 

securing the hidden data. These results strongly advocate for 

the use of Dynamic LSB in steganographic applications where 

the quality of the stego-image and the security of hidden data 

are paramount. 

As we observe the data related to the lengths of the hidden 

text in the table, there’s a clear correlation between the text 

length and the resultant PSNR. As the length of the text 
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embedded into the image increases from 4 to 390, there’s a 

corresponding decrease in the PSNR values from 89.30 to 

70.05. This is an expected outcome because as we embed more 

data into the image (i.e., increase the length of the text), we are 

effectively altering more pixel values in the image. This results 

in more distortion, causing a decrease in the PSNR value, 

which is a measure of the quality of the steganographic image 

in comparison to the original image. 

 

 
 

Figure 5. Comparison PSNR value 

 

In our exploration of the dynamic LSB (DLSB) 

steganography method, we selected three distinct threshold 

values - 50, 20, and 15 - for our experiments. The rationale 

behind choosing these specific thresholds was grounded in a 

blend of preliminary testing and theoretical considerations 

derived from existing literature. We commenced with a higher 

threshold of 50 to observe the performance of DLSB under 

conditions of minimal bit manipulation, ensuring maximum 

image fidelity. This initial threshold served as a benchmark to 

assess the baseline performance of our method. 

Subsequently, we reduced the threshold to 20, aiming to 

strike a balance between image quality and data hiding 

capacity. This intermediate threshold was selected based on 

preliminary tests that suggested an optimal trade-off between 

perceptibility and data concealment at this level. 

Finally, the lowest threshold of 15 was chosen to push the 

limits of our method in terms of data hiding capacity. This 

threshold was expected to demonstrate the maximum potential 

of DLSB in embedding data while still maintaining a 

reasonable level of image quality. The selection of this 

threshold was also influenced by insights from steganographic 

literature, where similar low-threshold settings have been used 

to evaluate the robustness of steganography methods under 

more demanding conditions. 

By evaluating DLSB across these three thresholds, we 

aimed to provide a comprehensive understanding of its 

performance spectrum, from conservative to aggressive data 

hiding scenarios. These chosen thresholds thus not only align 

with our experimental objectives but also allow us to 

methodically assess the versatility and adaptability of the 

dynamic LSB method under varying operational parameters. 

 

4.2 Text steganography results 

 

The results (Figure 6) here illustrate an important tradeoff 

in steganography: the amount of data hidden and the quality of 

the stego-image. While it’s possible to hide large amounts of 

data, this comes at the expense of the stego-image quality, 

potentially making the presence of hidden data more 

detectable.  

 

 
 

Figure 6. PSNR value variation based on number of 

characters hidden 

 

Therefore, it’s critical to find an optimal balance that suits 

the specific needs of a steganography application (Table 2). 

The encryption of the payload folder, with the text 

corresponding to the highest PSNR value, was successful, and 

it was equally successful when we extracted it back from the 

images, affirming that the initial and final texts were identical. 

This highlights the efficacy of our Dynamic LSB 

steganographic technique. 

 

Table 2. PSNR values for different text lengths 

 

Text Length PSNR Value 

4 89.305 

13 84.681 

51 78.852 

130 74.881 

390 70.057 

 

 
 

Figure 7. Evaluation text steganography 
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Figure 8. Cove vs. payload vs. stego images 

 

When we evaluated the results of this extraction, we 

obtained a PSNR value of 81.24, an SSIM score of 0.99, a BER 

of 0.0046, and an MSE of approximately 7.5091e-09. This 

means our steganographic method performed exceptionally 

well, maintaining a high image quality (as evidenced by the 

high PSNR and SSIM scores), and achieving a low BER and 

MSE (Figure 7). 

These results suggest our methodology effectively balances 

the goals of hiding information and maintaining the perceptual 

quality of the steganographic image, which is integral to the 

success of any steganographic technique. Furthermore, the low 

BER and MSE scores demonstrate our methodology’s 

excellent accuracy and reliability in reproducing the hidden 

information. Thus, our approach has demonstrated a 

promising performance in terms of both image quality and 

information concealment. 

 

4.3 WOW results 

 

In the subsection dedicated to the results of the Wavelet 

Obtained Weights (WOW) technique, we analyze the 

performance using two illustrative examples. The two images 

were used to test the robustness and efficacy of our 

steganographic approach. 

As observed in the first image (referenced as Figure 8), we 

successfully concealed the payload without introducing 

discernible distortions to the human eye, thereby preserving 

the visual integrity of the image. 

 

 
 

Figure 9. Original vs. extracted payloads 

 

In the second image, referred to as Figure 9, we demonstrate 

our methodology’s effectiveness by showcasing both the 

original and extracted images. The process securely embeds 

the hidden information into the original image. Upon 

extraction, we retrieve an image of high fidelity, mirroring the 

original data precisely. This demonstration underlines the 

reliability and precision of our steganographic technique. 

These visualizations underline the stealth and robustness of the 

WOW technique in our multilayered steganographic strategy. 

The seamless integration of hidden data and the accurate 

retrieval of this data validates the high performance of our 

proposed method. 

 

4.4 MobileNet results 

 

The final step of our methodology involved the 

classification of images using the MobileNet deep learning 

model. The performance of the model was evaluated using 

standard classification metrics, including precision, recall, and 

f1-score. The model achieved an accuracy of 85%. The 

classification report, which is tabulated below, showcases the 

detailed performance of our model (Table 3). 

 

Table 3. Classification report 

 

 Precision Recall F1-Score 

Class 0 0.84 0.84 0.84 

Class 1 0.86 0.86 0.86 

Accuracy 0.85   

 

The precision, recall, and f1-score for class 0 (cover images) 

and class 1 (stego images) both came in at approximately 0.85, 

indicating a balanced performance across both classes. The 

model’s ability to correctly classify images as cover or stego 

images with a high degree of accuracy underscores the 

efficacy of our proposed steganographic methodology. 

In our detailed assessment of the MobileNet model, it is 

pertinent to discuss the specifics of its configuration and 

training process, which played a crucial role in achieving the 

reported performance. The MobileNet model was configured 

with a standard architecture, capitalizing on its efficiency and 

lightweight design, which is ideal for our steganographic 

analysis. 

For the training process, we employed a categorical cross-

entropy loss function, which is well-suited for multi-class 

classification tasks like ours. This choice was instrumental in 

guiding the model to accurately distinguish between cover and 

stego images. The training was conducted over 100 epochs, 

allowing the model sufficient time to learn and adapt to the 

nuances of our dataset. 

The dataset itself was split into training and validation 
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subsets, with 70% of the images used for training and the 

remaining 30% for validation. This split ensured that the 

model was exposed to a substantial amount of data for learning, 

while still reserving a significant portion for unbiased 

evaluation of its performance. The training set comprised 

approximately 2000 images, while the validation set consisted 

of around 800 images, providing a diverse and representative 

sample of our image data. 

To further enhance the model's robustness and 

generalization capabilities, we implemented data 

augmentation techniques such as random rotations, shifts, and 

flips. These augmentations helped in simulating a variety of 

scenarios and reducing overfitting, thus ensuring that our 

model remains effective across different image conditions. 

Regularization techniques, including dropout layers and L2 

regularization, were also integrated into the model to prevent 

overfitting. These techniques were particularly crucial in 

maintaining the balance between model complexity and 

training data availability, ensuring that the model generalizes 

well to new, unseen images. 

Through this meticulously calibrated training process, 

combining an optimized MobileNet configuration with 

strategic dataset management and augmentation techniques, 

we were able to achieve a model that not only performs with 

high accuracy but also demonstrates robustness and 

adaptability in classifying images within the steganographic 

context. 

 

4.5 Comparison with existing steganography methods 

 

In order to contextualize the efficacy of our multilevel 

steganographic technique within the broader landscape of 

current research, we conducted a comparative analysis with 

other prominent steganography methods. This comparison is 

grounded in the utilization of key metrics such as PSNR, SSIM, 

BER, and MSE, which are commonly employed across 

various studies. 

Our methods showcased a marked improvement in PSNR 

and SSIM values when compared to similar studies. For 

instance, the study by Shekhawat et al. [26] in 2020 reported a 

maximum PSNR of around 50 dB using basic LSB techniques, 

whereas our dynamic LSB method achieved a significantly 

higher PSNR of 81.24 dB at a threshold of 15. This indicates 

a superior image quality in our approach, maintaining a closer 

resemblance to the original image. 

In terms of BER and MSE, our method also demonstrates a 

competitive edge. A study conducted by Shekhawat et al. [26] 

revealed higher BER values in traditional LSB methods, while 

our dynamic LSB approach maintained a remarkably lower 

BER, even at higher data embedding capacities. This translates 

to a more accurate and reliable data concealment in our 

proposed technique. 

Comparing with deep learning-based steganography, as 

explored by Vyas and Lunagaria [15], Ghazi et al. [27], our 

integration of MobileNet for image classification further 

solidifies the robustness of our methodology. While these 

studies achieved significant advancements in steganography, 

our model's accuracy of 85% in distinguishing between 

original and stego images positions our method as a promising 

candidate for secure communication applications. 

This comparative analysis underscores our methodology's 

strengths, particularly in terms of image quality preservation 

and accuracy of data concealment. It highlights the 

advancements our approach offers over existing methods, 

paving the way for its potential application in fields requiring 

high-level security and data integrity. 

 

 

5. CONCLUSION 

 

In conclusion, this study introduces a novel multi-layered 

steganographic approach that combines Dynamic Least 

Significant Bit (DLSB) steganography with the Wavelet 

Obtained Weights (WOW) steganographic algorithm. The use 

of DLSB allows for adaptive concealment of data within an 

image, preserving the image’s visual quality while 

maintaining the integrity of the hidden data. The WOW 

algorithm further enhances the security of the hidden data by 

optimally selecting pixels for data embedding, keeping the 

steganographic image virtually indistinguishable from the 

cover image. 

Our evaluation across several metrics, including PSNR, 

SSIM, BER, and MSE, affirms the effectiveness of our 

approach. We observed that our DLSB method outperformed 

the traditional LSB in terms of these metrics, especially when 

it came to maintaining high image quality and low bit error 

rate. Furthermore, the text steganography results showed that 

longer texts could be hidden without significantly affecting the 

image quality. 

Quantitatively, our DLSB method demonstrated superior 

performance over traditional LSB. For instance, at a threshold 

of 15, the DLSB achieved a PSNR of 81.24 dB compared to 

the general LSB's 79.66 dB, and an SSIM of 0.999, signifying 

a higher quality and similarity to the original image. The 

MobileNet model's accuracy of 85% in distinguishing between 

original and stego images is commendable, considering the 

complexity of accurately classifying such closely resembling 

images. This compares favorably with existing models and 

underscores the sophistication of our steganographic process. 

The final layer of our steganographic process, involving the 

use of the MobileNet model, demonstrated an overall accuracy 

of 85% in distinguishing between original and stego images. 

This result supports the overall efficiency and accuracy of our 

proposed method, suggesting its potential for real-world 

steganographic applications. 

However, as with all studies, ours also has limitations. 

Future work should consider exploring different techniques to 

further improve the visual and statistical invisibility of the 

steganography process and increase the robustness against 

steganalysis. Overall, this research contributes to the 

expanding field of digital steganography, offering a 

sophisticated, multi-layered strategy that effectively balances 

concealment and image fidelity. 

 

 

6. FUTURE WORK 

 

Looking ahead, several promising research directions could 

further refine our multilevel steganographic method. An 

immediate area for enhancement is the optimization of the 

adaptive mechanism in DLSB steganography. Integrating 

advanced machine learning algorithms, such as convolutional 

neural networks or GANs (Generative Adversarial Networks), 

could refine the adaptiveness in selecting bit utilization based 

on local image properties. 

Exploring alternative steganographic algorithms for the 

second level of data hiding is another potential avenue. Recent 

algorithms leveraging deep learning, particularly those 
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focusing on adversarial robustness, could significantly 

enhance the security of the steganographic process. 

In terms of classification models, exploring alternatives to 

MobileNet, such as more advanced versions of convolutional 

neural networks or transformers, could enhance detection 

accuracy. Models like EfficientNet or Vision Transformers, 

known for their superior performance in image classification 

tasks, might offer better discrimination between original and 

stego images. 

Finally, regarding quality measurement, future work could 

delve into developing new metrics that better represent the 

perceptual quality of steganographic images. These metrics 

should ideally capture aspects like the robustness of the hidden 

data against steganalysis and the perceptual 

indistinguishability of the stego image from the original. Such 

advancements would provide a more holistic assessment of 

steganographic methods, paving the way for more nuanced 

and effective approaches in digital steganography. 
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