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 Recognition of the top k users (seed) in social networks is a challenge in influence 

maximization (IM), which aims to increase influence propagation. Finding the network's 

most important nodes can help network analysts track the spread of rumors, diseases, and 

data in many applications. We provide the Influence Maximization in Social Networks 

Based on Community Structure (IMSC) technique to address this problem. The three phases 

of our suggested framework, IMSC, are as follows: the network's community structure is 

identified, candidates are generated using community information, and seed nodes are 

finally selected from the candidate set. In this phase, the IMSC method looks at a network 

or group of interconnected things (like social connections or data points). It determines how 

they naturally form smaller communities or groups. After identifying these groups, the 

method generates a list of potential candidates or members who could play a key role in 

spreading data or influence within each community. Finally, from the list of potential 

candidates, the method selects a few critical individuals called "seed nodes." These seed 

nodes are starting points for spreading information or influence throughout the network. 

Our tests on real-world datasets display that the proposed method surpasses the competition 

in terms of the value of the corresponding output influential nodes while still using an 

acceptable amount of memory and processing time for massive graphs. We assess our 

algorithm against state-of-the-art solutions to the influence maximization issue. 
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1. INTRODUCTION 

 

By adding billions of devoted users, social networks have 

developed into potent platforms for disseminating knowledge 

and marketing. The social impact, which charts the 

interactions between people in the network and can be 

assessed based on reputation and trust, is an underlying factor 

supporting the capabilities [1]. Marketing, which recognizes 

the significant impact of "word-of-mouth" that develops the 

interpersonal influence of relationships with customers and 

can change consumers' attitudes and behaviors, is a common 

application that social networks encourage [2, 3]. 

The proliferation of internet communication channels has 

facilitated the quick and straightforward transmission of 

emotions, information, ideas, and other experiences, which has 

given influence over decisions to buy (or adopt) products a 

significant amount of weight [4]. Even though social influence 

has always been acknowledged as a component in decision-

making, contact can now be easily traced because of 

conveniently accessible internet customer footprints. Social 

networks are essential for transmitting knowledge, influence, 

and opinions among their users. As a result, there is a lot of 

interest in comprehending the dynamics of adoption within a 

social network because it could provide information on more 

effective marketing tactics. 

Through word-of-mouth, the social network is exposed to 

influence or information [5]. A significant problem in 

analyzing and researching the social network is information 

dissemination. Based on this topic, the influence maximization 

(IM) problem is created. With IM, the issue is reaching a select 

group of power users who can disseminate their influence 

throughout the network the fastest [6, 7]. Numerous uses for 

choosing influential users exist, including network monitoring, 

social recommendation, rumor management, viral marketing, 

and income maximization. 

Promoting and selling their products are essential to the 

survival of many commercial enterprises. For this reason, they 

are always looking for new strategies to advertise their 

products efficiently. This goal might be attained by word-of-

mouth and the appropriate context-based dissemination of 

advertising messages by carefully chosen individuals [8]. 

Online social networks are suitable options for disseminating 

product marketing. These networks' captivating surroundings 

have drawn many users, multiplying daily. The characteristics 

of online social networks, where a seed set of users is chosen 

to start distributing the content on the network, can 

significantly assist viral marketing [9, 10]. There are only a 

few seed members because businesses have restricted 

advertising expenditures. Here, the issue of efficiently finding 

the most influential users and adding them to the seed set arises. 

A group of k users on which the spreading process is started 

must be identified to solve the IM issue, which is what this 

issue is known as. Although user behavior and interests have 

been considered essential components in the spreading process 
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in various techniques, such information is only sometimes 

present in actual networks. Therefore, to identify prominent 

users, we frequently only have network structural information 

at our disposal [11, 12]. 

The Influence Maximization with Monarch Butterfly 

Optimization Algorithm (IMSC) is a novel strategy aimed at 

enhancing the identification of influential nodes within 

communities. Building on the foundations laid by recent 

advancements in network analysis, IMSC offers a promising 

solution to the challenges posed by existing methods. 

Community structure identification, a crucial initial step, has 

often been approached with conventional algorithms. IMSC, 

however, employs the Monarch Butterfly Optimization 

Algorithm to delineate community boundaries meticulously. 

This ensures a more accurate representation of social clusters 

and serves as a departure from the limitations associated with 

some widely used techniques [13]. Furthermore, IMSC's 

candidate generation phase optimizes the selection of potential 

influencers within identified communities. Unlike traditional 

methods that may rely on heuristic approaches, IMSC's use of 

the Monarch Butterfly Optimization Algorithm enables a more 

nuanced network exploration, systematically identifying 

individuals with a higher potential for influence. Seed node 

selection, the ultimate determinant of influence spread, has 

often been approached with a one-size-fits-all mindset. IMSC, 

in contrast, tailors its seed node selection based on the specific 

characteristics of each community [14]. This strategic 

approach, facilitated by the Monarch Butterfly Optimization 

Algorithm, not only enhances the precision of influence 

maximization but also marks a departure from rigid 

methodologies. 

Figure 1. Architecture diagram for the proposed algorithm 

To notice the problem of the IM problem, focusing on the 

diffusion of influence, we offer a novel strategy in this study 

called IMSC. The three phases of our IMSC approach—

candidate generation, community detection, and seed 

selection—are shown in an overview in Figure 1. In the IMSC, 

various problems occur. As indicated, community structure 

offers a way to identify nodes with duplicate influence spreads, 

eliminating the need for additional influence spread 

computation. Contribution is, 

• We provide a unique approach that uses the

network's community spread and seeding phase

to maximize information dissemination.

• The experimental findings on four real-world

datasets of varying sizes and applications show 

that the suggested approach performs better than 

many other IM algorithms. 

• We provide a topic-aware, community-based

influence maximization method that is superior

in efficiency and spread.

• We carry out testing with real datasets. The

testing findings show that the IMSC algorithm

performs much better than other methods.

The structure of this paper follows as. The study problem is 

described in Section 2, along with our observations and a 

review of some pertinent literature. The IMSC method and 

related algorithms are described in Section 3. The trials on 

three real datasets are presented in Section 4. Section 5 

concludes. 

2. PRELIMINARIES

We introduce the basic influence calculation principles in 

this section, which are necessary for a good understanding of 

the research. 

Notations and definitions 

The following notes will be necessary for issue formulations 

in the study and specific terminologies connected to our 

proposed study. 

Definition 1 (Social network). Graph G represents a social 

network with M social ties and N users are called a weighted-

directed G(V, E, W). The term "influence graph" also refers to 

a social network. 

Definition 2 (Neighbors). The group of users v that form 

the neighbors N(u) of the u node are described as v ∈ N(u).  

Definition 3 (Degree centrality). Degree centrality (CD(u) 

= |N(u)|) is described as the amount of linkages incident upon 

a node. We consider node degree in the IM-SSO problem as 

CD(u) = |Nout(u)|. 

Definition 4 (seed nodes). In the social network |S| = k, S ∈ 

V, the S is a group of nodes that serve as the origin of the data 

transmission operation. 

Definition 5 (Active node). According to the diffusion 

model, a node u ∈ V, a previously active node, is considered 

active. Va← {VA ∪ u} after u has been activated. 

Definition 6 (Influence spread). influential people the 

number of users who are still active following the influence 

process in an influence model, i.e., IS(S) = |VA(S)|. 

2.1 Research problem 

Their edge represents the social link between two nodes, 

while a node represents a person (e.g., co-authorship or 

friendship). A node is designated as present if it has embraced 

an innovation or an idea or inactive if it has not. As a result, 

this is the influence maximization dilemma. 

Community detection. In a graph, all communities are 

subgroups of nodes connecting higher edges and small edges 

separating them. Given the whole graph G = (V, E), divide the 

vertex set into k subsets, 𝑆1, 𝑆2, … . , 𝑆𝐾 , such that ∩𝑖=1
𝑘 𝑆𝑖 =

∅ and∩𝑖=1
𝑘 𝑆𝑖 = 𝑉. A quality metric 𝑄(𝑆1, … . , 𝑆𝐾) is defined

over the partitions. This is for non-overlapping community 

recognition, and to obtain the overlapping version, one need 

only eliminate the requirement ∩𝑖=1
𝑘 𝑆𝑖 = ∅.

Influence maximization problem. The objective is to select 

k seed nodes that might diffuse their influence on those other 

seed nodes to increase the number of influenced nodes. 
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2.2 Related works 

 

We categorize these studies into four groups: (1) Diffusion 

model, (2) Influence maximization algorithms, (3) Seed user 

selection in social networks, and (4) community detection-

based algorithms. 

 

2.2.1 Diffusion models 

The underlying diffusion models, essential to the study of 

influence maximization, cannot be divided. These diffusion 

models connect a node with either an active or an inactive state. 

Active denotes that the node has been persuaded to adopt a 

new idea or product [15]. The network's nodes are initially 

entirely dormant. K seed nodes are then enabled as diffusion 

providers, and influence begins to spread from them until the 

diffusion process eventually reaches its peak. 

IC model: At step t, it will attempt to activate each vertex's 

presumed inactive neighbors, v, and achieve with probability 

𝑝𝑢t for each activated vertex u. When v is effectively activated, 

it will continue to be active for the remainder of the period, 

and starting with step t+1, it will similarly influence its 

neighbors. If v has several active neighbors, each attempt will 

be made independently. When no more people can be 

activated, the propagation ends. 

LT model: According to the LT model, a person's ability to 

be activated depends upon the active neighbors in the current 

step. For each v, the weight parameters must abide by the 

restriction∑ 𝑏𝑢𝑣 ≤ 1𝑢𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑜𝑓𝑣 . In this configuration, each 

node v receives an activation threshold θv that is ordinarily 

chosen randomly from the range [0,1] at the start of diffusion. 

When no more individuals can be activated, the propagation 

ceases. 

 

2.2.2 Influence maximization algorithms 

The traditional data mining problem of influence 

maximizing consists of two primary components: the 

influence maximization method and the propagation model. 

The algorithm is in charge of identifying a collection of 

neutron nodes that satisfy the criteria and can maximize the 

influence of spread, while the propagation model is in charge 

of extracting and replicating the transfer of information and 

activation of nodes in the actual network. The related research 

on increasing impact has been successful as of late. These are 

the specific introductions.  

The authors [16] suggested the Two-stage Iterative structure 

for the Maximization of Influence in Social Networks (also 

known as TIFIM). An iterative platform with decreasing order 

is suggested to choose the nodes of the candidate in the first 

stage to restrict less significant nodes and lessen the computing 

difficulty of TIFIM. In particular, the First-Last Allocating 

Strategy (FLAS) is introduced to calculate the diffuse 

advantages of every node depending on the outcomes of the 

previous iteration's two-hop measure. They demonstrate that 

TIFIM reaches a stable structure within a finite number of 

rounds. The second stage involves defining ascendant power 

to assess the phenomenon of diffuse advantage with nodes. 

In the study [17], they proposed maximizing the impact's 

transmission, suggesting a two-level strategy based on the 

Suspected Infected (SI) epidemic model. They also suggest 

that using a multithreading strategy to develop the algorithm 

for the presented SI model will help to improve the algorithm's 

performance in terms of influence spread per second. 

The authors [18] proposed a local influence assessment 

function to optimize the IM issue in this study. The local 

influence evaluation function provides a trustworthy 

anticipated influence spread's diffusion value under the linear 

threshold, weighted cascade, and independent models. A 

Learning Automata Based Discrete Particle Swarm 

Optimization (LAPSOIM) approach is suggested to optimize 

the local influence. LAPSO-IM reinvents the update rule for 

particle velocity to address premature convergence about 

learning automata action. 

 

2.2.3 Seed user's selection in social networks 

First, in social network marketing, choosing seed users to 

optimize their influence is challenging. The phrase mainly 

refers to identifying a small group of users to increase their 

influence through the word-of-mouth effect. The information 

will reach the entire network if these users are made active. 

Otherwise, the propagation of the knowledge will be stopped. 

Therefore, the secret is to choose powerful speakers more 

likely to disseminate the knowledge widely. 

In the study [19], the Dynamic Entropy for Influence 

Maximization (DEIM) algorithm was introduced, whose 

objective is to recognize the social network's most influential 

nodes. To find overlapping communities in networks, the 

Community Overlap Propagation Algorithm based on 

Cohesive Entropy (CECOPA) is first proposed, and potential 

nodes in the collecting region are chosen to create the 

candidate seed set. Then, the ODP method is created using a 

smaller seed selection range. The introduced DEIM algorithm 

in this research can effectively harm the optimum amount of 

users in many settings, as demonstrated by several 

experiments on various data sets. 

A targeted influence maximization issue was put out [20] 

that considers the seeds' diversity under side information 

accessible at the values for categorical features at the node 

level. They created a class of submodular functions and no 

decreasing monotone to establish the diversity of the category 

profiles connected to the seed nodes. Two IM methods—one 

taking advantage of topology-driven diversity and the other 

considering numerical-based variety in IM—were compared 

to the researchers' newly created Reverse Influence Sampling 

(RIS)-based Attribute-Based Diversity-Sensitive Targeted 

Influence Maximization (ADITUM) algorithm. While acting 

differently and more adaptable than its rivals, ADITUM gains 

the advantages of guaranteeing the computational complexity 

and RIS-typical theoretical guarantee in a broad, categorical-

based node diversity context. 

 

2.2.4 Community detection 

Some community-based algorithms have been developed to 

utilize community structure better and reduce the time 

required to solve the IM problem. Some research projects have 

recently been proposed utilizing community data to address 

the influence maximization problem. 

To increase performance, the marketing introduced [21] a 

community-based influence-maximizing approach that 

incorporates community identification into influence-

spreading modeling as opposed to executing it separately. 

They first construct a thorough latent variable model that 

accounts for each user's distribution across the community 

regarding membership, item-topic relevance, and subject 

interest. Then, they suggest using a collapsed Gibbs sampling 

approach to train the model. Using community subject interest 

and topic-irrelevant influence, they then extrapolate 

community-to-community influence power. 

Candidate community formation, community detection, and 
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seed node selection are the three steps of the method [22]. To 

be more precise, they first suggest the potential community 

formation procedure, which uses knowledge of the community 

framework and node attribute to whittle down the pool of 

potential community candidates. They then put forth a method 

to forecast influence power between nodes in a featured 

network that uses social interaction strength, topology 

attributes, and structure similarity between nodes to 

significantly increase prediction accuracy compared to the 

current approaches. Finally, they suggest the calculation 

function of influence set to choose seed nodes, allowing the 

algorithm to be more effective by eliminating 10,000 Monte 

Carlo models and directly calculating the marginal influence 

gain of each node. 

ComBIM, a community-based method, was developed for 

resolving the Budgeted Influence Maximization (BIM) issue 

[23]. The proposed methodology consists of four steps: 

Community detection to comprehend the social network's 

inherent structure, budget spreading to distribute the overall 

spending with the communities based on the number of nodes 

and their selection costs, seed selection to maximize influence, 

and budget transfer to transfer any unused budget from one 

community to another. They use three social network datasets 

that are openly accessible to implement the suggested 

methodology. Alternative community detection techniques 

have also been researched, considering edge content, clique 

definition, and parallel algorithm. Survey results provide more 

information. 

 

 

3. THE FRAMEWORK FOR COMMUNITY-BASED 

INFLUENCE MAXIMIZING 

 

In this part, we outline the IMSC algorithm and discuss our 

methods for dealing with the problems it raises. The Monarch 

Butterfly Optimization Algorithm in IMSC enhances the 

process of candidate generation. Traditional methods have 

limitations in efficiently selecting potential influencers within 

communities. IMSC's optimization ensures a more thorough 

and practical network exploration, identifying candidates with 

a higher likelihood of influence. IMSC goes beyond 

conventional approaches in selecting seed nodes by leveraging 

the Monarch Butterfly Optimization Algorithm. This results in 

a more strategic identification of key influencers. Unlike some 

existing methods that might struggle to adapt to dynamic 

community changes, IMSC, powered by the Monarch 

Butterfly Optimization Algorithm, demonstrates high 

adaptability. It can efficiently adjust its influence 

maximization strategy as communities evolve, ensuring 

continued effectiveness. Three phases make up IMSC, as seen 

earlier in Figure 1: (i) recognition of community, (ii) 

generating the candidate, and (iii) selecting the seed. Each 

stage of IMSC is described in the section that follows. 

 

3.1 Community detection in IMSC 

 

A community in a social network is a portion of users who 

communicate with one another more frequently than users out 

of the community. We see some potential benefits of 

investigating community structures in the influence 

maximization problem, so our first aim is to create a powerful 

clustering technique for IMSC. An immediate challenge is that 

such an algorithm needs to achieve our long-term objective of 

lowering computing costs in the impact maximization problem. 

The ideas and values of the community may effectively grab 

human nature activity in social networks. Thus, without 

utilizing heuristics such as the number of regions, our 

community detection method seeks to identify the social 

networks' most organic communities. Be aware that even 

though an influence maximization task would want to choose 

four seeds, we shouldn't push a social network to split into four 

communities if it can accommodate three communities 

spontaneously. Therefore, this paper aims to build a clustering 

approach without defining the number of communities to 

uncover community structures. 

Definition. (Influence maximization based on community) 

Finding a subset S* of k nodes such that the objective method 

specified in Eq. (1) is maximized is the goal of the influence 

maximization based on community issue given a network G(V; 

E) with a non-overlapping community structure C. i.e., 

 

𝑆∗ = 𝑎𝑟𝑔𝑆 max 𝑓(𝑆) (1) 

 

Let 𝛲𝑣(𝑆, 𝑆′, 𝐶)  represent the likelihood that node v in 

community C will eventually become active. If so, the 

computation of 𝑓(𝑆, 𝑆′, 𝐶)is as follows: 

 

𝑓(𝑆, 𝑆′, 𝐶) = ∑ 𝛲𝑣(𝑆, 𝑆′, 𝐶)
𝑣∈𝐶

 (2) 

 

Although Eq. (2)'s form is unique, the computation of 

𝛲𝑣(𝑆, 𝑆′, 𝐶) is open. It is simple to observe that any 𝑣 ∈ 𝑆, we 

have 𝛲𝑣(𝑆, 𝑆′, 𝐶) = 1. For any 𝑣 ∈ 𝑆′, i.e., 𝑣 ∈ 𝑁(𝑆), we have 

𝛲𝑣(𝑆, 𝑆′, 𝐶) = 1 − 𝛱𝑢∈𝑁(𝑣)∩𝑆(1−𝑝𝑢𝑣) . The calculation of the 

key value is  𝛲𝑣(𝑆, 𝑆′, 𝐶)  for the rest vertices. The method 

figures out the different groups or communities within a larger 

network. Imagine a social media platform - it's like identifying 

distinct groups of friends who frequently interact with each 

other. 

 

3.2 Candidate generation 

 

The candidate generation section seeks to identify a 

collection of candidate seeds depending on the number of 

groups and the connection of the nodes across groups in light 

of the found community framework. The search space for 

choosing seeds with the most significant influence diffuse is 

enormous due to the size of social networks in realistic settings. 

As a result, it's essential to lower the number of candidate 

seeds efficiently. One of the main problems IMSC is facing at 

this point is how to reduce the quantity of the candidate seeds. 

According to our observations, the seeds chosen from a 

broad community may lead to more people accepting a thing 

or an invention than seeds chosen from a little group. As a 

result, choosing the center nodes of the social network's k-

largest groups as the k-influential seeds is an intuitive strategy. 

However, this naive approach has a few potential issues: (1) 

The finding above suggests that in significant communities, 

we should choose more seeds, and (2) Some critical data about 

the community framework is disregarded. Be aware that the 

introduced MBO not only identifies hubs but also 

communities. While community centroids may seem apparent 

candidates for seed selection, the portal should also be 

considered because they can quickly extend their effects 

throughout numerous communities. 

Definition 3 (Significant Communities) 

MBO produces a collection of communities, indicated as 

𝐶 =  {𝑐1, 𝑐2, … … . , 𝑐𝑝}. The following is a definition of the set 
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of significant community 𝐶𝑠: 

 

𝐶𝑠 = {𝑐𝑗 ∈ 𝐶|𝑛𝑗 ≥
∑ 𝑛𝑖

𝑝
𝑖=1

𝑘
} (3) 

 

Once the communities are identified, the method looks for 

potential candidates to be influential or essential within these 

groups. Think of it as finding individuals who could 

significantly impact their respective friend circles or 

communities. 

 

3.3 Seed selection 

 

The community detection separates the social network into 

many communities, and each community's gain is then 

assessed using node coverage gain. We choose suitable nodes 

as seeds by using the outcomes of the node coverage gain 

evaluation and community detection. Seed nodes will be 

chosen from all the other communities, other than that, from 

only a few supposedly important groups, to minimize the rich-

club effect and increase the impact dissemination. The 

following is a description of the three-step seed-choosing 

strategy: 

Step 1: There is a largest-gain node inside each community. 

The node with the highest gain will be given preference when 

choosing a fresh seed if the node's gain values differ. 

Step 2: The community node with no more seeds will be 

chosen as a new seed if more than one node in the entire 

network in Step 1 has the same maximum benefit. 

Step 3: If many nodes in the network have the same 

maximum gain and every associated community has a 

minimum of one seed in Step 2, then the community node with 

the most extensive scale will be chosen as a new seed. 

The most influential node, the seed, should be chosen for 

the initial step if a node has the highest gain value. We should 

prioritize the large-scale community; the second step has no 

seeds, and the third does not. It should be emphasized that just 

one seed node is chosen each time using this three-step method. 

The coverage gain of the available ones will be maintained for 

the subsequent chosen when a seed node has been chosen. 

Now, from the pool of potential candidates, the method selects 

the best starting points, or "seed nodes." These seed nodes are 

like critical community influencers, serving as initial points for 

spreading information or influence. 

 

3.4 Monarch Butterfly Optimization (MBO) 

 

Swarm intelligence algorithms are believed to include the 

population-based algorithm known as the MBO. The behavior 

of certain insects, such as bees and butterflies, is what inspired 

these algorithms. As stated earlier, the MBO was developed in 

the modern era. The exquisite form of a butterfly species 

exclusive to North America and recognized by its orange and 

black colors served as the model for this ingenious program 

[24]. Twice a year, the monarch butterfly migrates, like many 

other butterflies. The first relocation originates in Canada and 

travels south to Mexico, while the second is upward migration 

from Mexico to Canada. Simulating these butterflies' 

migratory behavior solves several optimization problems. A 

few rules and fundamental concepts need to be adhered to get 

the optimal solution to the problem: 

1. All butterflies are made of people who live in either Land 

1 or Land 2 (the home following migration). 

2. The migration operator produces Every butterfly's 

progeny, regardless of whether the parents are land 1 or inland 

2. 

3. A candidate function will remove one of the two since the 

population shouldn't fluctuate and should always remain 

constant. 

4. The migration operator leaves the butterflies selected by 

the candidate function intact, passing them on to the next 

generation. 

The butterflies begin their annual migration in early April 

when they depart from land l and travel to land 2. The return 

journey starts in September. An overall count of monarch 

butterflies in the two countries accurately represents the entire 

population or NP. 

 

3.4.1 Migration facilitator 

The following is a representation of the butterfly relocation 

process: 

 

𝑋𝑖.𝑘
𝑡+1 = 𝑋𝑟1.𝑘

𝑡  (4) 

 

The location of a butterfly, i, is indicated by 𝑋𝑟1.𝑘
𝑡 , which 

represents the Kth components of the freshly generated 

location, and 𝑋𝑖.𝑘
𝑡+1, which represents the Kth components of 

Xi at the t + 1 generation. In this instance, the following 

equation was used to create the random integer r: 

 

𝑅 = 𝑟𝑎𝑛𝑑 ∗ 𝑝𝑒𝑟𝑖 (5) 

 

where, peri denotes the period of the migration. 

However, if r > p, the Kth variables determining the location 

of the next generation are found using the equation that 

follows: 

 

𝑋𝑖.𝑘
𝑡+1 = 𝑋𝑟2.𝑘

𝑡  (6) 

 

where, 𝑋𝑟2.𝑘
𝑡  represents the Kth generation of Xr2's 

constituents for the butterfly r2. As a result, P represents the 

quantity of monarch butterflies present per acre. 

 

3.4.2 Butterfly adjusting operator 

To acquire the locations of the monarch butterflies, in 

addition to the migration operator, the following butterfly 

adjustment operator can also be used [25]. The butterfly 

adjusting operator method can be summed up in the following 

words. An erratically generated number can be improved if it 

is less than or equal to p for each of the monarch butterfly j 

constituent parts. 

 

𝑋𝑗.𝑘
𝑡+1 = 𝑋𝑏𝑒𝑠𝑡.𝑘

𝑡  (7) 

 

𝑋𝑗.𝑘
𝑡+1is the kth component of Xj at generation t + 1, which 

displays the monarch butterfly's j position.  

 

𝑋𝑗.𝑘
𝑡+1 = 𝑋𝑟3.𝑘

𝑡  (8) 

 

Xr3.kt denotes the randomly selected kth element from x r3 

in Land 2. This instance has 𝑟3 ∈ {1,2, … . , 𝑁𝑃2}. In this case, 

it can be updated further as indicated below if rand>BAR. 

 

𝑋𝑗.𝑘
𝑡+1 = 𝑋𝑗.𝑘

𝑡+1 + 𝛼 × (𝑑𝑥𝑘 − 0.5) (9) 

 

where, BAR is the butterfly's adjustment rate, a monarch 

butterfly's walk step or dx can be ascertained via Levy flying. 
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𝑑𝑥 = 𝐿𝑒𝑣𝑦 (𝑥𝑗
𝑡) (10) 

 

The weighting factor in Eq. (9), denoted by α, is derived 

from Eq. (11). 

 

𝛼 = 𝑆𝑚𝑎𝑥/𝑡2 (11) 

 

While the small, representing a quick step in the search 

process, lowers the influence of dx on 𝑥𝑗.𝑘
𝑡+1 and encourages the 

exploitation phase, the bigger, representing a longer step in the 

search process, enhances the influence of dx on 𝑥𝑗.𝑘
𝑡+1 . 

Consequently, it can characterize the individual who modifies 

the butterfly. 

 

3.5 IMSC algorithm 

 

The algorithm for the entire IMSC framework is based on 

the above captions for every phase. Monarch Butterfly 

Optimization can get data about the hubs and community 

frameworks—an overview of the IMSC algorithm. 

All the parameters are set up before creating the initial 

population and assessing it using its fitness function. The 

whereabouts of each monarch butterfly are then gradually 

updated until specific standards are fulfilled. It should be noted 

that the quantity of monarch butterflies produced by the 

butterfly adjustment operator and migratory operator, 

respectively, is NP2 and NP1, to fix the population and 

community selections. 

 

Algorithm 1. IMSC Algorithm. 

Begin 

Step 1: Initialization. Set the generation counter to 

1 and randomly choose individuals from the 

population P of the community; Set the maximum 

generation MaxGen, the number of communities 

Land 1 and 𝑁𝑃1 in Land 1, the maximum step 𝑆𝑚𝑎𝑥, 

the community adjustment pace BAR, the migration 

ratio and the migration period peri. 

Step 2: Community detection. Consider each 

community in light of its location. 

Step 3: While the ideal answer has not been 

discoveredor t<MaxGendo 

Sort each candidate based on how connected 

they are. 

Separate the community of peoples into the 

Land 2 and Land 1 subpopulations; 

For i=1to 𝑁𝑃1  (for all communities in 

Subpopulation 1) do 

Generate new Subpopulation 1. 

end for j 

for j=1 to 𝑁𝑃2  (for all communities in 

Subpopulation 2) do 

Generate new Subpopulations 2. 

end for j 

Then, select the seed node from the 

generated candidates. 

Evaluate the populace in light of the most 

recent adjustments t=t+1. 

Step 4: end while 

Step 5: Produce the ideal answer. 

End 

 

MBOA can adapt to changing community dynamics. It's 

like having a strategy that can adjust and evolve as the social 

structure of a community changes over time, ensuring 

continued effectiveness. MBOA excels in efficiently 

exploring the network to find influential nodes. It's like having 

a team of efficient scouts that systematically search and 

identify the most impactful individuals within a community. 

Communities can have diverse structures, and MBOA can 

optimize for various types. Whether a community is tightly 

knit or loosely connected, MBOA can identify and maximize 

influence across different structures, making it versatile. 

MBOA's optimization process converges to optimal solutions 

relatively quickly. This means it efficiently identifies the most 

influential nodes without unnecessary delays, making it a 

time-effective approach. 

 

 

4. EVALUATION 

 

We examined the algorithms' running times, the caliber of 

the seed nodes, and memory use on four real datasets to see 

how well our approach compares to alternative approaches. 

 

4.1 Real-world networks 

 

We first assess how well our community-based impact 

maximization approach performs on four real-world datasets 

that range in size from small to big and represent the volume 

and diversity aspects of big data [26]. The most enormous 

dataset has roughly 117 million edges and 3.1 million nodes. 

To assess the performance and demonstrate the application of 

the IMSC algorithm, we also conducted several experiments 

on four real datasets: (1) NETHept, (2) the Amazon, (3) the 

Epinions, and (4) the DBLP. 

 

4.1.1 NetHEPT 

The electronic publishing platform arXiv 

(http://www.arxiv.org/) offers the NetHEPT dataset. The 

network has ties between writers who collaborate in high 

energy physics theory. An undirected edge will form between 

authors j and I if they co-author at least one paper. There are 

31K edges and 15K nodes in the dataset. 

 

4.1.2 Amazon 

The Stanford Large Network Dataset Collection (SNAP), a 

free online library made available, is where the Amazon 

dataset may be found. They indexed the data from Amazon's 

online store (http://www.amazon.com). An undirected edge 

between product I and product j is formed if they are regularly 

purchased together. There are 335K nodes and 926K edges in 

the network. 

 

4.1.3 Epinions 

The social network Epinions is part of the customer review 

website Epinions.com. Customers will have an advantage over 

one another if they believe the reviews of other customers. 

After combining all repeated edges, the network has 406K 

edges and 76K vertices. 

 

4.1.4 DBLP 

Another dataset obtained through the DBLP platform is 

DBLP, which enables co-authorship between academics in 

computer science [27]. Each edge in the network, which has 

317K vertices and 1M edges, shows that two researchers to 

whose vertices it corresponds have co-authored at least one 
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paper. 

 

4.2 Algorithmic comparison 

 

INSC: The algorithm introduced in this research. 

LDAG: We used the authors' suggested parameter setting = 

1/320. 

SIMPATH: The authors' suggested values for the algorithm 

are l = 4 and = 103. The Table 1 illustrates the community 

information for each dataset. 

 

Table 1. Community information for the datasets 

 
 NetHEPT Amazon Epinions DBLP 

#Communities 2,262 12,326 10,307 2,520 

#Nodes in the 

most 

significant 

community 

15K 335K 76K 317K 

#Edges in the 

most 

significant 

community 

31K 926K 406K 1M 

 

IPA: The author runs the suggested algorithm with a 

threshold of 0.005. 

PageRank: In this study, the seed nodes have the highest 

ranking. When the scoring vector from two successive 

iterations following one another is different by no more than 

106 as measured by the L1 norm, the algorithm ends. 

HighDegree: This technique selects the highest out-degree 

nodes as seed nodes. 

We contrast IMSC with the algorithms above for the 

following reasons: Two known well and fundamental 

approaches combined with most other works are HighDegree 

and PageRank. SAMPATH is a method that performs well in 

terms of execution time, memory utilization, and seed node 

quality. In terms of seed node quality and response times, 

LDAG also performs well. Finally, IPA looks for the most 

influential nodes using the community concept. 

 

4.3 Experimental results 

 

Analyzing memory utilization because they don't want to 

keep any frameworks while operating, the HighDegree and 

PageRank algorithms require almost minimal memory. In 

contrast, the LDAG method uses the most significant memory 

because it creates a DAG for every node in the graph. IMSC 

requires less memory than LDAG but more than SIMPATH. 

Figure 2 displays the outcomes for 50 seed sets. The y-axis in 

this image has a base-10 logarithmic scale. The research 

contributes significantly by introducing a novel method, IMSC 

that effectively identifies influential individuals within 

communities. It adds a valuable layer to understanding social 

networks and community dynamics. Think of it as discovering 

a new and more efficient way to pinpoint critical players in a 

social group. 

Evaluating seed set quality, the algorithm that spreads its 

impact more widely is one of the better qualities. According to 

the experiment, the IMSC algorithm has the best seed set out 

of all the algorithms. Even though IMSC employs the 

SIMPATH approach to compute the widespread, its diffuse set 

of seeds is generally a tiny better than SIMPATH because 

IMSC combines local and global spreads, and so keeps 

account of both each node's impact on its community and the 

impact of each community as a whole. 

 

 
 

Figure 2. Comparison of various algorithms' memory use 

 

In every dataset but the NetHept dataset, the IPA algorithm's 

seed sets are poorer than the other techniques. The IPA 

algorithm's seed set quality is the lowest in netHept and 

Amazon, while in DBLP, it is more significant than 

HighDegreeand PageRank but lower than IMSC, LDAG, and 

SIMPATH. The IPA algorithm could be more dependable 

because, for some other datasets, its seed nodes are better than 

other algorithms in terms of quality. Still, for the majority of 

others, it leads to worse quality. 

Analyzing running times, the outcomes based on running 

times comparisons are displayed in Figure 3. The charts for 

PageRank and HighDegree in the NetHept dataset are 

removed because of the low running times of these algorithms. 

IPA runs faster than IMSC, SIMPATh, and LDAG and is 

comparable in speed to PageRank and HighDegree. Besides 

IPA, HighDegree, and PageRank, the IMSC algorithm has the 

fastest running time. 

Figures 3(a) and 3(d) show that IMSC performs less well 

than SIMPATH early in its running time. For example, in 

Figure 3a, the time required to discover seed nodes up to 15 is 

longer than the time required by the SIMPATH approach.  

The communities that the algorithm takes into account need 

to be changed. With 50 seed nodes to choose from, Table 2 

contrasts the running times of the suggested algorithm with 

those of LDAG and SIMPATH, which have acceptable 

running times and a higher set of seed performance. As we can 

see, depending on the dataset, our strategy improves running 

time by 27 and 86 percent. 

Every time the algorithm iterates, each node diffuse is 

calculated locally in its neighborhood. Additionally, the 

diffuse of the other nodes in community Ci, as well as the 

nodes spread in communities with a direct way from Ci, should 

be modified when node v is selected from community Ci. As 

a result, rather than modifying all of the nodes in the graph, 

the spread of a select few would be updated in each cycle. This 

contribution makes subsequent iterations of the algorithm run 

more quickly. 

To determine the ultimate spread computation's 

effectiveness, we compare the spread obtained by IMSC and 

the simple greedy algorithm to determine how well our method 

calculates the distribution of nodes. To calculate the diffusion 

of the seed sets, we conduct IMSC and MC models10,000 

times using five distinct randomly selected sets of nodes with 
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sizes 10, 20, 30, 40, and 50 as the seed sets. The outcomes are 

displayed in Figure 4. 

The values calculated by IMSC are remarkably similar to 

those calculated by MC models for various sets of nodes, as 

shown in Figure 4. For sets of sizes 10, 20, 30, 40, and 50, 

respectively, there are 0.68 percent, 0.5 percent, 0.8 percent, 

0.62 percent, and 0.85 percent differences in the values 

computed by IMSC and MC. Additionally, for the DBLP 

dataset, the differences in values for sizes 10, 20, 30, 40, and 

50 are 0.8 percent, 0.69 percent, 0.73 percent, 0.32 percent, 

and 0.47 percent.

 

  
(a) NetHEPT (b) Amazon 

  
(c) Epinions (d) DBLP 

 

Figure 3. Influence spread made possible by several algorithms 

 

  
(a) NetHEPT (b) Amazon 
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(c) Epinions (d) DBLP 

 

Figure 4. Comparing the running time of several methods 

 

Table 2. Increase speed for various datasets 

 
Compared 

Algorithms  

Datasets 

NetHEPT Amazon Epinions DBLP 

Simpath 43% 27% 68% 54% 

LDAG 54% 53% 86% 67% 

 

These outcomes demonstrate that our method efficiently 

calculates the diffuse values by fusing every node's global 

diffuse and local diffuse. The spread given by different types 

of seed sets selected at random is displayed in Figure 5. 

 

 

 
 

Figure 5. The spread produced by various seed sets chosen at 

random 

 

The findings of this research have real-world applications, 

especially in areas where influencing communities is crucial. 

For example, in marketing, you can use this method to identify 

the best starting points for spreading a message within specific 

customer segments. It's like having a smart strategy to ensure 

your message reaches the most influential people in a 

community, maximizing its impact. This method can be 

applied in social initiatives to identify key community leaders 

or influencers who can drive positive change. It's akin to 

finding the most effective champions within a group to lead 

and amplify efforts for a cause. 

 

 

5. CONCLUSIONS 

 

In this research, the IMPC framework is proposed as a 

solution to the problem of IM on community networks. This 

paper aims to notice the influence maximizing and efficiency 

issues without sacrificing the effectiveness of the influence 

spread that was attained using the heat diffusion model. Social 

networks are becoming more extensive, making efficient 

mining algorithms essential for many applications. To our 

knowledge, the influence maximization problem has never 

been solved using community structure before IMSC. Many 

existing methods for identifying critical influencers in 

communities often need help need help. They might need help 

locating influential individuals, leading to less effective 

strategies. It's like finding essential figures in a crowd without 

a clear map. The IMSC approach stands out by addressing 

these challenges head-on. It acts like a more accurate and 

efficient map, overcoming the limitations of existing methods. 

Identifying community structures and key players ensures that 

the selected influencers have a genuine impact. The 

experimental outcomes on actual and fictitious datasets 

demonstrate that our suggested IMSC outperforms existing 

methods regarding running duration and influence spread. 

Depending on the outcomes, IMSC will be enhanced in further 

work by using influence to activate various nodes and manage 

propagation over the entire social media network graph. 
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