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Digital pathology involves the conversion of histology slides into digital format to generate 

high-resolution images. Tissue classification, particularly for identifying common types of 

non-Hodgkin lymphomas like mantle cell lymphoma, follicular lymphoma, and chronic 

lymphocytic leukemia, is a crucial application of this technology. Due to the complexity of 

these lymphomas, pathologists often encounter challenges in their diagnosis. However, the 

limited availability of image data in the dataset poses a significant challenge. To solve this 

issue, we present a new technique for augmenting the dataset and enabling more efficient 

model training. In this article, we propose a technique capable of approaching lymphoma 

images. Our idea is to generate lymphoma images by adding a segmented image. The 

reference images are taken from the available dataset. We use two re neural networks. The 

first neural network is image-to-image translation, a technique used to transform the 

appearance or style of images, particularly adversarial neural networks, facilitates this 

process by using inputs from the source domain to produce images that closely match the 

target domain. The second neural network, we use an improved convolutional neural 

network (CNN) algorithm for classifying non-Hodgkin lymphomas. Trained on this 

augmented dataset, the proposed model achieves a classification accuracy of 99.91%. This 

precision is higher than that reported by Khelil et al. in their study. Moreover, we 

acknowledge the ethical implications of generating synthetic medical images and propose 

guidelines for ensuring the ethical conduct of our proposed technique. 
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1. INTRODUCTION

The field of digital pathology pertains to the collection, 

organization, dissemination, and interpretation of pathology 

data and slides within a digital environment. Glass slides are 

scanned with a scanning apparatus to create digital slides, 

which are high-resolution digital pictures that may be seen on 

computer screens or mobile devices. With the introduction of 

digital scanners that can generate virtual slides, the area of 

digital pathology (DP) has arisen as a critical avenue in 

diagnostic medicine [1]. This revolutionary technology 

provides high-resolution images of histology slides, allowing 

for more accurate, faster, and cost-effective cancer diagnosis, 

prognosis, and prediction [2]. One of the most notable benefits 

of DP is its capacity to enable computer-aided diagnostics 

(CAD), which combines imaging data with disease variables 

to help pathologists make better clinical decisions [3]. 

The application of CAD (computer-aided diagnosis) 

technologies has showed promise in speeding up the 

evaluation and classification of histopathology pictures by 

lesion grade or type [4]. These technologies use machine 

learning and artificial intelligence algorithms to help 

pathologists make accurate diagnosis. One significant way that 

CAD improves histopathology image processing is by 

automating repetitive processes and identifying regions of 

interest, which reduces diagnosis time and increases efficiency. 

This is particularly crucial when it comes to early cancer 

detection and treatment, because prompt action is critical in 

halting or regulating the spread and advancement of malignant 

cells [5]. 

Non-Hodgkin lymphoma (NHL) is a serious problem in 

oncology, with rapid evolution and several subtypes 

complicating correct diagnosis and therapy [6]. NHL, which 

accounts for a significant number of cancer cases and fatalities 

worldwide, is made up of several subtypes, including Chronic 

Lymphocytic Leukemia (CLL), Mantle Cell Lymphoma 

(MCL), and Follicle Cell Lymphoma (FL) [7]. Distinguishing 

between these subtypes has traditionally relied on pathologists' 

expertise When examining tissue samples stained with 

Hematoxylin-Eosin (H&E), a difficult task due to overlapping 

histopathological characteristics and the requirement for 

comprehensive morphological examination [8]. While deep 

learning (DL) algorithms have proven potential for improving 

pathology diagnosis [7], their performance is strongly 

dependent on the availability and quality of training datasets 

[8]. 

In recent years, machine learning approaches, notably deep 

learning (DL), have demonstrated promise in improving 
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pathology diagnosis via computer-aided diagnostic systems 

[9]. While research classifying lymphoma subtypes using deep 

learning have yielded promising results [10], the accuracy and 

computational efficiency of such systems are dependent on 

optimising deep learning algorithms, this entail carefully 

setting network setups and parameters and creating training 

datasets [11]. 

To ensure the proper functioning of the classifier and ensure 

the accuracy of the classification, a large dataset is essential. 

A large number of images allows the model to capture a 

variety of features and patterns, thus promoting better 

generalization and greater robustness. 

To overcome the issue of poor image availability in datasets, 

novel techniques such as Image-to-image translation (called 

Pix2Pix) have evolved [12]. Pix2Pix are a type of Conditional 

Generative Adversarial Networks [13] (CGANs) used in 

machine learning. They are a type of Generative Adversarial 

Network in which the generator network is limited by extra 

information, such as labels or attributes. This conditioning 

enables CGANs to generate outputs with certain qualities or 

properties. 

Pix2Pixoffer a fresh solution by generating additional 

images, thereby enhancing the size and diversity of datasets. 

In this article, we integrate Pix2Pixinto the synthetic 

framework of non-Hodgkin's lymphoma images to improve 

the dataset. 

Specifically, our main contributions include: suggests an 

optimisation of the Convolutional Neural Network (CNN) 

algorithm for properly classifying NHL subtypes (CLL, FL, 

and MCL). The study enhances computer-aided diagnosis for 

improved cancer management by leveraging recent advances 

in deep learning and integrating images generated by 

Pix2Pixinto the dataset.  

When using Pix2pix to generate synthetic images for 

medical diagnosis, ethical concerns arise. Despite applying 

validation metrics like as RMSE and SSIM, biases and errors 

might still occur, potentially leading to incorrect diagnoses or 

treatment plans. To reduce risks and maintain patient safety, 

rigorous validation against real-world data is critical. 

In Section 2, we examine the current literature to 

contextualize our approach. Section 3 provides a 

comprehensive assessment of approaches that are closely 

related to the subject of our work. Following that, Section 4 

carefully explains the complexities of our novel technique. 

Moving on to Section 6, we methodically provide the results 

and rigorously validate the efficacy of our proposed method. 

Our voyage concludes in a brief conclusion in the final section, 

which summarizes major results and offers insights into 

potential future directions. 

 

 

2. LITERATURE REVIEW 

 

Medical imaging applications of deep learning are relatively 

new. Around 2012, neural networks started to outperform 

conventional computer vision techniques. This was a turning 

point, as evidenced by the ImageNet Large Scale Visual 

Recognition Challenge [14]. Subsequently, there has been an 

exponential growth in research on deep learning for medical 

imaging [15], with ongoing attempts being made to create 

faster, deeper, and more effective networks. 

Researchers have recently introduced a range of deep 

learning-based techniques using deep neural networks to 

automatically classify Non-Hodgkin lymphoma (NHL). In 

their work, Janowczyk and Madabhushi [10] applied the 

AlexNet network for various Pathological Diagnosis (PD) 

tasks, including the classification of lymphoma subtypes. 

Another notable contribution is the proposal of a Semantic 

Histopathological Slide Segmentation Model named EU-Net, 

which is presented in the study [11] for classifying Cutaneous 

Lymphoma and Eczema. In the domain of lymph node 

analysis, Syrykh et al. [16] propose a Bayesian neural network 

(BNN) to automatically differentiate between follicular 

hyperplasia (FL) and benign follicular hyperplasia (FH) using 

whole-slide images. Furthermore, the authors [17] utilized the 

Inception-V3 network design to classify NHL, squamous cell 

carcinoma, and other pathological images. Extending the 

applications, Steinbuss et al. [18] employed an EfficientNet 

convolutional neural network to classify various lymph node 

conditions, including tumor-free reference lymph nodes, nodal 

diffuse large B-cell lymphoma, and nodal small lymphocytic 

lymphoma/chronic lymphocytic leukemia. Hematoxylin and 

Eosin-stained histology images for breast cancer and 

lymphoma are automatically analyzed using the FusionNet 

architecture by Tambe et al [19]. Various convolutional neural 

network designs, such as VGGNet and GoogLeNet, were 

proposed by Brousset et al. [20] to differentiate between 

DLBCL and LF. Soltane et al. [21] classified seven lymphoma 

subtypes (NHL and HL) using a transfer learning technique 

using RestNet50 as a pre-trained model. 

There have been numerous attempts at deep learning 

network designs in order to achieve the best features and 

accuracy in NHL multi-classification in CLL, FL, and MCL. 

Zhang et al. [22] classified CLL, FL, and MCL lymphomas 

with a 98.63% accuracy rate using the ResNet-50 network 

model. A lymphoma subtype categorization based on the 

Initiation V3 network was described by Tambe et al. [19], 

yielding a 97.33% accuracy rate. Ganguly and colleagues 

employed a pretrained Resnet50 model [23] to classify NHL 

subtypes with a 98.13% accuracy rate. FusionNet, a residual 

convolutional autoencoder, was used by Brancati et al. [24] 

with a 96.67% accuracy rate to classify lymphomas in MCL, 

FL, and CLL. 

Janowczyk and Madabhushi [10] achieved a 96.58% 

accuracy rate for NHL subtype classification using the 

AlexNet Network. 

Khelil and Djerou [25] propose an approach regarding 

digital pathology. The authors describe using an improved 

CNN algorithm along with deep learning approaches to 

develop a model for classifying non-Hodgkin lymphomas. 

This model outperformed existing deep learning-based 

methods for this challenge, with a classification accuracy of 

98.7% after training on a curated dataset. 

While these researches have shown promise in classifying 

MCL, FL, and CLL lymphoma using deep learning 

approaches, there is still a need for pre-processing of the 

training dataset and a suitable network configuration in order 

to achieve higher classification accuracy. 

The use of deep learning in recent years, particularly neural 

networks of diverse architectures, has seen exponential growth, 

offering solutions to various problems including domain 

transformation. In the deep learning field, domain transfer—

which is defined as the process of moving data from one 

domain to another by finding commonalities and creating 

connections between them—has attracted a lot of interest [26]. 

This approach proves instrumental in addressing challenges 

such as image/scene discrepancies during both training and 

practical application, allowing for the modification of specific 
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data features while preserving others [27]. 

Conditional Generative Adversarial Networks (CGANs) 

have emerged as a pivotal advancement in domain transfer, 

significantly enhancing the effectiveness of this process [28]. 

By introducing conditional variables, CGANs enable greater 

control over the behavior of the generative network, ensuring 

outputs adhere to user-specified distributions and exhibit 

enhanced stability [29]. Despite this control, CGANs maintain 

diversity in generated results, contributing to their widespread 

adoption across various domains and problem-solving 

contexts [30]. 

The introduction of conditional variables represents a 

significant departure [13]. This innovation addresses a critical 

limitation of GANs, namely, the inability to control output, 

thereby enhancing the practicality and applicability of 

generative models [31]. CGANs have since been subject to 

extensive research and refinement, with numerous studies 

exploring enhancements and adaptations tailored to specific 

application scenarios [32-34]. 

Despite the proliferation of research on GANs and CGANs, 

there remains a notable gap in comprehensive surveys 

focusing specifically on the subject of domain transfer CGANs. 

While existing literature provides valuable insights into the 

models and applications of GANs, there is a need for more 

targeted investigations into the unique challenges and 

opportunities presented by CGANs in domain transfer 

contexts [13]. In order to close this gap, this work provides an 

extensive analysis of CGANs, discussing key research 

findings, and identifying ongoing challenges and avenues for 

future exploration. Through this endeavor, we hope to 

stimulate further research and innovation in the field of 

CGANs and domain transfer. 

The first comprehensive framework for conditional GANs-

based image-to-image translation was presented by Isola et al. 

[12], then Wang et al. [35] developed it to produce high-

resolution images. Recently, research have sought to teach 

visual translation without supervision. 

This approach aims to optimize the CNN method by 

leveraging deep learning principles for precise detection of 

MCL, CLL, and FL NHL subtypes from whole slideimages. 

Furthermore, the dataset will be augmented through the 

utilization of conditional generative adversarial networks. 

Enhancing the accuracy of tumor identification while 

maintaining the integrity and dependability of the findings is 

the main goal of this technology. 
 
 

3. BACKGROUND 

 

3.1 Generative adversarial network 

 

In 2014, Mirza and Osindero [13] and colleagues proposed 

generative adversarial networks, or GANs. These neural 

networks show off their ability to produce realistic images 

from random noise by competing with one another. The 

generator makes synthetic data, while the discriminator tries 

to separate created data from real data. Numerous 

advancements in the production of realistic images and data 

have been made possible by this method. Numerous GAN 

variants have been created. Radford et al. [36] introduced 

DCGANs in 2016, which increased the quality and stability of 

the generated images. Arjovsky et al. [37] introduced WGANs 

in 2017, a novel loss function designed to enhance the 

convergence of GANs. By adjusting the style and attributes of 

the photos, Karras et al.'s 2018 [38] development StyleGANs 

allowed for the generation of even more realistic images. Since 

then, GANs have developed further, becoming a strong and 

adaptable instrument in numerous computer vision and 

machine learning domains. 

Generative neural networks, particularly generative 

adversarial networks, have been widely used in image 

processing [13]. The discriminator and generator are the two 

key components of this architecture. The objective of the 

generator is to produce samples that closely resemble 

authentic data, while the discriminator's role is to differentiate 

between genuine samples and those that are artificially 

generated. To be more precise, the generator creates data 

samples, such pictures, from noise, which is usually taken 

from a latent probability distribution. Conversely, the 

discriminator, which is often implemented as a convolutional 

neural network based classifier, receives both synthetic 

samples generated by the generator and actual samples from 

the dataset. Its job is to determine whether these samples are 

phony or authentic. As training progresses, the discriminator 

aims to increase classification accuracy, The generator seeks 

to generate more realistic samples. This dynamic is captured 

in the GAN's cost function: 

 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥∼𝑃𝐷𝑎𝑡𝑎(𝑥)
[𝐿𝑜𝑔𝐷(𝑥)] 

+𝐸𝑍∼𝑃𝑍(𝑍)
[𝐿𝑜𝑔(1 − 𝐺(𝑍)))] 

(1) 

 

The networks that D and G represent are the discriminator 

and generator respectively, x is the input data, while z is a 

latent space. 

GANs in medical imaging help with disease identification, 

treatment planning, data augmentation, and picture production. 

They help video game developers generate procedural content, 

build immersive environments, and enhance non-player 

character behavior. GANs are used in the film and visual 

effects industries for producing virtual sets, character designs, 

enhanced special effects, and face animation. 

 

3.2 Image-to-image translation 

 

Image-to-image translation [12], the process of converting 

one image into another while preserving some visual aspects 

of the source. For this method to understand complex 

correlations between input and output images, it uses 

sophisticated machine learning techniques such as GANs, 

conditional adversarial networks, and convolutional neural 

networks. 

Pix2Pix is a special type of CGAN designed for generating 

images by performing image-to-image translation. 

To make sure that the outputs cannot be discriminated from 

"real" images, pix2pix uses adversarial training loss LcGAN in 

addition to the pixelwise regression loss L1 between the 

translated image and the ground truth. The aim is: 

 

𝐿 = 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) +  𝜆𝐿𝐿1
(𝐺) (2) 

 

 

4. PROPOSED METHODOLOGY 

 

In this paper, we provide a novel technique to diagnosing 

non-Hodgkin's lymphoma that employs two neural networks. 

To begin, we use a conditional generative adversarial network 

(cGAN) to create synthetic images of histology slides and 

thereby augmenting the dataset. Second, we use a CNN to 

precisely classify NHL subtypes (CLL, FL, and MCL). 
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4.1 Description of the proposed system 

 

This section details our technique, with our primary 

objective being the reproduction of authentic high-resolution 

images of histological slides for the diagnosis of non-Hodgkin 

lymphoma. In Figure 1, we illustrate the architecture of our 

approach. 

Our approach begins with getting the dataset, which is then 

augmented with extra data via Pix2Pix. The data is then pre-

processed before being put into the CNN. The preprocessed 

dataset is then divided into three steps: data collection, 

preprocessing, and dataset splitting. 

 

 
 

Figure 1. Diagram depicting the conceptual framework of 

the proposed system 

 

4.2 Image-to-image translation description 

 

In this section, we detail the specific process of the Image-

to-image translation neural network as illustrated in Figure 1. 

Here is an overview of the steps: 

• Semantic segmentation: Using semantic, 

segmentation techniques [39], all of the images in the 

dataset are first segmented. By giving each pixel in the 

image a class label, semantic segmentation divides the 

image into sections according to the semantic content. 

• Concatenation with segmented Images: Every real 

image in the dataset is combined with the matching 

segmented image. It is likely that the original image's 

pixel values and the class labels determined by the 

semantic segmentation are combined in this 

concatenation process. 

• Generator Input: Generator Input: The generator 

network receives the concatenated images as input. 

Based on the segmentation masks' semantic 

information, the generator subsequently has the ability 

to translate the input images between different 

domains. 

• Concatenation with generated images: Each generated 

image is concatenated with its segmented counterpart 

following the generator's production of translated 

images. During the adversarial training phase, this step 

probably helps the discriminator network by giving it 

more semantic information. 

• Discriminator input: The concatenated pairs of 

real/generated images and their segmented 

counterparts are fed into the discriminator network. 

The discriminator is trained to distinguish between 

legitimate and falsely produced images by taking into 

account both visual aspects and semantic data 

communicated by segmentation masks. 

• Data augmentation: All generated images are added to 

the initial dataset, augmenting it with the translated 

images. This expanded dataset is then prepared for 

further training or evaluation. 

This process incorporates semantic segmentation 

information into the image-to-image translation pipeline, 

potentially improving the quality and semantic consistency of 

the generated images. 

 

4.3 Dataset description 

 

The National Intelligence Authority (NIA) vetted the 

dataset for the identification of three forms of lymphomas: 

mantle cell lymphoma (MCL), follicular lymphoma (FL), and 

chronic lymphocytic leukemia (CLL) [40]. With a resolution 

of 1388 × 1040 pixels, it consists of 374 photos in total. In 

particular, there are 139 photos for follicular lymphoma, 122 

images for mantle cell lymphoma, and 113 images for chronic 

lymphocytic leukemia (see Table 1). 

 

Table 1. Dataset description 

 
Lymphoma CLL FL MCL 

Before 113 139 122 

After 226 278 244 

 

 
 

Figure 2. The input of the discriminator, left: real image, 

right: segmented image 

 

We use the Pix2pix neural network to augment this dataset, 

as explained in section 4.2We begin by segmenting all of the 

images in the dataset using semantic segmentation [37]. These 

images will subsequently be treated as entering the generator. 

We next concatenate each genuine image with its segmented 

equivalent, as illustrated in Figure 2. Next, we concatenate 

each image generated by the generator with its segmented 
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counterpart. These photos will subsequently be used as a 

secondary input to the network's discriminator. All the images 

produced will be added to the initial dataset, then the latter will 

be sent for data preparation. 

 

4.4 Preprocessing 

 

Before inputting data into the CNN, the initial phase is Data 

Preparation, consisting of three key components: Data 

Collection, Preprocessing, and Dataset Splitting. 

The data is prepared using two preprocessing steps: 

normalization and patch extraction. Rescaling is a simple 

normalization technique [10] that modifies image pixel values 

to fall within the range [0,1]. The consistency of various 

components within a data structure is enhanced by the use of 

data normalization. The first stage in this method is to 

eliminate any duplicate entries from the dataset. Once this is 

done, the focus turns to logically structuring the data. Dataset 

normalization is essential because the range of data values can 

impact how effective neural networks are. We use the MAX-

MIN scaling technique in our strategy, which is represented by 

the following equation: 

 

𝐹(𝑥𝑖) =
𝑥𝑖 − 𝑚𝑜𝑖𝑛(𝑥)

max(𝑥) − min (𝑥)
 (3) 

 

The process of extracting patches from a dataset entails 

splitting each image into smaller patches and assigning each 

patch to the appropriate class. The learning dataset is enhanced 

by this procedure [41]. In this particular case, each normalized 

image is divided into 64×64 patches that overlap by 4 pixels. 

Next, these patches are taken out of every picture in the 

normalized dataset. In the NIA curated dataset, 374 photos 

yield a total of 292468samples (patches), which are further 

divided into three sub-types. 

Table 2 displays the amount of photos and patches for each 

class (CLL, FL, MCL) in Dataset and Paches-Dataset, 

respectively. 

 

Table 2. Whole sample dataset as well as patch dataset 

 
 CLL FL MCL Total Samples 

Dataset 266 278 244 748 images 

Patches-Dataset 88366 108698 95404 292468 patches 

 

The data is prepared using two preprocessing steps: 

In data analysis, it is usual procedure to partition a dataset 

into test, validation, and training sets. Although the k-fold 

cross-validation method is generally used for smaller datasets 

[42], we chose not to apply this strategy because our large 

dataset consisted of 292468 items. Rather, we divided up the 

patches from each class into three categories: training, 

validation, and testing. 

Using the training set, the training phase seeks to create a 

function that can correctly map input patches to the relevant 

labels (MCL, CLL, or FL). CNNs are a type of supervised 

deep neural network composed of convolutional, pooling, and 

fully connected layers, are used to accomplish this. In feature 

extraction, the convolution and pooling layers are essential 

because they allow the network to recognize unique patterns 

in the data [43]. 

To extract and map local features from the training set, the 

architecture first alternates between a convolutional layer and 

a pooling layer. A series of fully connected layers come after 

this. The feature maps are classified using a softmax function 

in the last layer. It also assigns scores reflecting the likelihood 

that each patch corresponds to one of the previously learned 

classes. 

The softmax function has the following formula: 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝑗

 (4) 

 

The Z represents the values obtained from the output layer's 

neurons. The exponential serves as the nonlinear function. 

Later, these values are normalized by dividing them by the 

total of exponential values before being converted into 

probabilities. 

 

4.5 Convolutional neural networks learning 

 

Many computer vision applications rely heavily on 

convolutional neural networks [9], examples include natural 

language processing and picture processing. A mathematical 

technique called "convolution" combines many functions A 

pooling layer and a completely connected layer come after one 

or more convolutional layers in a typical CNN design [9]. The 

accuracy of the total forecast is heavily influenced by how the 

CNN parameters are initialized. The hyperparameters were 

empirically established at first and adjusted in the training 

process. Through numerous training-validation cycles, we 

continuously tweaked these hyperparameters, then refined the 

training dataset until the CNN achieved a satisfactory degree 

of learning accuracy. Finally, we used the test set to evaluate 

the performance of the finished model. 

 

4.6 Evaluation metrics 

 

There are several approaches for assessing the performance 

of categorization models. A frequent way is to use a confusion 

matrix, which provides a short assessment of the model's 

effectiveness. This matrix computes metrics such as True 

Negatives and True Positives (TP) for accurately predicted 

situations, as well as False Positives (FP) and False Negatives 

(FN) for examples that are misclassified. Furthermore, our 

models were evaluated using measures such as Recall, 

Precision, F1-score, and AUC, as detailed in Table 3. 

These latter measures are frequently used to assess 

classification models, however they are not always appropriate 

for image generating algorithms such as Pix2Pix. To evaluate 

these models, particular metrics such as visual quality, 

diversity of generated samples, image sharpness, and 

subjective criteria like aesthetics and consistency must be used. 

The cost function used follows the usual GAN formulation. 

To appropriately describe the distribution of the input data, we 

integrate the Lgan equation, which is defined in Eq. 2. 

Furthermore, to achieve great structural similarity with the 

reference image, we integrate the structural similarity index 

(SSIM) in the cost function. This inclusion seeks to reduce the 

disparity between the generated image and the ground truth 

image. The SSIM value is calculated by the following formula.
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Table 3. Evaluation metrics for categorization models 

Metric Definition Formula 

Precision 
Assesses the model’s overall predictive performance 

across multiple classes. 
Precision = 

𝑇𝑃

𝑇𝑃+𝐹𝑃

Recall 
Analyzes the model’s ability to discover all positive 

individuals. 
Recall = 

𝑇𝑃

𝑇𝑃+𝐹𝑁

F1-score A metric that combines precision and recall values. F1-score = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

AUC 

AUC stands for Area Under the Curve. AUC curve 

represents the relationship between false positives 

(FPR) and true positives (PR) 

PR = 
𝑇𝑃

𝑇𝑃+𝐹𝑁

FPR = 
𝐹𝑃

𝐹𝑃+𝑇𝑁

𝑆𝑆𝐼𝑀 =
2(𝜇𝑥𝜇𝑦 + ∁1)(𝜎𝑥𝑦 + ∁2)

(𝜇𝑥
2 + 𝜇𝑦

2 + ∁1)(𝜇𝑥
2 + 𝜇𝑦

2 + ∁2)
(5) 

where, μx and μy represent image windows. x and y are the 

averages of windows x and y, respectively. The x and y 

variances of the window are μx2 and μy2, respectively. 

Covariance between x and y is σxy.C1, C2 are constants. To 

achieve the end objective, we combine Eqs. (2) and (5). 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺)
= 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷)
+ 𝛽𝐼𝑠𝑠𝑖𝑚(𝐼𝑟𝑒𝑓 . 𝐼𝑝𝑟𝑒𝑑)

(6) 

Lssim=1−SSIM generates images that are structurally similar 

to the reference images. 

5. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we test our neural networks' performance 

using datasets created by the study [40] as well as our own 

datasets presented in Section 4.2. Furthermore, we conduct a 

thorough comparison, both quantitatively and qualitatively, 

against conventional methods, and conduct an ablation 

research to illustrate the efficacy of the attention module built 

into our model. 

Our work made extensive use of the Kaggle platform 

account, the T4 GTU accelerator, and open-source machine 

learning technologies such as TensorFlow, Keras, and Pandas. 

We used these resources to create and train our models, 

utilizing a categorical Cross-Entropy Loss Function and an 

Adam Optimizer for model compilation. Our training sessions 

lasted 150 epochs, which ensured that the model was 

completely trained and optimized. 

Figure 3 shows a visual comparison of our generative 

model's outcomes to the reference images generated by the 

study [40]. Our generative neural network is capable of 

producing results that are consistent with reference images. 

This is supported by the quantitative comparisons in Table 4 

and Table 5. With little effort, our method offers satisfactory 

precision and visual quality results. 

Figure 4 depicts the architecture of our CNN, as stated in 

Figure 1, which includes convolution layers, batch 

normalization layers, fully linked layers, and dense layers. 

Figures 5-7, as well as Table 5, indicate the progression of 

learning and validation rates. 

To evaluate the proposed model, a confusion matrix is 

computed on the test set (see Figure 5, 6 and 7), with 1000 

image patches selected at random from each class as instances. 

The investigation of the confusion matrix offers useful 

information about the model's performance. Out of 1000 

picture patches per class, the proposed model achieves 

remarkable prediction accuracy, correctly detecting 983 MCL, 

988 FL, and 975 CLL. However, there is significant 

uncertainty over the CLL class and both CLL and FL. These 

misclassifications may be due to the underlying similarities 

between CLL and the other classes, as reported in earlier 

investigations [5]. This demonstrates the need for further 

improvement in identifying features between these classes in 

order to improve model accuracy. 

Figure 3. Visual comparison left: real image, right: predicted 

image 

The performance evaluation of our proposed method is 

detailed in Table 6. Additionally, Table 6 also provides the test 

outcomes and a comparison with other learning-based 

techniques for Non-Hodgkin lymphoma (LNH) classification 

utilizing the identical dataset [40]. 
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Figure 4. Architecture of our neural network 

 

Table 4. Quantitative comparison with images from our 

Pix2pix model with dataset [40] in terms of average 

SSIM/RMSE 

 
DataSet RMSE SSIM 

CLL 0.0345 0.945 

FL 0.0245 0.951 

MCL 0.0318 0.918 

 

Table 5. Results achieved by the CNN model 

 
Predicted Class Precision Recall F1-Score 

CLL 99.26% 99.13% 99.29% 

FL 99.48% 99.31% 99.15% 

MCL 99.79% 99.09% 99.55% 

 

Table 6. Test performance compared to learning-based 

techniques 

 
Method Accuracy 

AlexNet [10] 0.965 

Inception V3 Network [17] 0.973 

FusionNet [19] 0.976 

Resnet50[23] 0.981 

Khelil [25] 0.987 

Proposed technique 0.991 

 

 
 

Figure 5. The confusion matrix MCL 

 
 

Figure 6. The confusion matrix FL 

 

 
 

Figure 7. The confusion matrix CLL 

 

The results indicate that the model correctly caught the 

underlying patterns during the training process, as shown by 

its high accuracy ratings. Notably, the model's incredibly low 

loss value of 0.0080, as shown in Figure 8, demonstrates its 

ability to effectively diagnose errors using our technique. 

Furthermore, a recall score of 0.99 for "Class 1", which 

represents the healthy system, demonstrates the model's 

capacity to properly identify 98% of true healthy instances, 

with only 1% of marginals identified as false negatives. When 

it comes to detecting defects in proposed systems, it is critical 

to prioritize precise tumeur categorization over healthy 

instances. Even if a tiny percentage of healthy system 

instances are misclassified, the model's overall performance is 

commendable, effectively addressing security problems 

related with misidentifying failures as healthy instances. 

The study results show that the model has good precision 

and recall, indicating that it can recognize all 3 tumor types at 

the same time. The performance suggests that the modified 

dataset produced better results. 

Training with synthetic data can greatly improve the 

accuracy and resilience of the model. By adding diversity to 

the training dataset, synthetic data assist avoid overfitting and 

enhance generalization to new data. Additionally, it corrects 

dataset imbalances and improves the model's resistance to 

noise and fluctuations. Compared to gathering data from the 

real world, synthetic data are more affordable and hasten the 

convergence of models. To prevent introducing biases, it is 
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imperative to ensure the quality of synthetic data. Overall, by 

using varied, balanced, and noise-tolerant training examples, 

synthetic data help create machine learning models that are 

more effective. 

Figure 8. Accuracy and loss evolution in the suggested CNN 

tumor detection technique 

6. CONCLUSIONS AND FUTURE WORKS

In this study, we suggested a robust technique for improving 

non-Hodgkin's lymphoma (NHL) diagnosis by integrating two 

powerful neural networks. First, we applied an updated CNN 

algorithm to help pathologists diagnose NHL subtypes such as 

MCL, FL, and CLL. On the other hand, we used a Pix2Pix-

type conditional generative adversarial network (cGAN) to 

create synthetic images of histology slides, allowing us to 

augment our traditional training dataset. This combination of 

two complimentary strategies enabled not just an increase in 

the diversity of the training data set, supporting better model 

generalization, but also a significant improvement in 

performance. Our model obtained a great classification 

accuracy of 99.91%, illustrating the efficiency of our 

technique. 

In the future, we are contemplating numerous areas of R&D: 

· Improving the diversity of synthetic data: We will

investigate more advanced approaches for increasing the 

variety of synthetic data produced, which could lead to 

improved model adaptation to varied clinical scenarios. 

·Extension to other forms of cancer: Our approach could

be applied to other types of cancer, creating new options for 

early detection and therapeutic management of patients. 

·Multimodal data integration: We aim to incorporate data

from various modes, such as magnetic resonance imaging 

(MRI) or positron emission tomography (TEP), to provide a 

more comprehensive assessment of tumors and their responses 

to treatment. 

·Clinical validation and practical implementation: Clinical

studies will be required to validate the effectiveness of our 

model in real-world settings. We also envision progressive 

integration into clinical practices so that patients can benefit 

directly. A preliminary cost study for deploying our system in 

a real-world clinical setting is critical, particularly for cost-

conscious medical facilities. 

·By combining these viewpoints with ongoing advances

in artificial intelligence and medicine, our approach may open 

up new avenues for the diagnosis and treatment of cancer. This 

could help to improve clinical outcomes and the quality of life 

for cancer patients. 

The following developments in the use of neural networks 

to clinical practice have the potential to completely transform 

healthcare: 

·Enhanced Accuracy: AI is capable of making diagnoses

that are more accurate, but it is essential to offer unbiased 

training data. 

· Streamlined Workflow: Healthcare workers can gain

time back via automation, but a smooth AI integration is 

necessary. 

·Personalized Care: AI is capable of creating customized

treatment regimens, but good advice dissemination is essential. 

·Early Disease Detection: AI can identify illnesses at an

early stage, but it might be difficult to keep false-positive rates 

low. 

· Effective Resource Allocation: AI is capable of

optimizing resource utilization, but its suggestions must take 

ethics into account. 

·Constant Improvement: AI is able to pick up new skills

from fresh data, but its effectiveness and security must be 

closely observed. 

·Data Privacy: While AI is capable of handling patient

data securely, maintaining legal compliance and safeguarding 

privacy are essential. 
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