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 This article introduces and evaluates a novel Deep Neural Network (DNN) designed 

specifically for brain stroke detection. Highlighting the innovation of using a weighted 

Binary Cross Entropy (BCE) loss function to address dataset imbalances, this work also 

aims to propose a less computationally complex model that makes predictions using very 

basic demographic and health-related information. In the realm of stroke detection using 

brain imaging, various methods, including Convolutional Neural Networks (CNNs) and 

Hybrid Algorithms (OzNet-mRMR-NB and Linearized Scattering Operator with ML 

Algorithms), have shown potential but suffer from computational complexity and time 

consumption. Analyzing factors such as Gender, Age, Hypertension, Heart Disease, Work 

Type, Residence Type, Average Glucose Level, Body Mass Index (BMI), and Smoking 

Status allows the proposed model to avoid the computational burdens of image-based 

feature extraction, focusing instead on accessible data to improve prediction accuracy. The 

selected model architecture features six hidden layers with dimensions (31, 64, 128, 64, 32, 

16) to effectively process these inputs and accurately identify stroke risk. By using weighted 

BCE as the loss function, the model counteracts dataset bias towards more common non-

stroke cases, emphasizing the identification of critical stroke instances during training. 

Furthermore, the proposed model demonstrated significant improvements in detecting 

stroke instances, particularly in the minority class, by employing weighted BCE. While 

accuracy slightly decreased from 95.36% with standard BCE to 75.36% with weighted 

BCE, this reduction is outweighed by substantial gains in Recall (from 0 to 34.91), Precision 

(from 0 to 100), and F1-Score (from 0 to 51.75). In addition to making a significant 

methodological contribution, this study has the potential to improve stroke prediction 

greatly, allowing for more efficient and rapid treatment. 
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1. INTRODUCTION 

 

The integration of artificial intelligence in stroke detection 

is a revolutionary advancement in medical diagnostics. 

facilitating swift and precise identification of strokes [1]. This 

technology not only expedites the diagnostic process but also 

improves accuracy, allowing healthcare practitioners to make 

prompt and well-informed judgments [2, 3]. Integrating AI 

into stroke diagnosis is crucial for promptly commencing 

therapy, hence greatly improving patient outcomes and 

survival rates. Cerebrovascular accidents, caused by 

disruptions in blood circulation to the brain, need immediate 

medical attention to minimize long-term harm [4]. Deep 

learning expedites the analysis of medical imaging such as 

MRIs or CT scans, aiding in stroke identification, and 

contributing to swift diagnosis [5, 6]. Additionally, deep 

learning algorithms use comprehensive patient data to predict 

stroke likelihood, thus enhancing stroke prevention. 

Since stroke detection can lead to much better patient 

outcomes, it is imperative to enhance it [7]. Strokes represent 

a significant global health concern, and prompt and accurate 

diagnosis is necessary to initiate effective treatment [8]. A 

noteworthy development in stroke diagnosis using 

neuroimaging is the construction of a customized DNN using 

a weighted BCE loss function. This methodology addresses 

the challenges associated with acquiring stroke characteristics 

as well as the issue of imbalanced datasets. This leads to 

increased diagnostic accuracy and makes stroke diagnosis 

more rapid and accurate. Innovations in deep learning 

immediately improve clinical decision-making and offer a 

chance for early intervention that might potentially prevent 

long-term consequences and even save lives [9, 10]. 
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The recommended architecture's layers are arranged to 

carefully analyze complex patterns in imaging data, which is 

essential for identifying strokes. It is specifically made for the 

diagnosis of brain strokes. Comprehensive feature extraction 

becomes easier with this architecture, which is essential for 

differentiating between stroke episodes and non-stroke 

situations. The proposed strategy uses weighted BCE in a new 

way to boost the sensitivity of the model to stroke patients, 

which are the underrepresented class, hence addressing the 

common issue of dataset imbalance [11]. This approach 

greatly improves the model's accuracy in identifying strokes, 

hence addressing the challenges presented by intricate feature 

landscapes and discrepancies in data that impede existing 

models. The suggested model shows a notable improvement 

over the conventional strategy, combining weighted BCE with 

a specific framework. This development significantly 

advances the domains of neuroimaging and stroke recognition 

while also improving diagnostic processes in clinical settings 

[12]. 

Moreover, within the rapidly developing field of medical 

imaging and diagnostics, deep learning techniques have 

emerged as an indispensable tool. It has completely changed 

how diseases like brain strokes are diagnosed and examined. 

Gaidhani et al. [13] demonstrated the capability of DNNs to 

reliably diagnose brain strokes using medical imaging, which 

aligns with the novel approaches suggested in the primary 

article. Simultaneously, Dourado et al. [14] produced an 

Internet of Things (IoT) system that uses deep learning to 

quickly identify strokes in CT images, demonstrating the 

usefulness of deep learning in clinical environments. In 

addition to these results, Sirsat et al. [15] undertook a 

comprehensive examination of deep learning in stroke 

detection, creating a fundamental comprehension of the 

function of artificial intelligence in this field. In addition, 

Vamsi et al. [16] extended the use of artificial intelligence (AI) 

to include the prediction of stroke severity. This study 

showcases the wider implications of AI in stroke care, going 

beyond only the detection of strokes. Last but not least, Abood 

et al. [17] shown the flexibility of deep learning in predictive 

maintenance tasks, emphasizing its possibility to be used in 

many areas, such as healthcare. These studies highlighted the 

substantial progress and wide-ranging uses of AI in improving 

stroke diagnostic and treatment methods. 

The use of deep learning in stroke diagnosis and treatment 

exemplifies a crucial transition towards more precise, effective, 

and nuanced healthcare diagnoses and therapies. The 

revolutionary model developed in this study, using an 

innovative strategy for addressing unbalanced data, signifies a 

substantial advancement in the capacity to accurately identify 

strokes. This progress, along with the confirming and 

supplementary discoveries, highlights the crucial and growing 

significance of AI in medical diagnosis. It highlights the 

transformative potential of deep learning technologies in 

advancing stroke detection and enhancing patient care 

outcomes. 

The remaining sections of the paper were structured as 

follows: An introduction that focused on AI-based brain stroke 

detection alongside the works in the same field was provided 

in Section 1. The dataset was clarified, and the comprehensive 

methodology employed in the research was outlined in Section 

2. The obtained results were presented in Section 3, and finally, 

the concluding remarks of the paper were provided in Section 

4. 

 

 

2. METHODOLOGY 

 

The dataset, provided by Kaggle [18], discusses the impact 

of different factors on people who may or may not experience 

a stroke. Only 5% of the dataset represents the samples of 

situations which had brain stroke, the remaining 95% of 

samples in this dataset do not have a brain stroke, making it an 

unbalanced dataset. An imbalanced dataset is characterized by 

an uneven distribution of samples across distinct 

classifications. This discrepancy could pose challenges for 

machine learning model training, particularly for classification 

tasks. There are serious problems with classifying an uneven 

dataset that could compromise the reliability and efficiency of 

machine learning algorithms [19]. As a result of having an 

abundance of learning examples, AI models trained on 

imbalanced datasets display a bias towards the dominant class. 

As such, it could be challenging for the model to anticipate the 

minority class which is frequently the class that is most 

interesting accurately. On the other hand, the model might not 

accurately capture the underlying patterns and characteristics 

of the minority class because there is insufficient data from 

that class. As a result, the minority class may have a low recall 

rate, which would suggest that the model is not able to 

accurately identify a sizable proportion of positive examples. 

The accuracy metric is commonly employed to evaluate the 

efficacy of a machine learning model, especially in datasets 

with uniform distribution. It measures the proportion of 

correctly identified cases to all instances in the dataset. 

Numerous metrics are frequently used in AI binary 

classification to evaluate a model's efficacy. As an example, 

the formulas for recall, accuracy, precision, and F1-score are 

given in the equations [20]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of Correct Predictions

Total Number of Predictions
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positives

True Positives + False Positives
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
True Positives

True Positives + False Negatives
 (3) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

Precision +  Recall
 (4) 

 

where,  

• True Positives (TP): Cases where the model accurately 

predicts a positive outcome while the observations are 

positive. 

• True Negatives (TN): Cases in which the model 

accurately predicts a negative outcome even when the 

actual data is negative. 

• False Positives (FP): Irregular cases where the model 

predicts a positive outcome when it is negative. 

• False Negatives (FN): Cases in which the model 

predicts negative values when they are positive.
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Accuracy is a metric that evaluates the overall correctness 

of a model. Precision, on the other hand, assesses the accuracy 

of the positive predictions made by the model. Recall indicates 

the model's capability to capture all the positive occurrences. 

The F1-Score, which is the harmonic means of precision and 

recall, offers a balanced evaluation of both metrics. 

Nonetheless, the traditional accuracy metric can be misleading 

on unbalanced datasets. In many real-world applications, the 

minority class is the class of interest, therefore poor 

performance there might be hidden by a high accuracy. While 

accuracy may not be the best choice due to its sensitivity to 

class imbalances, several metrics are more informative and 

suitable for evaluating models on unbalanced datasets (Recall, 

Precision, and F1-Score). Noteworthy that the occurrences of 

the presence or absence of brain stroke conditions are not 

equal but are distributed unevenly. In this dataset, 95% of the 

total records are labeled as 'NO' for stroke, indicating the 

absence of stroke conditions, while the remaining 5% are 

labeled as 'YES' for stroke, signifying the presence of stroke 

conditions (Figure 1). This distribution provides insights into 

the prevalence of the condition within the dataset, indicating 

that instances without stroke conditions are much more 

common than those with stroke conditions. 

 

 
 

Figure 1. The percentage of brain strokes in the dataset 

 

 
 

Figure 2. Brain stroke relation with work type 

 

Additionally, the relationship between work type and stroke 

risk is multifaceted. Sedentary jobs involving prolonged 

sitting, high-stress occupations, and irregular work hours, like 

shift work, may increase cardiovascular risks, including stroke. 

Conversely, physically active jobs may have a protective 

effect. Environmental factors in certain occupations could also 

contribute. However, strokes result from a combination of 

genetic, lifestyle, and environmental factors, with overall 

health and lifestyle choices playing a significant role. 

Moreover, the proposed dataset analyzed the effects of several 

work types, such as private, government, self-employed, and 

children-dealing-based jobs, on the likelihood of having a 

stroke (see Figure 2). 

Noteworthy that the chart in Figure 3 illustrates that the 

percentage of women experiencing strokes is consistently 

higher than that of men across all age groups. This aligns with 

broader data indicating that women face a greater lifetime risk 

of strokes than men. This could be because there are more men 

in the general population experiencing strokes. 

 

 
 

Figure 3. Brain stroke relation with gender and age 

 

Figure 4 depicts a bar graph illustrating the number of 

people categorized by their smoking status. Alternatively, the 

interpretation of the graph proposes that individuals are more 

inclined to quit smoking once they have started. This inference 

arises from the observation that the number of current smokers 

is lower than the number of those who have formerly smoked. 
 

 
 

Figure 4. Brain stroke relation with smoking 
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Moreover, Figure 5 indicates that individuals residing in 

rural areas have a lower stroke rate compared to those in urban 

areas. One possibility is that rural areas exhibit a lower 

prevalence of stroke risk factors, including high blood pressure, 

high cholesterol, diabetes, and obesity. They might also have 

reduced exposure to air pollution and other environmental 

toxins. 

 

 
 

Figure 5. Brain stroke relation with residence type 

 

Furthermore, Figure 6 shows the number of people with and 

without hypertension who have strokes. People with 

hypertension are more likely to have strokes than people 

without hypertension. This is consistent with medical 

knowledge, as hypertension is a major risk factor for stroke. 

 

 
 

Figure 6. Brain stroke relation with hypertension 

 

 
 

Figure 7. Brain stroke relation with heart disease 

 

Notably, the incidence of stroke is greater in those with 

heart disease compared to those without heart disease (Figure 

7). This suggests that there is a relationship between heart 

disease and stroke. 

A higher glucose level is associated with an increased risk 

of stroke, as shown in Figure 8. Individuals who have had a 

stroke tend to have significantly higher average glucose levels 

compared to those who have not had a stroke. 

 

 
 

Figure 8. Brain stroke relation with glucose level 

 

The correlation between marital status and the occurrence 

of strokes is presented in Figure 9. The data reveals a higher 

percentage of stroke cases among married individuals 

compared to their single counterparts. Married individuals 

may lead more stress-inducing lifestyles, further contributing 

to an increased risk of strokes. 

 

 
 

Figure 9. Brain stroke relation with married people 

 

The proposed methodology notably did not use a selective 

feature extraction process; instead, all features available in the 

dataset were employed to train the model. This strategy is 

based on the dataset's comprehensive coverage of a broad 

range of factors relevant to stroke prediction. The aspects 

include demographic, health-related, and lifestyle factors, 

which together contribute to a comprehensive comprehension 

of stroke risk. 

Statistical characteristics, including mean age, average 

blood sugar, and body mass index (BMI), were scaled from 0 

to 1. To avoid any one feature's size from disproportionately 

impacting the model during training, it is necessary to 

normalize the data such that the ranges of features are 

consistent with one another. 
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On the other hand, factors such as gender, hypertension, 

heart disease, marital status, employment type, residence type, 

and smoking status were encoded using categorical encoding. 

This procedure converts categorical information into a format 

that DNNs can effectively handle, enabling the model to 

reliably comprehend these characteristics and use them for 

stroke prediction. 

The decision to include all characteristics and use these 

specific pre-processing approaches was driven by the goal of 

enhancing the model's ability to effectively learn from diverse 

input points. By normalizing numerical features and encoding 

categorical features categorically, it is ensured that the model 

is trained on data that faithfully reflects the complex nature of 

stroke risk, thus improving its predictive accuracy. 

In this study, a specialized model designed for the detection 

of brain strokes is introduced. The architecture of the proposed 

artificial intelligence model is illustrated in Figure 10. 

 

 
 

Figure 10. The proposed model architecture 

 

The model is provided with information from thirty inputs 

(List 1). The proposed model comprises six hidden dense 

layers with sizes of (32, 64, 128, 64, 32, 16) respectively. 

Following each dense layer is a dropout layer with a 

probability of 0.25 to mitigate the overfitting problem during 

model training. The final layer utilizes the Sigmoid activation 

function due to the binary nature of the classification problem, 

specifically in detecting brain strokes. It is worth mentioning 

that the weighted BCE is employed to address the issue of an 

unbalanced dataset. This loss function, an adaptation of the 

normal BCE, incorporates class weights to account for the 

imbalance in the dataset. Distinct weights are assigned to the 

positive and negative classes, mitigating the effects of 

imbalance during training. This strategic weighting enables 

the model to prioritize the optimization of the minority class. 

Moreover, the BCE loss for a single sample is typically 

defined in Eq. (5) [19]. 

 

𝐵𝐶𝐸 = −[𝑦. Log(𝑝) + (1 − 𝑦). Log(1 − 𝑝)] (5) 

 

where, 𝑦 represents the true label (ground truth) of the sample, 

taking values of either 0 or 1, and 𝑝 signifies the predicted 

probability of the positive class. Now, in handling class 

weights, the BCE loss with class weights is modified in Eq. (6) 

[19]. 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝐶𝐸 = −[𝑤𝑝𝑜𝑠  . 𝑦 . log(𝑝)

+ 𝑤𝑛𝑒𝑔 . (1 − 𝑦). Log(1 − 𝑝)] 
(6) 

 

where, 𝑤𝑝𝑜𝑠  is the weight assigned to the positive class (the 

minority class), and 𝑤𝑛𝑒𝑔 is the weight assigned to the 

negative class (the majority class). 

In determining class weights for an imbalanced binary 

dataset based on class frequencies, utilize the following 

formula. In the context of a binary classification problem with 

"Class 0" as the majority class and "Class 1" as the minority 

class, initiate by calculating the class frequencies: N0 for the 

number of samples in Class 0 (majority class) and N1 for the 

number of samples in Class 1 (minority class). Subsequently, 

derive the class weights as follows: for Class 0 (majority class), 

𝑤𝑛𝑒𝑔 = 𝑁1/𝑁0 , and for Class 1 (minority class), 𝑤𝑝𝑜𝑠 =

𝑁0/𝑁1. The class weight for Class 0 (𝑤𝑛𝑒𝑔 ) represents the 

ratio of the number of samples in Class 1 (𝑁1) to the number 

of samples in Class 0 (𝑁0), while the class weight for Class 1 

(𝑤𝑝𝑜𝑠 ) is the inverse of this ratio. 
 

 

3. RESULTS AND DISCUSSION 
 

The study purposefully incorporated a 0.25 dropout rate 

following every layer in the model to address the possibility of 

overfitting. The rationale for the choice was that this specific 

dropout rate strikes the best balance between the model’s 

complexity and its ability to work with new data. The choice 

not to experiment with other dropout rates was made after 

doing preliminary studies and reviewing existing literature. 

These sources suggest that a dropout rate of 0.25 is often 

effective for models with comparable complexity and data 

characteristics. Consequently, the focus was directed toward 

refining other model parameters and designs, determining that 

a dropout rate of 0.25 was sufficient for the objectives. This 

approach facilitated the attainment of strong model 

performance, guaranteeing that it did not excessively match 

the training data, hence preserving its capacity to be applied to 

new data and its effectiveness in forecasting stroke. 

This research presents an AI model that was built and 

trained utilizing the KERAS and COLAB frameworks. Eighty 

percent will be used for training, and twenty percent will be 

used for validation. The training process spans 100 epochs, 

following the configurations outlined in Table 1. 
 

Table 1. Training parameters 
 

Parameter Value 

Learning rate 1 ×  10−4 

Epochs 100 

Optimizer Adam Optimizer 

Beta 1 0.9 

Beta 2 0.999 

Loss Weighted BCE 

Metric Accuracy, Precision, Recall, F1-Score 

Train dataset size 80% 

Test dataset size 20% 

Trainable parameters 21,665 

 

The normal (BCE) model computes the cross-entropy 

between predicted and actual labels without incorporating any 

weighting. Conversely, the weighted BCE model assigns 

distinct weights to various examples based on their 

significance. Accordingly, the weighted BCE model proves 

superior for this task, evident in its higher validation accuracy 

(Figure 11). This implies that the model effectively captures 

underlying patterns in the data, demonstrating a reduced 

likelihood of overfitting to the training data. 

The Recall is a quantitative measure that indicates the 

proportion of correctly detected positive instances. It is shown 

in Figure 12, which compares the performance of a standard 

BCE model with that of a weighted BCE model on both the 

training and validation sets. The superior performance of the 

weighted BCE model can be attributed to its strategic 

weighting of positive examples during training, enhancing its 

ability to accurately identify them. 
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Figure 11. Brain stroke training and validation accuracy 

 

 
 

Figure 12. Brain stroke training and validation accuracy 

 
 

Figure 13. Brain stroke training and validation precision 

 

 
 

Figure 14. Brain stroke training and validation F1-score 

782



 

As depicted in Figure 13, the superiority of the weighted 

BCE model is evident over the normal BCE model in terms of 

both training and validation precision. Consequently, the 

weighted BCE model stands as a preferred choice for 

classification tasks, particularly when dealing with 

imbalanced datasets, as it demonstrates the capacity to 

effectively learn from the data and generalize well to new 

instances. 

The observed differences in F1 scores highlight the trade-

off between training performance and the model’s ability to 

generalize. The normal BCE model, with a higher training F1-

score, struggles to extend its performance to new instances. On 

the other hand, the weighted BCE model, with a more 

balanced performance between training and validation F1-

scores, indicates a better capacity to generalize beyond the 

training data (Figure 14). This emphasizes the importance of 

considering both training and validation metrics to assess a 

model’s overall performance and its ability to generalize to 

real-world scenarios. 

Weights are commonly employed to tackle class imbalance, 

where one class contains substantially more samples than the 

other. By assigning a higher weight to the minority class, the 

weighted BCE loss function enables the model to prioritize 

those samples. As depicted in Figure 15, the weighted BCE 

model exhibits lower training and validation losses compared 

to the normal BCE model. This discovery suggests that the 

weighted BCE model performs exceptionally well in acquiring 

knowledge from the training data and has improved skills in 

extrapolating to novel, unfamiliar data. 
 

 

 
 

Figure 15. Brain stroke training and validation loss 

 

Considering the data presented in Table 2, the Weighted 

BCE variant of the Proposed Model demonstrates superior 

overall performance. This deduction is made based on its 

maximum F1 score, which signifies a weighted mean of 

accuracy, recall, and precision. Furthermore, the Proposed 

Model (Weighted BCE) has the greatest recall out of all the 

models, suggesting its improved capacity to properly detect 

positive cases. In contrast, the remaining models in the table, 

including Weighted Random Forest and Weighted Logistic 

Regression, exhibit lower overall performance. This is 

attributed to their lower F1 scores, diminished recall, and 

reduced precision in comparison to the Proposed Model. 

Moreover, after completing 100 epochs of training, the 

proposed model's performance was evaluated under two 

scenarios: one employing normal BCE and the other using 

weighted BCE. The evaluation was conducted on the test 

dataset, with the results for each scenario detailed in Table 2. 

When normal BCE was applied, the model achieved notably 

high accuracy, but the Recall, Precision, and F1-score metrics 

all registered zero values. This phenomenon can be attributed 

to the significant imbalance between the majority and minority 

classes, where the majority class dominates the dataset with a 

95% prevalence, compared to the 5% representation of the 

minority class. In highly imbalanced datasets, a model might 

achieve elevated accuracy by predominantly predicting the 

majority class. This leads to an abundance of true negatives 

and true positives for the majority class, consequently 

resulting in a misleadingly high accuracy value. 

Nonetheless, the model's predictive accuracy for the 

minority class may be compromised due to its limited 

exposure during training. Consequently, an increase in false 

negatives occurs, resulting in diminished recall and F1-score. 

Moreover, since the model struggles to accurately identify 

positive instances (manifested by low true positives), precision 

also experiences a notable decline. In contrast, the adoption of 

weighted BCE reveals a reduction in Accuracy from 95.36% 

to 75.36%. Nevertheless, this compromise is followed by 

significant improvements in the measures of Recall, Precision, 

and F1-score, all of which are no longer limited to zero. This 

enhancement suggests that the suggested AI model is trained 

more efficiently using weighted BCE, showcasing an 

enhanced capacity to forecast occurrences from the 

underrepresented class. 

The dataset was obtained and examined from Kaggle. The 

influence of several parameters on the probability of having a 

stroke, uncovering a substantial disparity in class distribution. 

just 5% of the samples represented cases of stroke, while the 

other 95% represented instances without strokes. The analysis 

highlighted the asymmetry, which poses a hurdle in machine 

learning, particularly for classification tasks. The essay 

accurately identified possible biases and difficulties associated 

with imbalanced datasets, emphasizing the insufficiency of 

depending just on accuracy measurements and pushing for 

metrics like precision, recall, and F1-Score in such situations. 

The dataset explored the correlation between stroke 

incidence and variables such as occupation, gender, smoking 

habits, residential location, hypertension, cardiovascular 

disease, glucose levels, and marital status. In addition, the 

research presented a specialized DNN designed to detect 

strokes. This model incorporates 10 specific input 

characteristics. The design consisted of six concealed dense 

layers with dropout layers to mitigate overfitting, culminating 

in the use of the Sigmoid activation function for binary 

classification. The weighted BCE loss function was used to 

address the imbalance by allocating different weights to the 
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positive and negative classes. 

The AI model was trained using KERAS and Google Colab. 

It used an 80-20 split of training and validation data and was 

trained for 100 epochs. The model's training with an 

inadequate amount of data from the minority class led to 

subpar predictions for that specific class. More specifically, 

there was an increase in the number of false negatives, 

resulting in decreased recall and F1 scores. Moreover, the 

model exhibited challenges in correctly detecting positive 

occurrences, resulting in a decrease in the number of true 

positives and a reduced level of accuracy. Nevertheless, the 

use of weighted BCE enhanced the model's capacity to 

accurately forecast instances from the underrepresented class. 

 

Table 2. Performance scores on test dataset 

 

Algorithm Accuracy (%) 
Recall 

(%) 
Precision (%) F1-Score (%) 

Normal SVM 95.36 0 0 0 

Weighted SVM 73.42 62.26 12.79 21.22 

Normal Random Forest 95.36 0 0 0 

Weighted Random Forest 94.68 1.88 50 3.65 

K=2 94.38 18.86 20 3.44 

Normal Logistic Regression 95.36 0 0 0 

Weighted Logistic Regression 73.42 69.81 12.93 21.82 

Normal BCE 95.36 0 0 0 

Proposed Weighted BCE 75.36 34.91 100 51.75 

Although the total accuracy dropped from 95.36% to 

75.36%, there were notable improvements in recall, precision, 

and F1-score, all of which were originally zero. This indicates 

that the use of weighted BCE has improved the model's 

capacity to precisely detect instances belonging to the minority 

class. Results of the evaluation were presented for scenarios 

using standard BCE and weighted BCE. Although the standard 

BCE approach achieved great accuracy, zero results for recall, 

precision, and F1-score have been achived owing to the 

imbalance. However, the use of weighted BCE resulted in a 

decrease in accuracy but increased recall, precision, and F1-

score. This proves that the model performed better in 

predicting occurrences from the minority class. 

The achived findings gave a concise summary of the 

suggested deep DNN model for stroke detection, highlighting 

the significance of the six hidden dense layers and the use of 

weighted BCE to address dataset imbalance. The model's 

improved performance with weighted BCE was shown, 

exhibiting higher accuracy, F1-score, and recall in comparison 

to situations without weighted BCE. The review confirmed the 

efficacy of the suggested model in tackling the unbalanced 

dataset for stroke detection. 

 

 

4. CONCLUSIONS 

 

This article presents the ultimate effects of employing the 

weighted BCE compared to the standard BCE when dealing 

with the difficulties of the unbalanced datasets, particularly the 

challenges of neuroimaging data in stroke detection. This 

study proved that the standard BCE realized a creditable 

accuracy with 95.36%. However, it presented an obvious 

insufficiency to achieve the minority class as demonstrated in 

the zero results of recall, precision, and F1-score metrics. 

Despite the decrease in overall accuracy to approximately 

75.36%, the implementation of the weighted BCE represents a 

significant improvement in the effectiveness of the model in 

the minority class. This is confirmed due to the increased 

results of recall to 34.91%, accuracy to 100%, and F1 – score 

to 51.75%, which demonstrate the applicability of the 

weighted BCE. The above improvements highlight the 

increased sensitivity and specificity of the model in identifying 

stroke cases. This underscores the critical importance of 

weighted BCE in enhancing model performance for clinical 

use. This modification has effectively improved the detection 

of stroke cases while maintaining a satisfactory degree of 

accuracy. This represents critical progress towards developing 

AI solutions that are fair and accurate, and thus have 

significant clinical relevance.  

Additionally, weighted BCE significantly improves the 

accuracy of stroke prediction by facilitating the identification 

of underrepresented groups in imbalanced datasets, including 

stroke cases. Traditional modeling techniques that rely on 

accuracy often ignore these critical and uncommon conditions. 

For this reason, they provide measures of accuracy that appear 

high but are unable to identify diseases such as strokes, which 

may underestimate the patient's treatment. Alternatively, 

weighted BCE recalibrates model performance and 

significantly enhances F1 results, memory and accuracy, 

raising the bar for stroke detection accuracy and reliability. 

This improvement is essential to advance equitable healthcare 

technology as well as rapid intervention, which may 

successfully reduce brain damage and improve patient 

outcomes. These developments are consistent with the goals 

of precision medicine, which seeks to provide personalized 

medical treatment based on the unique needs of each patient. 

Significant progress is emerging in the application of artificial 

intelligence in neuroimaging to predict strokes by 

incorporating weighted BCE. This breakthrough improves 

diagnostic accuracy and reliability and encourages broader 

integration of AI into personalized healthcare solutions. 
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