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The utilization of remote sensing satellite imagery is crucial for advancing scientific 

knowledge in identifying water bodies. This technology has diverse applications, including 

natural disaster forecasting, as well as the detection of droughts and floods. Currently, there 

are few programs available specifically designed to locate naturally disappearing water 

bodies. Accurately delineating aquatic features from Very high-resolution (VHR) remotely 

sensed and moderately high-resolution images poses a significant challenge in remote 

sensing. The intricate spectrum combinations resulting from aquatic vegetation, various 

lake/river colours, mud along the sand, and shadows from surrounding plants make it 

difficult to determine water body boundaries. To enhance water body extraction from VHR 

and moderately high-resolution remote sensing images, it is imperative to increase feature 

variety and semantic data. In this study, we employed the nested dense residual network, 

known as D3net, to detect water bodies in satellite images. The Adam optimizer was 

utilized for training the satellite images, minimizing losses in the process. The optimizer 

also identified the optimal values for the activation function and the number of nodes in 

each layer. For segmentation, 5682 Sentinel-2 satellite images (comprising 2841 satellite 

images and their respective masks) were used, focusing on the Europe geo location. These 

masks were generated using the Normalized Water Difference Index (NWDI). The 

proposed model demonstrated a performance of 95.36% Intersection over Union (IOU) and 

96.99% accuracy, making it suitable for edge detection, blurry image recognition, and low-

resolution image detection. While the model is reliable and accurate in its predictions, it 

requires more memory due to the utilization of VHR and moderately high-resolution images 

for segmentation. 
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1. INTRODUCTION

The identification of water bodies in remote sensing images 

is a crucial task for effective management of land and water 

resources, as well as for preventing disasters like droughts and 

floods. Retrieving accurate water information from remotely 

sensed data has long been a significant focus in remote sensing 

data processing. Many existing water body segmentation 

methods struggle to precisely locate the boundaries of water 

bodies. The irregular shape of water bodies poses a challenge 

for traditional threshold-based and machine learning-based 

techniques to accurately segment them. Therefore, traditional 

techniques are not better at segmenting objects in satellite 

images, especially when dealing with complex structures, 

cluttered backgrounds, or objects with varying sizes and 

shapes. Traditional machine learning methods rely on 

extensive frequency analysis and feature extraction based on 

prior knowledge to identify water bodies. Deep learning-based 

approaches have reduced the need for explicit feature 

extraction, but they require a large amount of training data and 

processing capacity to perform well. While deep learning 

models have shown the ability to recognize certain structures 

present in the current context, they still face challenges such 

as the requirement for a substantial amount of training data and 

the blurring of boundary pixels in the segmentation process. In 

this research, the aim is to develop a unique deep learning 

approach that addresses these challenges and improves the 

accuracy of water body segmentation in remote sensing 

applications. 

This research primarily concentrates on accurately 

delineating water bodies in intricate and challenging 

environments, utilizing very high resolution (VHR) and 

moderate high resolution remote sensing imagery. These 

images, covering substantial portions of the Earth's water 

surface, are captured by equipment aboard satellites and 

aircraft. In VHR and moderate high resolution remote sensing 

images, discerning the boundaries of water bodies can be 

difficult. Challenges often arise due to factors such as aquatic 

plants, mud, boats along the coast, and shadows cast by 

adjacent tall plants. In recent years, there has been a significant 

impact on the extraction and detection of natural resources, 

including water bodies and forests, through the analysis of 

satellite images. Regular monitoring of water bodies is 

essential for ensuring their sustained growth. Monitoring 

serves various purposes, such as the early identification of 

drought and flood conditions and effective disaster 
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management. Satellite images have evolved into a crucial tool 

for locating people, animals, buildings, water bodies, and ships. 

The primary objective is the identification of water features 

through the analysis of a substantial dataset of satellite images 

obtained from Kaggle. 

For semantic segmentation, a fully convolutional Nested 

dense residual UNet (NDRU-Net) Deep Learning (DL)-

technique is utilized and it is termed as D3net. There have been 

numerous attempts to use current neural networks to segment 

images; however, D3net performs the best overall with the 

least amount of information loss [1, 2]. In order to produce 

more precise semantic segmentation results, particularly better 

edges and boundaries, several researchers enhanced the basic 

prediction findings [3-6]. To accomplish high-resolution 

(HRL) prediction, Lin et al. [3] employed long-distance 

residual connections for all multi-scale features throughout the 

down sampling procedure. The residual refines module 

(RRM), an independent encoder-decoder created by Qin et al. 

[4], is used to postprocess the semantic segmentation findings. 

To improve the feature maps, Yu et al. [5] suggested using the 

refinement residual block (RRB). In order to maximize the 

approximate prediction outcomes, Cheng et al. [6] created a 

special-purpose refinery network using global and local 

refining. However, the repetitive structural design in the 

majority of these approaches might result in duplication. The 

main contribution of our work: 

·We introduce a straightforward multi-layered residual 

framework referred to as the "nested dense residual UNet" 

designed for segmentation purposes. The NDRU-Net 

incorporate strategies to enhance accuracy, such as the use of 

nested dense residual networks, multi-dilated convolutions, or 

skip connections. These architectural choices can enable the 

model to capture intricate features and improve the precision 

of segmentation. 

·The Adam optimizer was employed for training the 

proposed model, aiming for improved performance. The NDR 

U-Net implement techniques to improve efficiency, such as 

optimizing network architecture incorporating efficient 

training algorithms. Additionally, the model transfer learning 

to expedite convergence. 

· Deep learning visualization, including the use of a 

gradient activation map, was applied to both images and their 

corresponding masks. This visualization method enhances our 

understanding of the network's classification process. The 

NDR U-Net could employ strategies to enhance robustness, 

such as data augmentation during training to expose the model 

to diverse scenarios. Robustness also be improved by careful 

selection of hyper parameters, regularization techniques, and 

thorough validation on a representative dataset. 

The remaining manuscript is structured as follows: section 

2 presents previous state-of-the-art methods; section 3 

describes the datasets used in the work; Section 4 gives the 

proposed method of water body segmentation using NDRUnet; 

section 5 presents the results of proposed method; and section 

6 gives final conclusion of the work. 
 
 

2. RELATED WORK 

 

Recently, work on DL-based water-body segmentation 

from remote sensing data has gained attention and progress [7-

11]. By taking into account both spectral and spatial 

information, Yu et al. [7] are pioneers in developing a CNN-

based technique for water-body extraction from Landsat 

images. This CNN-based method, however, divided an image 

into small tiles in order to make pixel-level predictions, which 

led to a high level of redundancy and low efficiency. A 

constrained receptive field deconvolution network was 

suggested by Miao et al. [8] to extract water bodies from HR 

remote sensing images. To extract water bodies from VHR 

images, Li et al. [9] used a conventional FCN model, It 

performed significantly better than techniques using the 

normalized difference water index (NDWI), support vector 

machine (SVM), and sparsity model (SM). In order to segment 

water bodies more precisely, Duan and Hu [10] suggested a 

unique multi-scale refinement network (MSR-Net) that fully 

used the multiscale properties. Although the MSR-Net has a 

multi-scale module, this model does not take into account 

channel links between feature maps and does not reuse high-

level semantic information. Guo et al. [11] introduced a 

multiscale feature extractor that included four dilated 

convolutions with varying rates and was deployed on top of 

the encoders. They used a straight forward FCN-based 

technique for water-body extraction. This FCN-based 

technique did not extract entire features at different scales; 

instead, it utilized the multi-scale information of high-level 

semantic features. It is clear that feature extraction and 

prediction optimization were prioritized in recent FCN based 

water extraction experiments, but there is still much potential 

for improvement. In order to identify minor water bodies and 

conduct quality analyses in Wuhan, Wang et al. [12] 

developed a model. The approach is based on band analysis 

and image categorization. For quality analysis, a semi-

empirical deep learning algorithm is employed. Since it is 

entirely based on an inversion model, accuracy evaluation is 

performed at regular intervals then finished by the inversion of 

water quality. The methodology has certain flaws, including 

the difficulty of detecting water features in mixed images. A 

technique for segmenting water bodies from remote sensing 

images using mask Region Based Convolutional Neural 

Network (R-CNN) is suggested by Yang et al. [13]. The 

proposed method addresses the drawbacks of inadequate 

resolution and pixel clarity in remote sensing images. Both the 

ResNet-50 and the ResNet101 techniques were used to train 

the model. To solve a number of issues in the field of remote 

sensing, Lira [14] offers a technique. This model makes use of 

optical reflectance’s and segmentation methods. The above 

approach has a problem in that false overlays is shown at 

various points during detection. Lalchhanhima et al. [15] 

proposed a method. That use a hybrid CNN that takes into 

account U-Net and Inception, makes use of sparsely 

distributed SAR data, and speckle noise image segmentation. 

The output of this model depends on a number of aspects, 

including the training, dataset size, and accuracy, among 

others. Due to a variety of variables, Zhang et al. [16] 

discussed the difficulties in precisely determining the limits of 

water bodies. A new combination and multi-feature extraction 

are provided as solutions to these problems. To get rich feature 

representation, three feature extraction sub modules are 

employed for different spaces and connections. A change for 

the current ECDSA and their uses was made by Shang [17] 

The ECDSA’s efficiency and security are enhanced by this 

work. The ECDSA method is chosen because it has fewer 

drawbacks and more advantages than the RSA one. It 

increases effectiveness by analyzing various assaults, such as 

side-channel attacks. A technique, verifiable ECDSA, was 

introduced by Yang et al. [18]. The main objective is to be able 

to use a public key provided by the reliable service to encrypt 
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the digital signature. The biggest disadvantage of this 

proposed work is the storage need of a 270 MB assessment 

look-up table. A model based on Mobile-UNet was created by 

Jing et al. [19] To find fabrics, it uses the CNN approach. 

Segmenting fabric flaws from end to end can be done 

effectively. Simple imbalance is reduced by applying the loss 

function of the median frequency. Using a softmax layer, 

segmentation mask detection is performed. The model’s 

cutting-edge precision is one of its main advantages. 

Tensorflow was used by Wang et al. [20] to give the scientific 

computation of fluid flows. In this project, the graph-based 

module of Tensorflow is utilized. Additional performance and 

accuracy analyses revealed great scalability up to TPU v3 pod. 

The TPU platform is used to create the model. A grid search 

for solar power forecasting with LSTM using Nadam 

Optimizer was found by Sharma et al. [21]. The LSTM 

provides better results for time-series data. In this study, eight 

alternative neural network models and an optimizer are 

compared against the LSTM along with two time series. A 

research of semantic segmentation for aquatic bodies was 

introduced by Erfani et al. [22] The ATLANTIS dataset is the 

foundation of this effort. This might stop emergencies from 

occurring during floods. For the purpose of distinguishing 

between aquatic and non-aquatic environments, the 

AQUANET model was created. The strongest part of the work 

is its dataset, which can cover a wide range of classes with 

different types of dataset. Using high quality satellite images, 

Rajyalakshmi et al. [23] established a method to identify water 

bodies. Thresholding methods are used in this paper. The 

dataset consists of images with a wide range of spectral and 

temporal characteristics. In this study, a brand-new technique 

called single-band threshold employing bilateral filtering is 

used. A technique for IOV with a fault-tolerant ECDSA 

signature was proposed by Lin et al. [24] Moreover, it is 

vulnerable to various attacks. Pedestrians and vehicles can 

communicate with each other. There is a possibility that a third 

party can view this sensitive information during transmission. 

A U-net has been proposed by Chen et al. [25] as a building 

identification technique. Using remote sensing images, this 

model helps identify buildings. It is created by replacing the n-

channel feature maps with a series of smaller meshes.  

Convolutional Neural Networks (CNNs) and U-Net 

architectures have proven to be powerful tools in various 

computer vision tasks, especially in image segmentation. Here 

are some common limitations associated with CNNs and U-

Net: Lack of Global Context: CNNs and U-Net architectures, 

particularly in their basic forms, may struggle with capturing 

extensive global context information. This limitation can 

affect their ability to understand and contextualize 

relationships between distant pixels or regions in an image. 

High Computational Requirements: Training deep CNNs, 

including U-Net, can be computationally intensive. As the 

depth and complexity of the network increase, so does the 

demand for computational resources. This can be a limitation 

in resource-constrained environments or for real-time 

applications. On a multi-spectral image with 13 bands, Kaplan 

and Avdan [26] describe a process that combines the usage of 

a pixel-based index and an object-based strategy. Sentinel-2 

images with resolutions ranging from 10 meters to 60 meters 

are used in the model. The model considers a mountainous and 

urban setting for a better understanding of the performance. In 

above all mentioned methods used limited datasets and 

achieved less accuracy. The mentioned models did not have 

the security for predicted masks and computational cost is also 

more. So, we have developed NDRUNet model for the 

segmentation to achieve the more accuracy and ECDSA is 

used to protect the predicted mask details. 

 

 

3. MATERIALS 

 

A collection of Sentinel-2 aerial images has been gathered, 

specifically focusing on the geographic location of Europe. 

These images encompass numerous water bodies within the 

region [27]. The Sentinel-2 satellite carries a Multi Spectral 

Instrument (MSI) with specific characteristics. Here are some 

specifics about the Sentinel-2 dataset. Spatial Resolution: 

Sentinel-2 provides different spatial resolutions for its spectral 

bands. Each image includes a respective black-and-white 

mask in which the colour black stands for anything other than 

water and the colour white represents water. The masks were 

created using the Normalized Water Difference Index (NWDI), 

which is often used to identify and quantify vegetation in 

satellite images. However, a higher threshold was used to 

identify water bodies. The model receives the water body 

dataset as input. These images were acquired and captured by 

the Sentinel-2 satellite and the spatial resolution ranges from 

10 metres to 60 metres [28, 29]. The dataset consists of two 

directories. First are the images, and second are the masks. 

White means the masks contain no water, while black means 

anything but water. These masks are created using the 

Normalized Water Difference Index (NWDI) [30]. 

Normalized Difference Water Index (NDWI) may refer to 

either of at least two liquid water-related indexes generated by 

remote sensing: One uses near-infrared (NIR) and short-wave 

infrared (SWIR) wavelengths to monitor variations in leaf 

water content, as proposed by Gao in 1996 [31]. This can be 

represented mathematically asWNIR. 

 

𝑁𝐷𝑊1 =
𝑊𝑁𝐼𝑅 −𝑊𝑆𝑊𝐼𝑅

𝑊𝑁𝐼𝑅 +𝑊𝑆𝑊𝐼𝑅

 (1) 

 

where, WNIR and WSW IR is the reflectances of the near infrared 

band and reflectances of near short-wave infrared reflectances 

respectively. 

 

𝑁𝐷𝑊1 =
𝑊𝐺 −𝑊𝑁𝐼𝑅

𝑊𝐺 +𝑊𝑁𝐼𝑅

 (2) 

 

where, WG is reflectances near green bands. Eqs. (1) and (2) 

both are used to monitor the changes in the water level. This 

NDWI creates the digital and visual interpolation of the output 

image that is −1 to 0 shows bright surface and no evidence of 

the water content and +1 represents the water content. 

The evaluation of the proposed approach for water body 

segmentation utilized a dataset obtained from Kaggle, 

consisting of Sentinel-2 satellite images of various water 

bodies. The dataset included a black-and-white mask for each 

image, where black represented non-water areas and white 

represented water areas. The masks were generated using the 

Normalized Water Difference Index (NWDI), a commonly 

used index for vegetation identification in satellite images. To 

acquire the data, the Sentinel-2 API was utilized, and the 

images were pre-processed using rasterio. The masks were 

generated by applying a higher threshold on the NWDI values 

obtained from bands 8 and 3 of the satellite data. The dataset 

contained a total of 5682 images, divided into two directories 

2841 images in the image directory and 2841 corresponding 
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masks in the mask directory. Figure 1 shows the complete 

Flow chart. As an example, Figure 2 likely displays one of the 

input images from the dataset, providing a visual 

representation of the satellite image showing water bodies 

with their corresponding masks. Table 1 clearly shows the 

overall dataset of Training, Testing and validation of Images. 

 

 
 

Figure 1. Flow chart of NDR U-Net 

 

Table 1. Overall dataset 

 
Data Number of Images 

Training 2290 

Testing 300 

Validation 250 

Total 2841 

 

 
 

Figure 2. Sample Images with their respective masks 

4. METHOD 

 

The data used for the proposed methodology comes from 

the Water Bodies dataset provided by the study [27]. The 

dataset consists of masks applied to the corresponding original 

images. 

The dataset does not contain any additional parameters, 

only images. Figure 1 shows the flow chart of NDR U-Net. 

The model is developed incrementally according to the agile 

development methodology to facilitate the incorporation of 

future enhancements and maintenance. Seven key high-level 

phases are used to build the model. 

At the beginning, the data set is fed into the model. The 

exploratory analysis will utilize this data set as its base. 

Exploratory data analysis entails statistically examining the 

data to find any irregularities that might have an impact on the 

model’s performance. This is a precautionary step performed 

at the outset to ensure smooth performance of the model. As 

part of the exploratory data analysis, the original images and 

the masks are first visualized comparatively. The main 

difference is found in some images. These ground truths seem 

to contradict each other. Therefore, the images are checked for 

rotations or padding. In the data preprocessing step, the images 

are transformed.  

The first transformation that must be performed is resizing. 

Few images that have larger dimensions are difficult to 

accommodate in memory and differ significantly from other 

images. So, a threshold of 1500 is applied to both height and 

width, and all those images having dimensions greater than the 

threshold are re-scaled. Mask conversion is the next 

transformation operation that is conducted on the data. In 

Figure 3, when a histogram of the original images is displayed, 

the majority of the values are centered around zero. This can 

be the result of rotation. For those values in the middle, the 

brightness must be increased. This uses histogram equalization. 

Masks, on the other hand, must be divided into two distinct 

values using a threshold and are recorded in jpeg format. The 

process of mask conversion is employed for this. The Scale 

values are the third transformation function that is necessary.  

 

 
 

Figure 3. Histogram equalization of sample image and 

respective mask 

 

The primary objective is to speed up the model’s 

convergence. To do this, the original image is separated into 

the [0, 1] range. The range division does not take the masks 

into account. Padding images is the last transformation 

operation to be performed on the data. Since the model permits 

images of any size, specified padding values shouldn’t be 
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taken into account. Down sampling must be able to split the 

size of the image depending on the strides. More connections 

between non-consecutive layers and the identical size of the 

input and output images are produced by the neural network’s 

specificity. As a result, padding must be used. 

The model is trained using NDRUNet in the fourth 

important phase. NDRUNet performs better in segmentation 

when compared to other techniques [32]. The normal, relu 

hidden activation, and sigmoid output activation are used to 

initialize NDRUNet. Convolution, encoder, and decoder 

blocks must be built in order to create a model using 

NDRUNet. There are two crucial considerations for the 

convolution block’s creation. The filter count, which is set to 

64 by default, serves as the first input for both the convolution 

layer and the other one. The suggested model makes use of 

partial convolution. Encoder and decoder construction is 

straightforward. The encoder takes in inputs in order from top 

to bottom. It has two convolutional layers, ReLU, and batch 

normalization layers for each of them. Each block of the 

decoder needs inputs, a skip connection, and a count of filters. 

To get the final skip connection value, the input is up-sampled, 

and the prior input is additionally concatenated. The 

methodological structure for the model detection of water 

bodies utilizing NDRUNet and tensor flow with ECDSA is 

shown in Figure 4. It gathers the dataset, goes through a 

number of intermediate phases, and then produces the original 

image together with the anticipated mask and an ECDSA 

digital signature. The steps involved to process the proposed 

model are • Collection of Dataset. • Splitting the Dataset into 

train and test groups with a 70:30 ratio. • Data Processing. • 

Building NDRUNet. • Train the model by defining training 

parameters. • Testing the model and calculating IOU. 

 

4.1 Data processing 
 

Data processing is the initial stage before training a model. 

Data must first be pre-processed before it can be utilized as 

input to a model. In this, we can provide input without resizing 

it. The data are cleaned up using this technique, which also 

eliminates trash and unused information. It supports keeping 

the data set consistent. To suit the input of the model, all 

photos in this step are scaled to the same value. Additionally, 

it normalizes the data by reducing the fill bits and scaling the 

image’s pixel values to [0 1]. To get better results during the 

training and testing steps, every image must be the same size. 

So it’s vital to get rid of these pieces. 
 

4.2 Building blocks of NDR U-Net 
 

The building blocks of NDRNet is shown in the Figure 4 

and the architecture of UNet is shown in the Figure 5. The 

proposed architecture of NDRUNet shown in Figure 6 is the 

concatenation of both Unet and NDRNet. The details of the of 

the model are shown in the Figure 7. NDRNet is made up with 

multidilated convolutions that are formed by D2-block [33] in 

the network model. This network model has 2,006,337 total 

parameters and 2,006,337 are trainable parameters. 

 

 
 

Figure 4. Block diagram of waterbody segmentation using NDR U-Net 

 

 
 

Figure 5. U-Net architecture 
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Figure 6. Nested dense residual network (NDRNet) architecture 

 

 
 

Figure 7. Illustration structure of NDR U-Net 
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The NDRU-Net employs dilated factors (1, 2, and 4) to 

enhance receptive coverage. In the NDR U-Net architecture, 

two Multi Dilated Convolutions (MDC) blocks are integrated, 

each comprising three hidden layers. Within each MDC layer, 

convolution is performed with varying dilation factor values. 

The MDC utilizes a 3×3 kernel size and dilation factors (1, 2, 

and 4). A total of 13 Skip Connections are implemented for 

feature reuse. The application of small dilation factors is 

strategically directed toward extracting local features, while 

larger dilation factors are employed to capture global features. 

This strategy ensures a more comprehensive coverage of the 

input space. To understand the network behaviour for 

classification we have applied the Gradient Activation Map 

(GCAM) to images and masks. This is shown in the Figure 8. 

 

 
 

Figure 8. GCAM Applied for both image and actual mask 

 

4.3 Adam optimizer 

 

The algorithm for the gradient descent optimization 

approach is called adaptive moment estimation. When dealing 

with a big problem with plenty of data or parameters, the 

strategy is particularly effective and uses little memory. It 

combines the RMSP algorithm and the Gradient Descent with 

Momentum method, intuitively. In this model, we have used 

30 epochs, 1e-4 learn rate, and a 0.3 learn rate drop factor 

along with the Adam optimizer to get better performance. This 

optimizer gives the better performance compare all other 

optimizers [34]. 

 

4.4 ECDSA 
 

The projected mask is given an ECDSA to strengthen the 

integrity of the specified deep learning model [35]. Rivest, 

Shamir, and Adleman (RSA) are inferior to ECDSA in terms 

of power and scalability [36]. It makes use of elliptic curve 

cryptography-derived keys. With lower key lengths, it 

accomplishes the same tasks as other digital signature 

algorithms. By translating the signature key into bytes, the 

final digital signature is produced. By using NIST192p, which 

has a length of 24 bytes, one may acquire the signature key. 

To verify the digital signature on the opposite side, the 

verification key may also be retrieved from this signing key. 

Elliptic Curve Digital Signature Algorithm (ECDSA) is a 

widely used cryptographic algorithm for ensuring the 

authenticity and integrity of digital messages. While the 

underlying mathematics of ECDSA involve elliptic curve 

mathematics, I'll provide a simplified and intuitive explanation 

without delving into complex mathematical details. 
Key Generation: ECDSA involves the generation of a pair 

of cryptographic keys: a private key and a public key. The 

private key is kept secret, while the public key can be freely 

shared. 

Elliptic Curve Properties: ECDSA relies on the 

mathematical properties of elliptic curves. These curves have 

special mathematical structures that make certain operations, 

like scalar multiplication, easy to perform in one direction but 

computationally infeasible in the reverse direction. 

Digital Signature Generation: When a user wants to sign a 

message, they use their private key and the message as input 

to the ECDSA algorithm. The algorithm performs 

computations using the elliptic curve, generating a digital 

signature. 

Signature Verification: To verify the authenticity of the 

signature, anyone can use the signer's public key, the received 

message, and the signature as input to the ECDSA algorithm. 

If the signature is valid, the verification process will succeed. 

 

 

5. RESULTS AND DISCUSSION 

 

We utilized the NDR U-Net model for semantic 

segmentation on a desktop within Google Collab, featuring 

32GB of RAM, a 1TB SSD, and NVIDIA GTX graphics. The 

dataset employed for training and evaluation consisted of 

5,682 images, comprising 2,841 satellite images along with 

their respective masks. These images were fed into the NDR 

U-Net model as input for the semantic segmentation task. The 

training and testing curve of the model is shown in the Figure 

9. Figure 10 shows the output of the proposed model and 

shows the original images, respective water source is clearly 

visible and differentiated with other objects present in the 

images. The performance metric of the model is tabulated in 

the Table 1. After classifying we have calculated the 

Intersection Over Union (IOU) using the mathematical 

relation: 

 

𝐼𝑂𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3) 

 

where, TP is true positive, FP is false positive, TN is true 

negative, and F − N is false negative. We have achieved an 

good accuracy of 93% of IOU. 

GCAM enhances the interpretability of deep neural 

networks by offering a visual explanation of where the model 

focuses when making predictions. It helps practitioners, 

researchers, and stakeholders understand and trust the 

decision-making process of complex models. The darkened 

color portion are shown that portion is more needful for 

detection and more features are used for the classification. 

Lightened color portion of image shown that portion is not 

more useful for classification and minimum number of 

features are used for classification. Finally, to validate our 

proposed model, we compared our model to state-of-the-art 

models.  

Decreasing Training Loss: In the initial stages of training, 

it's expected to observe a decrease in the training loss. The 

model learns to map input data to the target outputs, and the 

training loss measures the disparity between the predicted and 

actual values. As the model iteratively updates its parameters 

during training, the training loss typically decreases. 

Validation Loss: The validation loss is computed on a separate 

dataset that the model has not seen during training. Initially, 

both training and validation losses tend to decrease. However, 
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it's essential to monitor the behaviour of the validation loss 

over epochs. Convergence Indicators: Convergence is often 

indicated by both the training and validation losses reaching a 

stable or plateau-like state. If the training loss continues to 

decrease while the validation loss starts to increase or remains 

stagnant, it may suggest overfitting. Overfitting occurs when 

the model learns the training data too well but fails to 

generalize to new, unseen data. "Utilizing small kernels is 

employed for extracting local features, while large kernels are 

employed to extract global features. However, many CNN and 

U-Net based models opt for a fixed kernel size for both, 

resulting in a deficiency of receptive coverage for feature 

extraction and a significant loss of information. Some 

approaches based on 'densenet' aim to enhance the receptive 

area by exponentially processing kernel sizes. Nevertheless, 

these methods face challenges such as the aliasing effect and 

an increase in the number of trainable parameters, leading to a 

notable loss of efficiency." 

 

 
 

Figure 9. Training and testing curves of accuracy, precision, loss and recall 

 

 
 

Figure 10. Output images with predicted mask and original mask 
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"To address challenges such as limited receptive area 

coverage, information loss, and aliasing effects, we introduce 

the NDR U-Net method with the following key strategies: 

Mitigating Information Loss: We employ residual skip 

connections to alleviate the loss of information. These 

connections facilitate the reuse of features in each set of the 

method, enhancing the information flow within the layers. 

Avoiding Aliasing Effects: To counter aliasing effects, we 

incorporate Nested Multi-Dilated Connections. These 

connections effectively control the dilation factor rate, 

contributing to a reduction in aliasing artifacts. Enhancing 

Receptive Coverage Area: We utilize dilated factors (i.e., 1, 2 

and 4) to improve the receptive coverage area. Small dilation 

factors are strategically applied to extract local features, while 

larger dilation factors are employed for capturing global 

features. This approach ensures a more comprehensive 

coverage of the input space." 

 

Table 2. Performance metrics 

 
Parameter Training Testing 

Loss 0.3115 0.1374 

MAE 0.1214 0.1018 

Accuracy 0.9699 0.9560 

Precision 0.9777 0.9088 

Recall 0.9681 0.8690 

AUC 0.9914 0.9870 

IOU 0.9536 0.9327 

*MAE: Mean average Error 

 

Table 3. Comparison of proposed method with previous 

state-of- the-art models 

 

Model Method Backbone 
IOU 

(%) 

[37] U-Net — 85.58 

[3] RefineNet Resnet-101 86.21 

[38] DeeplabV3+ Resnet-101 86.50 

[39] DANet Resnet-101 87.90 

[6] CascadePSP 
DeeplabV3+&Resnet-

101 
87.00 

[16] MECNet MEC + MPF + DSFF 90.64 

Proposed NDRUNet D3Net+Unet 95.36 

 

Table 2 shows the performance metrics based on parameter 

and Table 3 shows the comparison of our model with other 

models. In the study [37], they used basic UNet architecture to 

segment the satellite images with higher accuracy of 85.58%. 

Chen et al. [38] used RefineNet with Resnet101 pretrained 

convolutional neural network (CNN) for classification and 

achieved the IOU of 86.21%. DeeplabV3 with Resnet101 is 

used for segmentation and prediction in the study [39] and they 

achieved an 86.50% of mean IOU. In DAnet [39], utilizing the 

Resnet101 CNN model resulted in a mean Intersection over 

Union of 87.90%. CascadePSP has achieved an accuracy of 

87.00% that is combination of DEEPLABV3 and Resnet101 

CNN [6]. Zhang et al. [16] used MECNet with combination of 

MEC+MPF+DSFF for classification and achieved 90.64% of 

mean IOU. Our proposed work used the combination of UNet 

and NDRNet for the segmentation and classification achieved 

highest IOU of 95.36%, 96.99% of accuracy, 97.77% of 

precision, and 96.81% of recall.  
 

 

6. CONCLUSIONS 
 

"To address challenges such as limited receptive area 

coverage, information loss [40], and aliasing effects, we 

introduce the NDR U-Net method. Even for tiny and hazy 

satellite Images, this model performs well. Additionally, 

NDRUNet’s architecture ensures that it produces the best 

results for water bodies that are close to a land boundary. The 

model also makes use of an Adam optimizer. With this 

optimizer, computation times are comparatively swift. 

Additionally, since they affect how well the model works and 

performs, actions like scaling, conversion to masks, and 

padding are closely followed while doing data analysis. 

Multiple channels and feature maps are used in the proposed 

NDRUNet architecture. Additionally, kernel initializers, an 

output activation feature, and concealed activation features are 

utilized. To resolve the dimensionality of the images and 

improve speed, the model employs max-pooling. The 

following model makes better use of satellite images to 

pinpoint the expected region. Additionally, it performs best on 

images taken under poor weather conditions. The model is 

superior in that it secures the identified water area using 

ECDSA and generates a secured signature to keep it safe from 

unwanted access. This model can eventually be expanded to 

accept video input. The cloud may be used to store the 

observed water locations. This model achieved higher IOU of 

93.27%, accuracy of 95.60%, precision of 90.88%, and recall 

of 86.90%. 

 

 

DATA AVAILABILITY 

 

The dataset used in this work is available on Kaggle as 

Satellite images of water bodies 

https://www.kaggle.com/datasets/franciscoescobar/satellite. 
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