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 Precise segmentation of brain tumors from MRI scans remains a formidable challenge, 

driven by the critical demand for accuracy in medical imaging. To surmount this challenge, 

our paper introduces the Federated ResUHybridNet—a cutting-edge methodology that 

harmonizes the resilience of ResNet with the precision of U-Net. Nestled within the 

sophisticated realm of federated learning, this innovative architecture fosters collaborative 

model training, optimizing the training process and steadfastly upholding stringent data 

privacy standards. The methodology employs a Federated learning framework for 

collaborative model training across multiple hospital nodes. It features the ResUHybridNet 

architecture, combining the deep feature learning of ResNet with the detailed segmentation 

capabilities of U-Net. This integration optimizes brain tumor segmentation by synergizing 

the strengths of both architectures. Furthermore, the decentralized ResUHybridNet model 

undergoes fine-tuning by leveraging the local data of each individual participating hospital. 

The study is dedicated to the segmentation of brain tumors using 3D MRI scans as the 

imaging modality. The dataset employed encompasses 3D volumetric data, enhancing the 

depth and spatial understanding crucial for the evaluation of the Federated ResUHybridNet 

architecture. Overall, the Federated ResUHybridNet model significantly advances data 

privacy measures through federated learning and achieves optimized model performance. 

These contributions mark a notable stride towards enhancing brain tumor diagnosis 

standards and refining subsequent treatment strategies. 
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1. INTRODUCTION 

 

Brain tumor segmentation, essential for precise diagnosis 

and treatment planning in medical imaging, is pivotal for 

guiding interventions that can significantly impact patient 

outcomes. Despite strides in deep learning, challenges persist 

in handling diverse datasets [1], ensuring privacy, and 

maintaining consistency across healthcare institutions. 

However, as with any asset, there's a flip side. The primary 

challenge addressed is the accurate segmentation [2] of brain 

tumors in medical imaging, coupled with the imperative need 

for stringent data privacy measures. This dual concern 

necessitates innovative solutions that balance precision in 

diagnosis with robust data protection. The very nature of 

centralizing data – placing large amounts of sensitive 

information in one location or under one management 

umbrella [3] – can inadvertently make it an attractive target for 

malicious intents. As the intricacies of data management and 

security grow in complexity, so does the vulnerability 

landscape. It's not just about unauthorized access; there are 

concerns about data integrity, mishandling, and potential 

misuse. This has led many in the healthcare sector, especially 

those leading institutions with vast data holdings, to tread 

cautiously. The hesitancy to share or pool data could impede 

the kind of groundbreaking research these centralized systems 

were designed to foster in the first place. 

Dive into the world of medical imaging, and you're 

immediately met with a tapestry of innovations, challenges, 

and aspirations [4, 5]. Among the myriad tasks under this 

umbrella, the segmentation of brain tumors is especially 

critical. This process is not just a technical challenge; it's a 

linchpin in the diagnosis and subsequent treatment of 

neurological conditions. An accurate segmentation can lead to 

precise treatment plans, better patient outcomes, and reduced 

treatment times. Conversely, inaccuracies could have grave 

ramifications. 

However, even as advancements in deep learning usher in 

promising methodologies, challenges remain. Handling vast 

and dense datasets, ensuring data privacy, and maintaining 

consistent model performance across healthcare institutions 

each come with its set of questions [6]. Furthermore, the 

variability in data – stemming from different imaging 

technologies, patient demographics, and even subtle 

differences in institutional practices – adds another layer of 

complexity. Addressing these challenges is not just a matter of 

refining algorithms; it's about understanding the multifaceted 

nature of medical data and the ecosystems in which they exist 

[7]. The primary contribution of the paper lies in the fusion of 

ResNet and U-Net architectures, resulting in the creation of 

ResUHybridNet. This hybrid model leverages the feature 
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extraction capabilities of ResNet, known for its deep residual 

learning, and the exceptional segmentation performance of U-

Net. By synergistically combining these architectures, 

ResUHybridNet achieves a holistic approach to brain tumor 

segmentation, capturing both high-level features and fine-

grained details simultaneously. Section 2 deals with 

necessities of accurate brain tumor segmentation Section 3 

mentions enhancing model accuracy and generalization 

through federated learning framework, Section 4 explains how 

the data privacy and security can be enhanced using the 

federated learning framework, Section 5 mentions about 

Transforming Segmentation modalities. Section 6 clearly 

mentions the existing works, Section 7 dives into the proposed 

methodology and finally includes the Results and Conclusions 

section. 

 

 

2. ACCURATE BRAIN TUMOR SEGMENTATION 
 

The precision required in brain tumor segmentation not only 

underscores its critical role in the medical landscape but also 

serves as the backbone for drawing insightful conclusions and 

formulating detailed treatment strategies [8]. Its significance 

extends across diverse medical applications, including the 

intricate demands of surgical procedures, the specificities of 

radiation therapy, and the ongoing vigilance required for 

disease monitoring. The unequivocal need for accurate tumor 

detection is paramount, not only uplifting patient care 

standards but also significantly influencing the trajectory of 

medical research. 

Pioneering advancements in brain tumor segmentation hold 

the potential to reshape the landscape of patient care, 

contributing to more effective treatment plans and improved 

outcomes [9]. The integration of federated deep learning 

models introduces a promising avenue for collaborative and 

decentralized research paradigms, suggesting a future where 

such approaches might become the norm. 

The ongoing convergence of traditional medical techniques 

with modern algorithmic advancements prompts a call for 

sustained interdisciplinary research efforts. This intersection 

provides a fertile ground for exploring innovative 

methodologies, optimizing existing techniques, and ultimately 

advancing the field of brain tumor segmentation to new 

heights. As technology continues to evolve, the collaborative 

exploration of these frontiers will be essential for unlocking 

breakthroughs that stand to revolutionize medical diagnostics 

and treatment strategies. 

 

 

3. ENHANCING MODEL ACCURACY AND 

GENERALIZATION 

 

In the realm of medical imaging, particularly with brain 

tumor segmentation, the pursuit of model accuracy is 

relentless. Every incremental improvement can translate into 

enhanced clinical outcomes and patient safety. While 

achieving high accuracy on training datasets is commendable, 

the true challenge lies in ensuring that such models generalize 

well across diverse and unseen datasets. Models that excel in 

controlled environments but falter in real-world scenarios can 

have detrimental consequences. 

Several factors contribute to the quest for optimal accuracy 

and robust generalization. One is the diversity of data sources. 

For instance, the variances in imaging devices, techniques, and 

protocols across different hospitals and regions can introduce 

nuances that models need to recognize and handle. Another 

significant aspect is the incorporation of domain knowledge. 

Leveraging insights from experienced radiologists and 

neurologists can bridge the gap between algorithmic precision 

and practical utility [10].

 

 
Figure 1. Overview of federated learning 

 

Furthermore, the rise of hybrid models like ResUHybrid 

Net in conjunction with Federated learning opens new 

horizons. Such architectures harness the strengths of multiple 

neural network designs, promoting a synergistic improvement 

in performance [11]. Federated learning, on the other hand, 

allows for decentralized training on data sources, fostering 
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model generalization without compromising data privacy as 

shown in Figure 1. Moreover, the pursuit of model accuracy 

extends beyond algorithmic prowess. Ethical considerations 

and interpretability play pivotal roles in the deployment of 

these models in real-world healthcare settings. Striking a 

balance between technological advancement and ethical 

responsibility is essential for building trust in the reliability 

and utility of these advanced medical imaging techniques. As 

the landscape of medical imaging evolves, the collaboration 

between data scientists, medical professionals, and ethicists 

becomes increasingly vital. Interdisciplinary efforts are crucial 

for addressing the multifaceted challenges in brain tumor 

segmentation, paving the way for innovations that can 

revolutionize diagnostic accuracy and patient care on a global 

scale. 

 

 

4. PROTECTING DATA PRIVACY AND SECURITY  

 

The secure segmentation of brain tumors is ushering in a 

transformative era in the healthcare industry, providing 

accurate insights that empower medical professionals to make 

informed decisions regarding surgeries, radiation therapy, and 

disease monitoring. This precision not only enhances patient 

care but also accelerates medical research through the 

application of deep learning models. The integration of 

federated learning with deep learning emerges as a powerful 

approach to address the challenges associated with brain tumor 

segmentation, fostering collaborative partnerships across 

healthcare sectors and reshaping the landscape of diagnosis 

and treatment [12]. 

The protection of sensitive medical data is paramount in 

ensuring patient privacy and maintaining the integrity of 

healthcare systems [13]. The proposed methodology plays a 

crucial role in tackling this challenge through the application 

of federated learning. By design, federated learning allows 

model training to occur locally on individual hospital nodes 

without the need for raw data to be centralized. Moreover, 

federated learning enables collaborative model training across 

multiple nodes, creating a robust and generalized model 

without exposing individual patient data. This not only 

enhances data privacy but also addresses concerns related to 

data security and unauthorized access. By fostering a 

collective approach to model development, the proposed 

methodology mitigates the risks associated with centralized 

repositories, aligning with evolving data protection 

regulations and ethical standards. 

In summary, the protective measures embedded in the 

proposed methodology, specifically through federated 

learning, serve as a safeguard for sensitive medical data. This 

not only aligns with ethical considerations in healthcare but 

also establishes a foundation for collaborative advancements 

in brain tumor segmentation, ultimately redefining standards 

in diagnosis and treatment while preserving patient privacy. 

 

 

5. TRANSFORMING SEGMENTATION 

 

In medical research, the constant advancement of AI models 

relies on diverse datasets, yet patient confidentiality poses a 

persistent challenge. Federated learning emerges as a 

groundbreaking solution, reshaping the landscape of medical 

imaging research, especially in studying brain tumors. This 

innovative approach facilitates seamless data sharing across 

institutions without compromising patient privacy. The 

intrinsic value of federated learning lies in its capacity to 

expedite research, enabling collaborative analysis of diverse 

datasets. This not only expedites the development of highly 

accurate brain tumor segmentation models but also 

significantly deepens our understanding of various brain 

diseases [14]. 

The paramount advantage of federated learning is its 

potential to usher in a new era of swift and precise diagnosis 

and treatment strategies, promising a fundamental shift in the 

paradigm of patient care. Equally critical is its unwavering 

commitment to upholding patient confidentiality and data 

security, mitigating ethical concerns inherent in medical 

research. Beyond these essential safeguards, federated 

learning champions inclusivity, resource efficiency, and 

continuous model improvement. The approach not only 

advances the domains of neurology, neuroscience, and 

medical imaging but also fosters a collaborative spirit among 

researchers and medical institutes. 

The development of a federated learning model for brain 

tumor segmentation signifies not just a technological 

breakthrough but a transformative force in medical research 

and patient care. Healthcare professionals in neurology, 

neuroscience, and medical imaging can anticipate not only 

advancements in their respective fields but also the dawning 

of a new era characterized by teamwork, shared data, and 

progressive collaboration in the pursuit of improved healthcare 

outcomes. 

 

 

6. LITERATURE REVIEW AND RELATED WORKS 

 

Deep learning techniques have made remarkable progress 

and have proven effective in medical image analysis, 

especially in brain tumor classification. Among these 

techniques, convolutional neural networks (CNNs) have 

emerged as a prime example, demonstrating the ability to learn 

truly complex features from raw data. 

 

6.1 CNN-based approaches 

 

Zikic et al. [15] utilized a simple neural network with 2 

convolutional layers and 2 fully-connected layers, optimizing 

with a log loss function. Achieved competitive results with a 

relatively simple neural network but may lack the depth for 

more complex feature learning. 

Pereira et al. [16] designed specific architectures for HGG 

and LGG segmentation, training FCNNs on 2D patches and 

refining results with CRF as recurrent neural 

networks.Notable for addressing specific glioma types and 

achieving state-of-the-art performance on the BRATS 2013 

dataset., but the complexity of architecture might impact 

computational efficiency. 

Kamnitsas et al. [17] introduced DeepMedic, utilizing 

multi-scale patches for 3D CNN methods. Introduced 

DeepMedic, showcasing the importance of multi-scale patches 

for capturing local and global information in 3D CNN methods. 

The downside was that this method may include 

computational complexity and resource-intensive training. 

Isensee et al. [18] designed a modified U-Net with residual 

blocks and deep supervision, leading to improved brain tumor 

segmentation results. Interpretability and computational 

efficiency due to the increased model complexity is a 

challenge. 
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6.2 Federated Learning (FL) approaches 

 

Sheller et al. [19] evaluated FL alongside other data-private 

collaborative learning methods, including institutional 

incremental learning and cyclic institutional incremental 

learning, within the context of brain tumor 

segmentation.While FL mitigates institutional biases, 

challenges may arise in terms of communication overhead and 

coordination across different institutions, and the method's 

performance may be influenced by the heterogeneity of data 

sources. 

Li et al. [20] extended FL to brain tumor segmentation using 

a DNN and the BraTS dataset, emphasizing privacy-

preserving techniques contributing to the emerging field of 

collaborative learning. However, its limitations may include 

communication overhead and potential challenges in 

maintaining model performance with decentralized training. 

Dou et al. [21] leveraged FL to detect chest CT 

abnormalities in COVID-19 patients, achieving remarkable 

generalization performance. Demonstrated FL's success in 

detecting chest CT abnormalities in COVID-19 patients, 

showcasing its potential in diverse medical contexts. 

Remarkably, the best generalization performance achieved an 

accuracy of 95.66% using an FL model. The FLED-Block 

model, which combines various neural network architectures, 

achieved an impressive 98.2% accuracy in predicting COVID-

19 outcomes using Federated Learning (FL). It utilized capsule 

networks for feature extraction, employed extreme learning 

machines (ELM) for classification, and integrated blockchain 

technology for secure data retrieval. 

Guo et al. [22] introduced a cross-site modeling platform 

utilizing FL for MR image reconstruction. Provided a cross-

site modeling platform, addressing challenges of diverse 

scanners and acquisition protocols, enhancing the applicability 

of FL. This study focused on aligning concealed features from 

different sub-sites with those from the main site, yielding 

promising results across multiple datasets. Potential 

heterogeneity in data quality and the need for careful 

consideration of cross-site variations poses a challenge. 

Our work builds on state-of-the-art methodologies by 

incorporating the strengths of CNN-based approaches, 

leveraging the effectiveness of ensemble methods for 

improved robustness, and incorporating privacy-preserving 

techniques such as federated learning. We aim to address 

limitations observed in prior works, particularly in terms of 

computational efficiency and generalization, by proposing an 

innovative hybrid model that synergistically combines the 

strengths of these approaches. Our methodology aims to 

advance the field by providing a more comprehensive and 

efficient solution for accurate brain tumor segmentation while 

considering privacy concerns and diverse data sources. 

 

 

7. METHODOLOGY 

 

The research focuses on brain tumor segmentation using 

magnetic resonance imaging (MRI) data from five hospitals. 

Data preparation involves ensuring completeness and quality, 

with incomplete samples being removed. A specialized 

DataGenerator class facilitates data processing and 

augmentation. The ResUHybridNet model, combining ResNet 

and U-Net, is employed for segmentation, with a structured 

architecture, including encoder and decoder blocks. The 

federated learning setup involves multiple hospitals training 

local models, and a central server aggregating insights using 

Federated Averaging. Stratified sampling ensures equitable 

data distribution, and visualization tools validate this 

distribution. Hyperparameter tuning involves Grid Search, 

Random Search, and Bayesian Optimization to optimize the 

ResUHybridNet model's performance. The methodology 

emphasizes privacy, fairness, and autonomy in federated 

learning with medical data [23]. 

 

7.1 Data preparation and exploration 

 

The research begins by collecting magnetic resonance 

imaging (MRI) data from five different hospitals, each of 

which is represented by a separate directory. In this dataset, 

each patient sample includes various MRI scans, such as flair, 

t1ce, t2, t1, and a segmentation mask, which are crucial for 

brain tumor segmentation. To ensure the quality and integrity 

of the data, the code performs data completeness checks for 

each sample, ensuring that all required MRI scans are present 

[24]. We iterate through each sample, verifying the presence 

of essential files and flagging incomplete samples. Incomplete 

samples, which lack any of the required MRI scans, are 

identified and removed from the dataset. To facilitate data 

processing, augmentation, and model input, a specialized 

DataGenerator class is implemented. This class is designed to 

preprocess and augment MRI data, allowing it to be efficiently 

fed into the deep learning model. Augmentation techniques 

include zooming, horizontal flipping, vertical flipping, and 

nearest-neighbor fill mode. 

 

7.2 Model architecture 

 

The model used in this research is the ResUHybridNet, an 

architecture designed for semantic segmentation of brain 

tumor regions in MRI scans. This model is structured with 

input dimensions of 128x128 pixels and classifies the pixels 

into four categories: "Not Tumor," "Necrotic/Core," "Edema," 

and "Enhancing." The architecture follows a hybrid design that 

combines elements of ResNet and U-Net [25]. It is defined 

using the Keras API and includes encoder and decoder blocks. 

These blocks consist of convolutional layers, batch 

normalization, activation functions, and residual connections. 

The model is compiled using categorical cross-entropy as the 

loss function and the Adam optimizer. 

The encoder segment leverages the strengths of the ResNet 

architecture, renowned for its residual connections that 

optimize gradient flow, preventing the vanishing gradient 

problem, thus ensuring stable and effective training. The input 

is processed through a ResNet block with 64 filters. This 

results in a feature map, which is subsequently down sampled 

using max pooling. The processed data then proceeds to 

another ResNet block, this time with 128 filters, and is again 

followed by max pooling. Continuing the trend, the next block 

employs 256 filters, and, post-processing, the feature map 

undergoes max pooling.The final encoding ResNet block 

utilizes 512 filters. Following its processing, a max pooling 

operation further reduces the spatial dimensions of the feature 

map. 

After encoding, the data reaches the bottleneck, a region 

where the deepest representations are learned. Here, a ResNet 

block with a hefty 1024 filters processes the feature map, 

ensuring extraction of the most intricate details essential for 

precise segmentation. 

The decoder echoes the U-Net's design, celebrated for its 
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expansive blocks that restore the spatial dimensions of the 

image while maintaining the learned features.First Up-

sampling Block: Beginning with an up-sampling of the feature 

map from the bottleneck, it's concatenated with the feature 

map from the fourth ResNet block (512 filters) and then passed 

through convolutional layers.The resulting map is upsampled 

and fused with the third ResNet block’s feature map (256 

filters) before undergoing convolutional operations.Similarly, 

the map is upscaled and combined with the second ResNet 

block’s outputs (128 filters) followed by convolutions. 

Fourth Up-sampling Block: The last up-sampling step sees 

the map combined with the first ResNet block’s outputs (64 

filters) and processed through convolutional layers.The model 

concludes with a convolutional layer that has filters equal to 

the number of classes (in this case, 4). It uses a softmax 

activation to ensure the output values range between 0 and 1 

and can be interpreted as probabilities for each class.The 

ResU-HybridNet architecture is then compiled with a 

categorical cross-entropy loss and optimized using the Adam 

optimizer as shown in Figure 2. Alongside accuracy, multiple 

metrics, including MeanIoU and custom metrics like dice 

coefficients for different tumor regions, provide a 

comprehensive evaluation of the model's performance. 

 

 
 

Figure 2. ResUHybridNet architecture 

 

7.3 Federated learning setup and training loop 

 

The research employs a horizontal federated learning setup 

in which multiple hospitals act as client nodes. Each hospital 

possesses its own dataset and trains a local model. These local 

models and the central server model follow the same 

ResUHybridNet architecture. The server model initializes 

with the same architecture as the client models. 

The federated training loop is designed to enable iterative 

training over multiple rounds. In this research, 100 rounds are 

executed. During each round, the client models are trained on 

their local datasets using the DataGenerator class. After 

training, the client models' weights are captured and 

transmitted to the server. The server aggregates these weights 

using Federated Averaging to update its own weights. This 

ensures that the global model reflects insights from all client 

models.The server model is then evaluated on validation 

datasets from all hospitals. Evaluation metrics, including loss, 

accuracy, mean intersection over union (IoU), and dice 

coefficient, are computed. These metrics are aggregated and 

averaged across all hospitals to assess the performance of the 

federated model. Additionally, the training time for each round 

is recorded, providing insights into the time complexity of the 

federated training process [26]. 

 

7.4 Data distribution and visualization 

 

The process of ensuring equitable data distribution across 

multiple hospital nodes is enhanced through the application of 

stratified sampling. Stratified sampling, in this context, aims 

to guarantee that each subset of data, whether it's for training, 

validation, or testing, has a representative fraction of samples 

from every hospital. This ensures that no hospital's data is 

underrepresented or overrepresented. To validate this even 

distribution and to provide a clearer understanding of the data 

structure, visualization tools are employed. These visual tools 

offer an intuitive perspective on how data from each hospital 

has been integrated, highlighting the distribution percentages, 

potential outliers, and any patterns that might emerge. 

Moreover, in the realm of federated learning, ensuring each 

hospital's data is correctly loaded and preprocessed has deeper 

implications than just balanced training. It's a testament to the 

system's capability to respect the individuality, privacy, and 

autonomy of each institution. When dealing with medical data, 

especially from varied and heterogeneous sources, it's 

paramount that the system doesn't compromise on these 

principles. This not only builds trust among participating 

entities but also bolsters the reliability and credibility of the 

federated model's outcomes. In essence, the combination of 

stratified sampling and meticulous data visualization acts as a 

double-check mechanism as shown in Figure 3, ensuring that 

the principles of fair representation and privacy are upheld in 

a federated learning environment.

 

 
 

Figure 3. Visualization of ground truth mask 
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7.5 Model hyperparameter tuning and optimization 

 

Hyperparameter tuning remains a pivotal step in optimizing 

machine learning models. The selection of optimal 

hyperparameters can significantly influence the performance 

of complex architectures, such as the ResUHybridNet in this 

study. The Grid Search method serves as an initial approach. 

This exhaustive technique involves defining a subset of the 

hyperparameter space. The model undergoes training and 

evaluation for each hyperparameter combination. After testing 

all combinations, the one yielding the best performance 

becomes the chosen set. Though comprehensive, the Grid 

Search method can demand high computational resources, 

particularly with vast hyperparameter spaces [27]. 

Following this, the Random Search technique is applied. 

Contrary to Grid Search, which evaluates every possible 

combination, Random Search randomly selects combinations 

for model training and evaluation. Empirical studies indicate 

that Random Search can attain comparable or even superior 

results to Grid Search in reduced time, especially when a 

limited number of hyperparameters substantially affect model 

performance [28]. 

Consequently, Bayesian Optimization is integrated into the 

process. This approach employs a probabilistic model to 

predict which hyperparameter combinations are likely to yield 

improved results [29]. By focusing on areas of the 

hyperparameter space that appear promising, Bayesian 

Optimization can efficiently identify optimal settings, often 

with fewer evaluations than traditional methods. 

This methodology introduces several key advancements. 

The rigorous data preparation process ensures data 

completeness and quality, contributing to the reliability of the 

subsequent analysis. The implementation of the 

ResUHybridNet model, a hybrid architecture fusing ResNet 

and U-Net [30], showcases a thoughtful combination of 

strengths from both frameworks for more accurate 

segmentation. The federated learning approach, with multiple 

hospitals acting as client nodes, not only allows decentralized 

training but also prioritizes privacy, fairness, and autonomy in 

handling sensitive medical data. The incorporation of stratified 

sampling enhances data distribution equity across hospitals, 

crucial for model generalization. Visualization tools offer 

transparency and validation of the data integration process. 

Moreover, the hyperparameter tuning strategy, incorporating 

Grid Search, Random Search, and Bayesian Optimization, 

reflects a comprehensive effort to optimize model 

performance efficiently. This methodology stands out for its 

holistic approach, addressing technical challenges while 

upholding ethical principles in the context of medical data and 

federated learning. 

 

 
8. RESULTS 

 

In the realm of medical imaging, particularly brain tumor 

segmentation, Accuracy is a fundamental metric in evaluating 

the overall correctness of a segmentation model. In the case of 

brain tumor segmentation, accuracy measures the proportion 

of correctly classified pixels (both tumor and non-tumor) in 

relation to the total number of pixels. The accuracy of 

ResUHybridNet, standing at an impressive 0.987 as shown in 

the comparison analysis in Table 1, signifies an exceptionally 

high level of overall correct predictions [31]. This metric is 

crucial in medical imaging, where misclassifying pixels can 

have significant consequences [32]. The high accuracy of 

ResUHybridNet suggests its proficiency in providing precise 

and reliable segmentations, a vital characteristic in the context 

of medical diagnoses and treatment planning. When evaluated 

against established neural network models, including 3D U-

Net, UNETR, and U-Net++, the superiority of 

ResUHybridNet was evident. The Dice coefficient, also 

known as the Sørensen-Dice index, is a metric specifically 

designed for assessing the spatial overlap between the 

predicted segmentation and the ground truth. In brain tumor 

segmentation, achieving a high Dice coefficient is crucial for 

accurately capturing the boundaries of tumors. A Dice 

coefficient of 0.79 for ResUHybridNet highlights its 

effectiveness in delineating tumor regions with a high degree 

of spatial overlap compared to the ground truth as shown in 

the comparative analysis in Table 1. The Dice coefficient's 

sensitivity to both false positives and false negatives makes it 

particularly relevant in medical image segmentation tasks, 

where precise delineation of tumor boundaries is paramount. 

The robust performance of ResUHybridNet in this metric 

emphasizes its ability to provide accurate and consistent 

segmentation results, essential for clinical decision-making 

and subsequent interventions. 

A deeper examination of the ResUHybridNet reveals its 

strengths. By melding the resilience and robust feature 

extraction of Residual Networks (ResNets) with the holistic 

data capture ability of U-Net, this architecture manages to 

identify and segment even the most intricate details from brain 

tumor MRI scans. Such a design ensures both high precision 

and dependable consistency in the segmentation results. 

However, the study did not stop at just creating a high-

performing architecture. In the pursuit of refining the training 

process and addressing real-world data challenges, horizontal 

federated learning was integrated. When juxtaposing 

traditional neural network training methods with federated 

learning, some clear advantages emerged for the latter. 

Notably, federated learning streamlined the convergence 

process and reduced overall training time. These advantages 

are particularly beneficial when considering decentralized 

datasets or situations where patient data privacy is a priority. 

 

Table 1. Comparison of accuracy and dice scores 

 
Model Accuracy Dice Score 

3D U-Net 0.985 0.78 

UNETR 0.983 0.77 

U-Net++ 0.978 0.72 

ResUHybridNet 0.987 0.79 

 

8.1 Segmentation and predictions 

 

The presented visualizations offer a meticulous examination 

between expert-annotated ground truth tumor segmentations 

and predictions generated by our advanced deep learning 

architecture. Initially, the Fluid-Attenuated Inversion 

Recovery (FLAIR) MRI slice is showcased, renowned for 

capturing hyper-intense regions, instrumental in delineating 

certain brain lesions. Adjacent to the FLAIR MRI slice is the 

expert-annotated segmentation, where diverse color overlays 

signify specific tumor sub-regions, offering granular insight 

into tumor anatomy and morphology. Following this, a 

composite representation amalgamates all tumor sub-regions, 

providing a comprehensive overview of the entire tumor 

structure and its segmented components. 

Subsequent images highlight predictions for specific tumor 
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sub-regions such as NECROTIC/CORE, EDEMA, and 

ENHANCING as shown in Figure 4. Each prediction 

demonstrates the capability of our proposed architecture to 

discern and delineate these intricate sub-regions. Notably, 

while some predictions closely align with the ground truth, 

highlighting the model's precision, others signify areas where 

further refinement might be necessary.The juxtaposition of 

ground truth against predicted segmentations serves not just as 

a testament to our model's accuracy but also underscores the 

complexities and variances inherent in brain tumor 

segmentation tasks, emphasizing potential avenues for 

enhancement in future iterations of the model. 

 

8.2 Centralized vs federated training 

 

In an analysis comparing centralized and federated training 

methods, several observations emerge. The Mean Intersection 

Over Union (IoU), a standard metric for evaluating model 

performance, was tracked over 100 rounds as shown below in 

Figure 5. Throughout the training, both methods displayed a 

steady increase in the IoU metric. While the centralized 

training method initially exhibited a marginally superior IoU, 

federated training eventually caught up around the 40th round, 

and subsequently, both methods maintained analogous 

performance trajectories. 

When scrutinizing the convergence speed by evaluating loss 

values over 100 rounds, discernible trends surfaced. 

Centralized training exhibited a more abrupt decline in loss, 

indicating an initial faster convergence rate compared to its 

federated counterpart. This initial disparity underscores the 

efficiency of centralized training in swiftly adapting to the 

provided dataset, allowing for rapid adjustments in model 

parameters 

However, as the training rounds progressed, a noteworthy 

evolution occurred: the loss values for federated training 

gradually approached and eventually converged with those of 

centralized training. This observation suggests that while 

centralized training offers expedited initial convergence 

benefits, federated training possesses the capability to attain 

commensurate performance benchmarks with extended 

training rounds. The diminishing gap in loss values between 

the two methods by the conclusion of the 100 rounds indicates 

that the federated approach, despite its initially slower 

convergence, can effectively adapt and refine its model 

parameters to achieve comparable performance to the more 

rapidly converging centralized training. This nuanced analysis 

emphasizes the dynamic nature of convergence in the context 

of training methodologies, shedding light on the trade-offs and 

benefits associated with both centralized and federated 

training approaches as seen in the convergence speed 

comparison in Figure 6. 

 

 
(a) Classification of disease category 

 
(b) Segmentation based on mask 

 

Figure 4. Classification of tumors 
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Figure 5. Mean IoU comparison 

 

 
 

Figure 6. Convergence speed comparison 

 

9. CONCLUSIONS 

 

The inception of ResUHybridNet marks a momentous stride 

in the domain of neural network designs optimized for medical 

imaging applications, addressing the challenges of accurate 

brain tumor segmentation from 3D MRI scans. It emphasizes 

precision within the complexities of diverse datasets and 

stringent data privacy standards, effectively tackling the 

primary problem of balancing accuracy and privacy in brain 

tumor segmentation. At its core, this network ingeniously 

melds the resilience and adaptability offered by ResNets with 

the superior segmentation prowess inherent to the U-Net 

architecture. This marriage of attributes has set new 

benchmarks, especially in the precise and critical task of brain 

tumor identification and mapping. 

These results underscore the effectiveness of 

ResUHybridNet in revolutionizing the field of medical 

imaging, particularly in brain tumor identification. The fusion 

of ResNets and U-Net architecture has demonstrated its 

potential for high-precision segmentation, promising 

improved patient outcomes. 

However, it's essential to acknowledge the limitations. 

While ResUHybridNet has shown promise in brain imaging, 

its adaptability and performance in other specialized medical 

imaging segments, such as cardiac imaging or musculoskeletal 

studies, remain unexplored. Additionally, further refinements 

are needed to ensure seamless integration into clinical 

diagnostic systems. 

To unlock the full potential of ResUHybridNet, future work 

should involve in-depth exploration of its applicability in 

various medical domains. Collaborative global research 

partnerships can provide diverse datasets, enhancing the 

model's versatility and efficacy across different patient 

demographics and ethnic profiles. Additionally, a crucial 
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aspect of future work involves gathering and incorporating 

patient feedback to maintain the human touch, comfort, and 

care quality at the heart of all endeavors. This forward-looking 

approach promises not only enhanced models but also superior 

patient care outcomes. 

In an era where data privacy and decentralization have 

emerged as frontline concerns, especially in the sensitive 

realm of medical data, this strategy offers a promising pathway. 

It promises enhanced model efficacy without compromising 

on the crucial tenets of data security and patient confidentiality. 

The initial achievements with ResUHybridNet, while 

commendable, represent merely the tip of the iceberg. There 

exists a vast canvas of opportunities and challenges that await 

exploration. On the practical front, the real acid test would be 

to gauge how seamlessly ResUHybridNet dovetails into 

existing clinical diagnostic systems. 

The Federated ResUHybridNet model holds promise for 

transforming brain tumor diagnosis and treatment planning in 

healthcare. Its applications extend beyond segmentation, 

impacting surgical procedures, radiation therapy, and ongoing 

disease monitoring. The federated learning framework ensures 

collaborative advancements in medical research without 

compromising patient data privacy, aligning with evolving 

healthcare data management practices. 

A broader vision would also necessitate collaborative global 

research partnerships. Such collaborations could pool in 

diverse datasets, enhancing the model's versatility and 

ensuring its efficacy across varied demographic and ethnic 

profiles. Lastly, and perhaps most importantly, the end 

beneficiary of all these advancements is the patient. It's 

imperative to gather and incorporate their feedback, ensuring 

that while we scale the peaks of technological advancements, 

the human touch, comfort, and care quality remain at the heart 

of all endeavors. By venturing into these avenues, we don't just 

enhance a model; we inch closer to synergizing advanced 

computational capabilities with the ultimate goal of superior 

patient care outcomes. 

The current work on federated learning for brain tumor 

segmentation in medical imaging shows promise but is not 

without limitations. Challenges include a potential lack of 

diversity in datasets, small sample sizes for certain tumor types, 

limited representation of rare tumors, variability in imaging 

protocols, ethnic and geographic biases, demands on 

computational resources and training time, logistical hurdles 

in implementing federated learning, concerns about model 

interpretability, and the need for continuous monitoring of 

long-term stability. Additionally, addressing regulatory and 

ethical compliance issues is essential. Overcoming these 

limitations through ongoing research, collaboration, and 

refinement of the federated learning framework is crucial to 

ensuring its applicability, robustness, and ethical soundness in 

real-world healthcare settings. 

Future research in brain tumor segmentation should 

prioritize the integration of multi-modal imaging data, 

including PET and DTI, to bolster the Federated 

ResUHybridNet model's robustness. This integration is 

expected to provide a more comprehensive understanding of 

tumor characteristics, ultimately improving the model's 

accuracy and performance. Real-world clinical validation is 

crucial for assessing the model's effectiveness across diverse 

patient populations and clinical scenarios, ensuring its 

practical utility. Additionally, incorporating interpretability 

techniques, such as attention mechanisms, will enhance the 

model's transparency, fostering trust among healthcare 

professionals and contributing to its seamless integration into 

clinical practice. These advancements aim to elevate the 

model's performance and reliability in the dynamic landscape 

of medical imaging [33]. 

 

 

ACKNOWLEDGEMENT 

 

The authors would like to express their profound 

appreciation and gratitude to the Vellore Institute of 

Technology for their unwavering support and guidance. The 

institution's dedication to fostering research and innovation 

played a pivotal role in the realization of this work. The 

mentorship provided by the faculty and the conducive 

environment for scholarly discussions have been instrumental 

in shaping the direction and outcomes of this research. We are 

deeply thankful for the opportunity to collaborate and thrive 

within such a vibrant academic community. 

 

 

REFERENCES  

 

[1] Beam, A.L., Kohane, I.S. (2018). Big data and machine 

learning in health care. JAMA, 319(13): 1317-1318. 

https://doi.org/10.1001/jama.2017.18391 

[2] Obermeyer, Z., Emanuel, E.J. (2016). Predicting the 

future—big data, machine learning, and clinical 

medicine. The New England Journal of Medicine, 

375(13): 1216-1219. 

https://doi.org/10.1056/NEJMp1606181. 

[3] Davenport, T., Kalakota, R. (2019). The potential for 

artificial intelligence in healthcare. Future Healthcare 

Journal, 6(2): 94-98. https://doi.org/10.7861/fhj.2019-

0004 

[4] Liu, Y., Chen, P.H.C., Krause, J., Peng, L. (2019). How 

to read articles that use machine learning: Users’ guides 

to the medical literature. JAMA, 322(18): 1806-1816. 

https://doi.org/10.1001/jama.2019.16489 

[5] Menze, B.H., Jakab, A., Bauer, S., et al. (2015). The 

multimodal brain tumor image segmentation benchmark 

(BRATS). IEEE Transactions on Medical Imaging, 

34(10): 1993-2024. 

https://doi.org/10.1109/TMI.2014.2377694 

[6] Chen, T.J., Son, Y.J., Park, A., Baek, S.J. (2022). 

Baseline correction using a deep-learning model 

combining ResNet and UNet. Analyst, 19(2022). 

http://doi.org/10.1039/D2AN00868H 

[7] Topol, E.J. (2019). High-performance medicine: The 

convergence of human and artificial intelligence. Nature 

Medicine, 25(1): 44-56. https://doi.org/10.1038/s41591-

018-0300-7 

[8] Mo, Y., Wu, Y., Yang, X., Liu, F., Liao, Y., 2022. 

Review the state-of-the-art technologies of semantic 

segmentation based on deep learning. Neurocomputing, 

493: 626-646. 

https://doi.org/10.1016/j.neucom.2022.01.005 

[9] McKinney, S. M., Sieniek, M., Godbole, V., et al. (2020). 

International evaluation of an AI system for breast cancer 

screening. Nature, 577(7788): 89-94. 

https://doi.org/10.1038/s41586-019-1799-6 

[10] Havaei, M., Davy, A., Warde-Farley, D., Biard, A., 

Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., 

Larochelle, H. (2017). Brain tumor segmentation with 

773



 

deep neural networks. Medical image analysis, 35: 18-

31. https://doi.org/10.1016/j.media.2016.05.004 

[11] Wadhwa, A., Bhardwaj, A., Vivek Singh Verma, V.S. 

(2024). A review on brain tumor segmentation of MRI 

images. Magnetic Resonance Imaging, 61: 247-259, 

https://doi.org/10.1016/j.mri.2019.05.043. 

[12] Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, 

S.M., Blau, H.M., Thrun, S. (2017). Dermatologist-level 

classification of skin cancer with deep neural networks. 

Nature, 542(7639): 115-118. 

https://doi.org/10.1038/nature21056 

[13] Long, J., Shelhamer, E., Darrell, T. (2015). Fully 

convolutional networks for semantic segmentation. In 

2015 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), Boston, MA, USA, pp. 3431-3440. 

https://doi.org/10.1109/CVPR.2015.7298965 

[14] Saha, A., Zhang, Y.D., Satapathy, S.C. (2021). Brain 

tumor segmentation with a multi-pathway ResNet based 

UNet. Journal of Grid Computing, 19, pp.1-10. 

[15] Zikic, D., Ioannou, Y., Brown, M., Criminisi, A. (2012). 

Segmentation of brain tumor tissues with convolutional 

neural networks. In Proceedings - MICCAI Workshop on 

Multimodal Brain Tumor Segmentation, pp. 36-39. 

[16] Pereira, S., Pinto, A., Alves, V., Silva, C.A. (2016). Brain 

tumor segmentation using convolutional neural networks 

in MRI images. IEEE Transactions on Medical Imaging, 

35(5): 12401251. 

https://doi.org/10.1109/TMI.2016.2538465 

[17] Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, 

J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B. 

(2017). Efficient multi-scale 3D CNN with fully 

connected CRF for accurate brain lesion segmentation. 

Medical Image Analysis, 36: 61-78. 

https://doi.org/10.1016/j.media.2016.10.004 

[18] Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., 

Maier-Hein, K.H. (2019). No New-Net. In: Crimi, A., 

Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, 

T. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke 

and Traumatic Brain Injuries. BrainLes 2018. Lecture 

Notes in Computer Science(). 

https://doi.org/10.1007/978-3-030-11726-9_21 

[19] Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., 

Bakas, S. (2019). Multi-institutional Deep Learning 

Modeling Without Sharing Patient Data: A Feasibility 

Study on Brain Tumor Segmentation. In: Crimi, A., 

Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, 

T. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke 

and Traumatic Brain Injuries. BrainLes 2018. Lecture 

Notes in Computer Science(), vol 11383. Springer, 

Cham. https://doi.org/10.1007/978-3-030-11723-8_9 

[20] Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., 

Vercauteren, T. (2017). On the compactness, efficiency, 

and representation of 3D convolutional networks: Brain 

parcellation as a pretext task. In: Niethammer, M., et al. 

Information Processing in Medical Imaging. IPMI 2017. 

Lecture Notes in Computer Science(), vol 10265. 

Springer, Cham. https://doi.org/10.1007/978-3-319-

59050-9_28 

[21] Dou, Q., Chen, H., Jin, Y., Yu, L., Qin, J., Heng, P.A. 

(2020). Multi-level contextual 3-D CNNs for false 

positive reduction in pulmonary nodule detection. IEEE 

Transactions on Biomedical Engineering, 64(7): 1558-

1567. https://doi.org/10.1109/TBME.2016.2613502  

[22] Guo, P.F., et al. (2022). Auto-fedrl: Federated 

hyperparameter optimization for multi-institutional 

medical image segmentation. In European Conference on 

Computer Vision, pp. 437-455.  

[23] KhoKhar, F.A., Shah, J.H., Khan, M.A., Sharif, M., 

Tariq, U., Kadry, S. (2022). A review on federated 

learning towards image processing. Computers and 

Electrical Engineering, 99: 107818. 

https://doi.org/10.1016/j.compeleceng.2022.107818 

[24] Ambesange, S., Annappa, B., Koolagudi, S.G. (2023). 

Simulating federated transfer learning for lung 

segmentation using modified UNet model. Procedia 

Computer Science, 218: 1485-1496. 

https://doi.org/10.1016/j.procs.2023.01.127 

[25] Swarnendu, G., Das, N., Das, I., Maulik, U. (2019). 

Understanding deep learning techniques for image 

segmentation. ACM computing surveys (CSUR), 52(4): 

1-35. https://doi.org/10.1145/3329784 

[26] McMahan, H.B., Moore, E., Ramage, D., y Arcas, B.A. 

(2016). Federated learning of deep networks using model 

averaging. arXiv preprint arXiv:1602.05629. 

https://doi.org/10.48550/arXiv.1602.05629 

[27] Ronneberger, O., Fischer, P., Brox, T. (2015). U-net: 

Convolutional networks for biomedical image 

segmentation. In International Conference on Medical 

Image Computing and Computer-Assisted Intervention, 

pp. 234-241. https://doi.org/10.1007/978-3-319-24574-

4_28 

[28] Zhao, Y., Wang, J., Liu, Y., He, X. (2020). Federated 

learning with non-IID data. arXiv preprint 

arXiv:2006.00582. 

https://doi.org/10.48550/arXiv.1806.00582 

[29] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual 

learning for image recognition. In 2016 IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), 

Las Vegas, NV, USA, pp. 770-778. 

https://doi.org/10.1109/CVPR.2016.90 

[30] Zhang, Z., Jung, C., Makeig, S., Rao, B.D. (2017). 

Computationally efficient convolutive non-negative 

matrix factorization for the representation of large non-

stationary signals. IEEE Transactions on Signal 

Processing, 65(21): 5757-5770.  

[31] Konečný, J., McMahan, B., Yu, F.X., Richtárik, P., 

Suresh, A.T., Bacon, D. (2016). Federated learning: 

Strategies for improving communication efficiency. 

arXiv preprint arXiv:1610.05492. 

https://doi.org/10.48550/arXiv.1610.05492 

[32] Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., 

Ciompi, F., Ghafoorian, M., van der Laak, J.A.W.M., van 

Ginneken, B., Sánchez, C.I. (2017). A survey on deep 

learning in medical image analysis. Medical Image 

Analysis, 42: 60-88. 

https://doi.org/10.1016/j.media.2017.07.005 

[33] Bergstra, J., Bengio, Y. (2012). Random search for 

hyper-parameter optimization. Journal of Machine 

Learning Research, 13: 281-305. 

 

 

NOMENCLATURE 

 

Acronyms and abbreviations 

 

DeepMedic A 3D CNN approach introduced by 

Kamnitsas et al. 

U-Net A deep learning architecture for biomedical 
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image segmentation 

FL Federated Learning 

CNN Convolution Neural Networks 

MRI Magnetic Resonance Imaging 

HGG High-Grade Giloma 

LGG Low-Grade Giloma 

FCNN Fully Convolutional Neural Networks 

CRF Conditional Random Field 

RNN Reccurent Neural Networks 

BRATS Brain Tumor Segmentaion Benchmark 

DNN Deep Neural Network 

CT Computed Tomography 

ELM Extreme Learning Machine 

FLED Federated Learning Enhanced Design 

IoU Intersection Over Union 

Subscripts 

2D Two Dimensional 

3D Three Dimensional 

MR Magnetic Resonance 

Symbols 

% Percentage 
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