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The breakdown voltage characterizes the required voltage at which an electrical insulator 

will become a conductor of electricity. Measurements of short air gap discharge voltages 

are essential to guarantee safety, compliance and reliability in electrical energy 

transmission and transformation networks. After the implementation of three distinct 

neural models for three short air gap configurations prediction: Electrode-Sphere-Sphere-

Earth (ESSE), Electrode-Sphere-plane (ESP), and Electrode-Symmetry-Sphere (ESS); the 

present research introduces an innovative compact and intelligent architecture to predict 

the breakdown voltages of any short air gap configuration (without having to resort to 

reconfiguring the system each time), based on a universal automatic multi-layer neural 

network (MLP) repressor. The unified architecture receives as input the radius, distance 

and indicator of the configuration and returns as output the predicted breakdown voltage. 

Our system has been validated on three configurations (with several internal diameter 

electrodes) and a fairly rich database (taken from the literature) with a Mean Square Error 

(MSE) of around 11.84%, which certify the yield of the methodology undertaken. 
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1. INTRODUCTION

Electrical insulation is an elementary characteristic when 

designing and implementing electrical systems, whose aim is 

to guarantee the separation of conductor or electrical 

constituents. This will prevent, any unwanted or unexpected 

contact that can lead to electric shocks, short circuits, or other 

unappreciated phenomena resulting from electricity 

circulation. The breakdown voltage represents the maximum 

voltage limit that an insulating material can withstand before 

suddenly losing its insulating properties and becoming 

conductive. This phenomenon's consequences are multiple: 

irreversible damage to the insulation compromising its 

insulation capacity, short circuits between conductors leading 

to electrical equipment malfunctions, etc. This damage can 

lead to a power supply interruption, which can have significant 

repercussions in critical areas [1-3]. 

Like any gaseous medium, atmospheric air is considered an 

insulator. In an aerial network, the air is subjected to sufficient 

electrical voltage. In the presence of impurities and severe 

atmospheric conditions, a current of electrically charged 

particles becomes possible through the medium partial 

ionization [4-6]. Consequently, the air becomes conductive, 

which leads to breakdown. Alternatives and models for 

estimating electrical breakdown voltages are in high demand 

for areas involving electrical insulation, more particularly, in 

energy transportation and distribution networks; The models 

allow, in fact, to predict with certainty the electrical equipment 

sizing, to develop efficient technologies for preventing 

atmospheric discharges, and to accurately deduce safety 

distances. 

The study of breakdown in air gaps has been the subject of 

several research in recent years. However, the airflow 

mechanism still needs to be fully understood. Methods for 

measuring breakdown voltage are subdivided into two 

approach categories: conventional methods (experimentally 

and theoretical) [7-10] and methods based on Artificial 

Intelligence (AI). Traditional methods of measuring 

breakdown voltage have certain disadvantages. On the one 

hand, these methods involve sophisticated equipment and 

require complex installations (such as special measuring 

chambers), thus making their implementation very expensive 

and limiting their accessibility and use. On the other hand, the 

results obtained are hazardous and of limited use due to the 

atmospheric conditions influence and the discharge energy 

influence on the samples studied. These drawbacks push the 

scientific community to intensify their research in order to 

propose more ingenious, efficient and economical breakdown 

measurement approaches. AI methods, inspired by living 

things' reasoning mechanisms, are seen as a critical solution 

due to the multitude of significant advantages they present. 

Indeed, AI promises to save time through the automation of 

the estimation process. AI ensures accurate, reliable results 

and reduces computing costs by eliminating expensive devices. 

Finally, AI has the particularity of learning from experience 

and adapting to situations never seen before, which makes it 

very suitable for the problem of approximating the electrical 

insulators' breakdown voltages, particularly air. With this in 
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mind, several ingenious research in the field of breakdown 

voltage estimation based on intelligent regression approaches 

have been proposed, including those based on neural networks 

[11-15], those based on Support Vector Regression (SVR) [16-

20], those based on Support Vector Machine (SVM) [11, 21, 

22], those based on fuzzy logic [23, 24] and those based on 

extremely randomized trees algorithm [11]. In what follows, 

we will detail some studies that are pretty similar to ours: 

 Yang et al. and Yao et al. [16, 17] proposed an intelligent 

system based on SVR optimized by Cuckoo Search (CS) 

and weighted by grey relation analysis (CS-ω-SVR) in 

order to calculate the 50% breakdown voltage of the long 

rod-rod gap under different atmospheric conditions and 

different distances. The proposed method was validated on 

70 samples. The authors selected two error indices to 

quantify the accuracy of the predicted results: mean 

absolute percentage error, which is on the order 8.8%, 

respectively. The researchers also highlighted that the 

proposed optimization algorithm was found to be more 

accurate than other algorithms such as GA and PSO. 

 Kalenderli et al. [12] proposed a study to predict the 

breakdown voltage and gap types of a point-barrier air gap 

by training a Multi-Layer Perceptron neural network 

(MLP). The authors also present a comparison of the 

implemented method obtained results with those obtained 

by the methods of: maximum likelihood, graphical 

techniques and the least squares method. The results show 

that the breakdown voltages obtained by the MLP are 

practically identical to the reference values compared to the 

four other methods. 

 Mokhnache and Boubakeur [15] implemented a Radial 

Basis Function (RBF) improved by the random 

optimization method (ROM) to predict the breakdown 

voltage in a barrier-point-plane air space for different 

voltage pulse forms (lightning pulse and switching pulse). 

In conclusion, the authors underline the method's 

effectiveness and even underline the possibility of 

extending their approach to the other parameters' prediction. 

 The research by Qiu et al. [21] presents a new method for 

predicting breakdown voltages of typical air gaps 

(considering several configurations, namely, sphere-sphere, 

rod-plane, sphere-plane and sphere-plane-sphere), based 

on the Electric Field (EF) characteristics (in agreement 

with the results of finite element calculation) and an SVM 

(translating the regression problem into another 

dichotomous discrimination problem). 

 Qiu et al. [22] presented a model for predicting the 

breakdown voltage of short air gaps (three configurations 

are considered in this study, namely, sphere-sphere, rod-

plane, and rod-gaps between rods) based on the static EF 

distribution characteristics, an Orthogonal Design (OD) 

feature reduction approach and SVM. The obtained results 

showed a satisfactory correlation with the experimental 

data, with an average error percentage of around 3.9%. 

 Yao et al. [14] proposed a new approach for determining 

the precise breakdown voltages of the rod-plane space and 

took into consideration two critical factors (temperature 

and humidity). The authors use an approach based on a 

regularization Invariant Risk Minimization Neural 

Network (IRM-NN), and they obtained an average error 

percentage of around 2.59%. 

 

A thorough analysis of the intelligent systems proposed 

previously allowed us to raise the following limits: (1) Unlike 

MLP, RBF is generally favorable for studies whose training 

sample numbers are quite limited; however, it is necessary to 

improve them by optimization techniques and vector 

quantification otherwise. (2) SVR remains favorable in both 

cases. Nevertheless, their rather complex mathematical 

foundation and the need to adjust their hyper parameters make 

their implementation very difficult and expensive in terms of 

implementation time. (3) The SVM use based on the 

translation of a regression problem to a classification problem 

is a bad idea because the obtained results will be non-precise 

and bounded in an interval. (4) Fuzzy logic is a compelling 

alternative. However, it remains based on the living beings' 

logical reasoning, which can make it ineffective in the face of 

unforeseen situations. In this study, we opted for using MLP 

because, on the one hand, we have a reasonably rich database 

which will allow us to train them well; and on the other hand, 

MLP-type neural networks offer a multitude of advantages, 

including: adaptability, non-linear data management, ability to 

extract characteristics from noisy data, robustness to noisy 

data, effectiveness for regression problems and performance 

improvement with the data quantity augmentation, etc. 

Furthermore, the state of the art allowed us to conclude that 

despite the existence of a multitude of approaches to estimate 

the breakdown voltage of different air gap configurations and 

despite the existence of models which will enable switching 

between one configuration to another by taking only one 

configuration at a time. It isn't easy to find models that can 

guarantee the ability to easily adapt to additions of 

configurations (the possibility of extending the model) in a 

relatively simple way (natural, flexible and intuitive) without 

having to resort to neglecting configurations previously 

implemented in the same model. The only researches found 

are that of the studies [21, 22], which proposes a system that 

manages several configurations at the same time. All the same, 

this system remains primarily based on breakdown voltage 

estimation techniques based on mathematical and 

experimental calculation models (the disadvantages of which 

are cited above in the introduction); the SVM are only used to 

refine the tensions already obtained with precision. 

Furthermore, despite the good results obtained, the 

implemented systems remain quite complicated and require a 

fairly long execution time. 

In this sense, the present study first presents a unique 

configuration based on MLP (in adequacy with existing 

models), with the aim of separately approaching the 

breakdown voltages of three distinct air gap configurations: 

Electrode-Sphere-Sphere-Earth (ESSE), Electrode-Sphere-

plane (ESP), Electrode-Symetry-Sphere (ESS). Subsequently, 

the novelty of this research lies in the proposition of a new 100% 

intelligent unifier architecture is proposed to support all the air 

gap configurations studied. Thus, the proposed unified model 

has as first objective to propose a simple and flexible 

architecture 100% intelligent, which allows a fluid extension 

of the model to manage other configuration types. The model 

has as second objective to propose an efficient estimator with 

the speed and the precision of calculation, which will allow to 

consider an integration in real time/processes. 

This paper is organized as follows: Section 2 will be 

devoted to the used database presentation. Section 3 will be 

dedicated to a brief description of the MLP mathematical 

foundation, followed by a well-established description of the 

proposed unified model. Section 4 will be reserved for the 

listing and discussion of the obtained results. Section 5 of this 

paper will serve as a conclusion.  
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2. THE USED DATABASE  

 

Table 1. Training and estimation examples distribution according to each configuration 

 

Configuration Type 
Examples Numbers According to the Sphere Radius 

a=250 mm a=125 mm a=62.5 mm a=31.25 mm Total examples number 

ESSE 29 16 12 8 
65 

Learning: 50.77% Test: 49.23% 

ESP 30 22 15 - 
67 

Learning: 50.76% Test: 49.24% 

ESS - 29 18 11 
58 

Learning: 50.72% Test: 48.28% 

 

We have a database made up of 190 examples taken from 

the research work of Donohoe et al. [25]. Three electrode 

configurations are considered in this study for the test and 

training samples construction: 

- ESSE: containing 65 examples and four inter-electrode 

distances (a=250 mm, a=125 mm, a=62.5 mm and 31.25 

mm); 

- ESP: including 67 examples and three inter-electrode 

distances (a=250 mm, a=125 mm and a=62.5 mm);  

- ESS: containing 58 examples and three inter-electrode 

distances (a=125 mm, a=62.5 mm and 31.25 mm). 

The distribution of test and training sample distributions is 

presented in Table 1 and Figures 1-4 in accordance with the 

configurations considered. For each configuration and each 

diameter, the data sets were split into two: a training set and 

an estimation set. 

Before splitting the global base, a centred/reduced 

normalization process (Eq. 1) was applied in order to keep the 

same distribution for all samples. The normalization is done 

separately by taking into consideration each configuration 

sample for the unique estimators, and the normalization is 

done on a global basis for the proposed hybrid estimator 

implementation. 

 

𝑥𝑖�̃� =
(𝑥𝑖𝑗 − 𝑥�̅�)

𝜎𝑥𝑗

 (1) 

 

where, 𝑥�̅� is the mean and 𝜎𝑥𝑗 is the standard deviation. 

 

 
 

Figure 1. Experimental examples distribution  

(ESSE configuration) 

 

We note that other normalization techniques have been 

tested, namely "Min-Max normalization" (Eq. 2) and "Log 

transformation" (Eq. 3). The three normalization approaches 

were applied to the data set considered in this study, to obtain 

new normalized sets; the approximators performances were 

then evaluated based on each new set. For all configurations, 

the test results obtained with "centred/reduced normalization" 

reflected a significant reduction in the estimation error 

compared to other techniques. 

 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗 − min(𝑥𝑗)

max(𝑥𝑗) − min(𝑥𝑗)
 (2) 

 

𝑥𝑖𝑗
′ = log(𝑥𝑖𝑗) (3) 

 

 
 

Figure 2. Experimental examples distribution  

(ESP configuration) 

 

 
 

Figure 3. Experimental examples distribution  

(ESS configuration) 
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Figure 4. Training and estimation examples distribution 

(unique configuration) 

 

 

3. THE PROPOSED MODELS IMPLEMENTATION  
 

MLP is a supervised learning model with high 

computational capacity. Its structure consists of an “input 

layer”, an “output layer” (interpreted as the response of the 

network) and one or more intermediate layers called “hidden 

layers”. A neuron in the bottom layer can only be connected to 

neurons in subsequent layers. In this study, the MLP is 

considered for the breakdown voltages calculation in short air 

gap configurations; it is, in fact, a regression problem. 

The regression model hyperparameters selection is a crucial 

and essential step for an intelligent mathematical model design, 

capable of behaving effectively in the face of test examples 

never before seen. For an MLP type approximator, the 

optimized parameters are those relating to: hidden layer 

number, the hidden layer neuron number, the activation 

functions, the metric chosen for the learning error evaluation 

and the learning algorithm. 

 The hidden layer neuron number is usually proportional to 

the input vector size. Our test and training examples are 

samples that each has three parameters, therefore, a 

single hidden layer is sufficient to guarantee good 

prediction results (a higher number of hidden layers can 

cause the estimator overfitting). 

 The hidden layer neurons number is fixed empirically by 

testing several configurations whose neurons number is 

included in the range (8-25); each configuration was 

repeated ten times due to the synaptic weights random 

initialization (at the beginning of training). The keeping 

configuration is the one that gives the best result (Table 

2). 

 As activation functions, we used a “Tansig-type” 

activation function for the hidden layer neurons and a 

“Purelin-type” activation function for the output layer 

neurons. 

 The learning algorithm and the error evaluation metric 

used are respectively, the backpropagation learning rule 

and Mean Square Error (MSE); due to their effectiveness 

which has been proven in several applications. 

 

3.1 Gradient back propagation algorithm  

 

In the multilayer network structure, the gradient back 

propagation method is most frequently used to minimize the 

Mean Square Error (MSE) between the network output and the 

desired output. This algorithm back-propagates the error 

gradient from the output to the input. This operation is 

repeated until the difference between the network output and 

the desired output becomes acceptable (Figure 5).  

 

 
 

Figure 5. Synaptic weights modification in supervised 

learning 

 

Learning by backpropagation is carried out in successive 

steps, which are described above [26, 27]: 

1) The synaptic coefficients are initialized with small 

random values (NB: large values tend to cause the activation 

functions to become saturated). 

2) Presentation of the characteristic vectors as input to the 

classifiers. 

3) Iteratively calculate the neuron states in the following 

layers using Eq. (2). 

 

𝑦𝑗
𝑘 = 𝑓 (∑ 𝑤𝑗𝑖

𝑘

𝑁

𝑖=1

. 𝑦𝑖
𝑘−1) (4) 

 

with: 

𝑓: activation function. 

𝑁: neurons number in layer k-1. 

𝑘: current layer number. 

𝑦𝑗
𝑘: output of neuron j from layer k. 

𝑤𝑗𝑖
𝑘: connection between neuron i of layer k-1 and neuron j 

of layer k. 

𝑦𝑖
𝑘−1: output of neuron 𝑖 from layer k-1. 

 

4) Calculation of the error gradient made on neuron i in the 

output layer: 

 

∆𝑗
𝑘= 2𝑓′ (∑ 𝑤𝑗𝑘

𝑘 . 𝑦𝑗
𝑘−1) . (𝑑𝑗

𝑘 − 𝑦𝑖
𝑘) (5) 

 

with: 

𝑓′: the derivative of the function f. 

𝑑𝑗
𝑘: the desired output for neuron i in layer k. 

5) Back-propagated error gradients calculation from layer k 

to layer 1: 

 

∆𝑗
𝑘−1= 2𝑓′ (∑ 𝑤𝑗𝑘

𝑘 . 𝑦𝑗
𝑘−1

𝑁

𝑖=1

) . ∑ ∆𝑗
𝑘

𝑁

𝑖=1

𝑤𝑗𝑖
𝑘 (6) 

 

6) Synaptic coefficients update: 

 

𝑤𝑗𝑖
𝑘(𝑡 + 1) = 𝑤𝑗𝑖

𝑘(𝑡) + ∆. 𝛿𝑗
𝑘. 𝑦𝑗

𝑘  (7) 
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with: 

𝛥: is the gradient step. 

 

Repeat all steps, except the first, each time for a new 

characteristic vector, until the stop test is activated. 

 

3.2 MLP for a separate configuration breakdown voltage 

estimating  

 

This sub-section will be devoted to presenting the 

methodology adopted to implement our unique intelligent 

estimators, each of which is responsible for interpolating the 

breakdown voltages of a single electrode geometry 

configuration. Each selected architecture is a three-layer 

configuration (Figure 6): 

- An input layer: made up of two neurons, the first receiving 

the distance, and the second receiving the radius.  

- A single hidden layer: the number of which is fixed 

empirically by testing several values and keeping the one 

that gave the best result (Table 2). 

- An output layer is made up of a single neuron that returns 

the estimated breakdown voltage. 

The MSE evaluation is shown in Figures 7-9. From the three 

figures, we can see a perfect convergence with quadratic errors, 

which are of the order of ESSE: 6.295, ESP: 6.966 and ESS: 

2.0598. These findings prove the effectiveness of the unique 

configurations proposed. 

 

3.3 MLP unified model 

 

The goal of this section is to propose a compact architecture 

that makes it possible to address the problem in its entirety by 

supporting all three configurations (ESSE, ESP, and ESS). The 

training and testing data are the concatenation of the sets used 

to train and test the networks of the three configurations (ESSE, 

ESP and ESS) individually. The development of this unique 

network (see Figure 10) requires: 

- There are three input neurons: one that receives the 

distance from which we want to estimate the breakdown 

voltage, one that receives the radius, and one that 

receives the configuration type (1 for SST, 2 for ESP, 

and 3 for ESS). 

- One hidden layer whose neuron number was fixed 

empirically by testing several values and keeping the one 

that gave the best result (Table 3). 

- A single output neuron that gives the estimated 

breakdown voltage. 

The squared error during the iterations is schematized in 

Figure 11. We see a very satisfactory convergence (with an 

MSE of around 11.5835), which once again proves the 

effectiveness of the proposed configuration. 

 

 
 

Figure 6. Graphical representation of the single model's 

configuration 

 

 

 
 

Figure 7. MSE error evolution during the iteration  

(ESSE configuration) 

 

 
 

Figure 8. MSE error evolution during the iteration  

(ESP configuration) 

 

 
 

Figure 9. MSE error evolution during the iteration  

(ESS configuration) 

 

 
 

Figure 10. Graphical representation of the unique model 

configuration 
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Table 2. MSE evolution according to the hidden layer neurons number 

 
Neurons Number 5 7 9 11 13 15 17 19 21 23 25 27 29 

ESSE 33.20 37.19 19,88 11.65 6.29 8.64 9.76 22.18 25.23 16.15 32.23 33.31 34.86 

ESP 29.85 35.10 18.85 12.72 6.96 9.66 10.62 26.84 23.24 17.55 33.41 31.47 35.85 

ESS 5.92 3.78 2.96 4.42 2.05 3.57 4.65 3.01 4.30 3.59 5.61 5.10 6.66 

 

Table 3. MSE evolution according to the hidden layer neurons number 

 
Neurons Number 8 10 12 14 16 18 20 22 24 26 

MSE 62.19 46.25 46.39 96.81 21.65 11.58 16.79 28.78 35.48 48.98 

 
 

Figure 11. MSE error evolution during the iteration  

(unique configuration) 

 

 

4. RESULTS AND DISCUSSION  

 

This section presents the obtained results after learning our 

different unique models and the proposed global model. 

 

4.1 Electrode-Sphere-Sphere-Earth (ESSE)  

 

After the learning phase comes the test phase, from which 

the estimator performance is tested, Figure 12 illustrates the 

obtained results in the test phase. The outputs given by the 

network coincide in the majority of cases with the desired 

outputs with an MSE of 6.71%. 

In order to properly view and analyse the obtained results, 

we list in Table 4 the obtained estimates and the estimation 

error for each distance. We see that the testing errors for all the 

sphere radius are insignificant and almost zero. This 

underlines the undertaken approach effectiveness and also 

proves the efficient execution of the model training phase. 

 

4.2 Electrode-Sphere-plane (ESP)  

 

Once the network was trained, we presented it with all the 

experimental test data; the network responses are listed in 

Table 5 and Figure 13. 

We notice from the obtained test results that the calculated 

output and the expected output are practically identical with 

an equal MSE to 7.15%. This confirms that the proposed 

network is well-trained and is able to behave effectively when 

faced with new examples. 

 

 
 

Figure 12. Obtained test results by the proposed architecture 

(ESSE configuration) 

Table 4. Error in test (ESSE configuration) 

 
Sphere Radius 250 mm 

Estimated output 193 317 416 490 558 622 675 711 747 780 805 832 856 871 

Desired output 195 320 415 495 560 620 670 710 750 780 810 830 855 870 

Error 2 3 -1 5 2 -2 -5 -1 3 0 5 -2 -1 -1 

Sphere Radius 125 mm 

Estimated output 133 230 301 355 396 425 444        

Desired output 130 235 305 355 400 425 445        

Error -3 5 4 0 4 0 1        

Sphere Radius 62.5 mm 

Estimated output 166 191 210 225 236 240         

Desired output 165 190 210 225 235 245         

Error -1 -1 0 0 -1 5         

Sphere Radius 31.25 mm 

Estimated output 77 105 122 131           

Desired output 75 105 120 130           

Error -2 0 -2 -1           

210



Table 5. Error in test (ESP configuration) 

 
Sphere Radius 250 mm 

Estimated output 379 544 629 679 715 744 771 794 817 853 911 965 1014 1057 1109 

Desired output 380 540 630 680 715 745 775 795 820 855 915 960 1010 1060 1110 

Error 1 -4 1 1 0 1 4 1 3 2 4 -5 -4 3 1 

Sphere Radius 125 mm 

Estimated output 247 330 380 413 457 489 526 563 600 635 672     

Desired output 250 325 380 415 455 485 525 560 600 635 670     

Error 3 -5 0 2 -2 -4 -1 -3 0 0 -2     

Sphere Radius 62.5 mm 

Estimated output 171 205 218 229 248 343 427         

Desired output 175 205 220 230 245 345 425         

Error 4 0 2 1 -3 2 -2         

 
 

Figure 13. Obtained test results by the proposed architecture 

(ESP configuration) 

 
 

Figure 14. Obtained test results by the proposed architecture 

(ESS configuration) 

 

Table 6. Error in test (ESS configuration) 

 
Sphere Radius 125 mm 

Estimated output 137 218 265 307 345 379 409 435 459 479 497 513 527 540 

Desired output 140 215 265 310 345 380 410 435 455 475 495 515 530 540 

Error 3 -3 0 3 0 1 1 0 -4 -4 -2 2 3 0 

Sphere Radius 62.5 mm 

Estimated output 88 133 171 201 227 241 265 285 305      

Desired output 85 135 170 200 225 240 265 285 305      

Error -3 2 -1 -1 -2 -1 0 0 0      

Sphere Radius 31.25 mm 

Estimated output 63 85 115 134 152          

Desired output 65 85 115 135 150          

Error 2 0 0 1 -2          

4.3 Electrode-Symmetry-Sphere (ESS) 

 

At the end of the learning phase of this new geometry 

configuration, the test examples were presented as input to the 

regression model; the breakdown voltages estimated by the 

network in the test phase are listed in Table 6 and Figure 14 

(separately for each sphere radius). 

The test results show that the calculated output and the 

expected output are practically identical with an MSE equal to 

3.82%, this confirms that the proposed network is well-trained 

and can behave effectively when faced with new examples; 

and once again prove the effectiveness of: the two input 

choices, the adopted procedure to choose the hidden layer 

neuron numbers and the learning procedure. 

 

4.4 Unified configuration 

 

Once the network was trained, we tested it by first 

presenting the test data for each configuration individually 

(Figures 15-17) and then all the experimental data (Figure 18), 

the error representation is also shown in Figure 18. The 

obtained results reflect in the majority of cases, an estimated 

tension that coincide with the real values with an MSE of 

around of 11.84%. 

In conclusion, we note that the proposed hybrid model, 

which is based mainly on a universal MLP-type estimator 

trained with the gradient back-propagation algorithm, 

effectively addresses the problem of estimating the breakdown 

voltage from the distance between electrodes; since, in all 

cases, the error between the actual breakdown voltage and the 
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estimated voltage does not exceed 10 KV. Theoretically these 

results are very encouraging; in the worst case an error of 10 

KV for example, for a breakdown voltage of 380 KV is 

insignificant since the error only represents 2.65% of the 

overall percentage. 

 

4.5 Comparative analysis 

 

A comparative study is necessary to position this study in 

relation to the studies previously proposed in the literature. 

However, it is not apparent to favour one result or another; 

several parameters must be taken into consideration. So, for 

comparison, Table 7 below illustrates the results of some 

studies similar to ours from the point of view of the following: 

considered configuration type, concerned configuration 

number at the same time, air gap type, and MSE error. 

 

 
 

Figure 15. Obtained test results by the proposed unified 

architecture (ESSE configuration) 

 
 

Figure 16. Obtained test results by the proposed unified 

architecture (ESP configuration) 

 

 
 

Figure 17. Obtained test results by the proposed unified 

architecture (ESS configuration)

 
 

Figure 18. Global obtained test results by the proposed unified architecture (for all configurations) 
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Table 7. Comparative analysis 

 

Study Configuration Type Configuration Number Air Gap Type 
Samples 

Number 

MSE 

Error 

CS-ω-SVR 

[16, 17] 
rod-rod One configuration at a time Long gap 14 8.8 

MLP [12] point-barrier One configuration at a time Not mentioned Not mentioned 9.91 

RBF-ROM 

[15] 
barrier-point-plane One configuration at a time Long gap ≃ 50 5.8 

EF-SVM [21] 
sphere-sphere, rod-plane, sphere-

plane and sphere-plane-sphere 
four configurations at a time Short gap 25 4.12 

EF-OD-SVM 

[22] 

sphere-sphere, rod-plane and rod-

gaps between rods 
three configurations at a time Short gap 99 6.86 

IRM-NN [14] rod-plane space One configuration at a time Long air gap Not mentioned 2.59 

Current study 

ESSE configuration 

ESP configuration 

ESS configuration 

One configuration at a time 
Short gap 

65 

67 

58 

6.71 

7.15 

3.82 

Unified model three configurations at a time 190 11.84 

 

From the table, we can see that the results obtained with the 

proposed approach are comparable and, in some cases, surpass 

other studies [12, 16, 17]. Indeed: 

- The study [15] considers only one configuration at a time 

and exposes lower MSE rates compared to our approach; 

however, the authors use a minimal test sample number. 

In addition, our study treats all the diameters for each 

configuration at the same time, which adds a certain 

complexity degree to the regression task, unlike other 

research. Finally, the study considers a long air gap type, 

which facilitates the estimating breakdown task, unlike 

the fairly small inter-electrode distances. 

- As we have already mentioned, the studies [21, 22] remain 

the only studies that consider several configurations 

simultaneously. Our results are comparable to theirs, 

which present slightly basic MSE. But once again, our 

approach was validated on an example set twice as large 

as the study [22] and four times as large as the study [21]. 

We also recall that these two studies are mainly based on 

traditional approaches (the disadvantages of which were 

discussed in the introduction section). AI approaches were 

used to validate the obtained results, and they were based 

on translating a regression problem into a classification 

problem (much less precise and reliable). 

All of these findings justify the proposed approach's 

effectiveness and validity. It significantly simplifies the task 

of estimating breakdown voltages, thus avoiding 

unforeseeable accidents that could be caused in electrical 

networks. 

 

 

5. CONCLUSIONS 

 

Through this research, a new unified intelligent model for 

predicting short-gap breakdown voltages based on the MLP 

neural network is proposed. To do this, we proceeded in a 

progressive manner: 

- We first proposed specific automatic networks to estimate 

breakdown voltages separately for each of the following 

three configurations: ESSE, ESP and ESS. 

- We have introduced a global estimator based on an MLP, 

able to support all configurations, thus allowing an 

integrated approach for the breakdown voltage estimation. 

- We also proposed a learning process to determine the 

neuron's numbers in the hidden layer for the selected 

configurations, which contributes to minimizes the MSE 

as much as possible and optimizes the networks 

estimation. 

The obtained estimates and desired outputs are 

approximately identical in all cases, and the error is practically 

zero for all the geometries considered in this study (the unified 

architecture and the specific architectures). Comparisons 

between the obtained results with different approaches 

reported in the literature [12, 14-17, 21, 22] also indicate the 

effectiveness, validity and significant impact of the proposed 

unified model despite its simplicity. 

These results are very encouraging and confirm the 

effectiveness of the adopted approach and its potential to 

improve the breakdown voltage estimation performance in 

areas involving electrical insulation, bringing precision and 

safety in the electrical equipment sizing. However, this 

research could be improved by considering the following 

future work: studying the environmental factors (temperature, 

humidity, pressure) effect, testing other geometries type, and 

implementing other automatic regressors type and provide the 

merger for greater credibility. 
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NOMENCLATURE 

 

a Radius 

𝑓 Activation function 

𝑁 Neurons number in layer 𝑘 − 1 

𝑘 Current layer number 

𝑦𝑗
𝑘  Output of neuron j from layer 𝑘 

𝑤𝑗𝑖
𝑘 

Connection between neuron 𝑖 of layer 𝑘 − 1 

and neuron 𝑗 of layer 𝑘 

𝑦𝑖
𝑘−1 Output of neuron 𝑖 from layer 𝑘 − 1 

𝑓′ The derivative of the function 𝑓 

𝑑𝑗
𝑘  The desired output for neuron 𝑖 in layer 𝑘 

𝑥�̅� The mean 

𝑥𝑖�̃� Normalized parameter 

 

Greek symbols 

 

𝛥  The gradient step 

𝜎𝑥𝑗  The standard deviation 

 

Subscripts 

 

ESSE Electrode-Sphere-Sphere-Earth 

ESP Electrode-Sphere-plane 

ESS Electrode-Symmetry-Sphere 

MLP Multi-Layer Perceptron neural network 

MSE Mean Square Error 

AI Artificial Intelligence 

SVR Support Vector Regression 

SVM Support Vector Machine 

CS Cuckoo Search 

RBF Radial Basis Function 

ROM Random Optimization Method 

EF Electric Field 

OD Orthogonal Design 

IRM-NN 
Invariant Risk Minimization Neural 

Network 
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