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The rise in agricultural innovation has led to the use of sustainable farming practices, such 

as aeroponics, which increase crop production. Aeroponics, a soil-free indoor precision 

farming system, cultivates crops using vertical towers, garnering global attention for its 

environmentally friendly and productive cultivation methods. Aeroponic systems can grow 

lettuce, a popular green-leafy vegetable, quickly and with minimal water usage. However, 

yield prediction is a tedious task in real-world scenarios. To efficiently predict lettuce yield, 

various scientific experiments have integrated IoT and machine-learning techniques. This 

research work utilized various machine-learning regression models, including linear, 

support vector, random forest, and XGBoost, to estimate lettuce yield based on specific 

growth parameters such as pH, EC, temperature, total dissolved salts (TDS), turbidity, 

humidity and light. After implementation, the results showed a high prediction accuracy of 

93% and minimal error rates produced by the XGBoost regression model when compared 

with the other regression models. Further, fine-tuning the model parameters enhanced the 

XGBoost model's performance, enhancing its generalization capability to handle new real-

time data. This indicates that optimizing the lettuce yield involves not only using indoor 

aeroponic farming methods but also utilizing advanced sustainable food production 

systems. 
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1. INTRODUCTION

The increasing population, climate change, and food 

constraints have led to a growing interest in alternative 

farming methods like hydroponics and aeroponics. These 

methods offer year-round harvests, weather protection, easy 

transportation, support for various crop cultivars, and disease-

free practices, making them crucial for addressing food 

security concerns in the global economy. Aeroponics, a 

soilless method with an innovative tower structure, has shown 

significant improvements in crop yields ranging from 7% to 

65%, accelerated crop maturation rates, and optimized water, 

pesticide and fertilizer consumption patterns when compared 

to the traditional farming techniques [1, 2]. 

Soil-free cultivation uses hydroponic or aeroponic systems 

to grow plants without soil. Hydroponics involves submerging 

roots in nutrient solutions, while aeroponics aerosolizes the 

solution. These systems offer a controlled environment and 

easy nutrient manipulation, making them ideal for genetic 

studies and screening mutant phenotypes. Aeroponic systems 

are more efficient due to their ability to suspend roots in mist, 

improve oxygen exposure, and produce fine particles [3-5]. 

Artificial Intelligence (AI) has shown potential for 

improving crop yield predictions in fields like healthcare, 

robotics, and meteorology. It can enhance efficiency and 

accuracy in agricultural yield prediction by optimizing 

parameters like light exposure, nutrient supply, and 

temperature [2, 6-8]. In aeroponic systems, the utilization of 

AI techniques like machine learning algorithms plays a vital 

role, especially in data analysis, real-time growth monitoring, 

resource management and predictive modeling.  

The study stresses how important it is to accurately predict 

aeroponic crop yields in modern farming. This lets farmers use 

advanced machine learning algorithms to make the best use of 

their resources, come up with effective farming strategies, and 

cut down on losses [9, 10]. Accurate yield prediction in 

aeroponic systems is crucial for food production and resource 

management. It optimizes factors like yields, crop appearance, 

nutritional content, quality, and taste while minimizing 

resource usage like nutrients, water, and energy, leading to 

effective cost utilization and optimized resource utilization. 

Real-time aeroponics systems require improved decision-

making processes and accuracy in yield prediction models to 

address the aforementioned factors, which have been 

elaborated on in this research work. The structure of this 

document comprises four sections: Section 2 provides an 

overview of existing works, while Section 3 details the 

methods used to collect and analyze data, including the 

implementation of machine learning models and 

interpretability techniques. Section 4 presents the findings and 

their implications, while Section 5 summarizes key takeaways 

and potential areas for further research. 
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2. SURVEY OF LITERATURE 

 

The literature survey on lettuce yield predictions in 

aeroponic vertical farming systems using machine learning 

regression algorithms is a critical examination of precision 

agriculture research. The survey focuses on lettuce cultivation 

in aeroponic vertical farming and aims to identify trends, 

methodologies, and key findings in predictive modeling for 

yield outcomes. The comprehensive exploration not only 

establishes the theoretical foundation for future research but 

also contributes insights for developing robust predictive 

models tailored to the unique challenges and opportunities 

presented by aeroponic vertical farming in lettuce cultivation. 

Nutrient sensors detect and measure plant environment and 

data transmitted through wireless networks, determining the 

necessary nutrients for plant growth, such as nitrogen, 

phosphorus, and potassium, which are crucial for vertical or 

closed crop cultivation [11]. 

The study introduces the Lettuce Crop Development 

Monitoring-Boost (LCGM-Boost) regression model, which 

improves lettuce crop monitoring and predicts yield in 

aeroponic vertical farming systems. The model considers pH, 

EC, PPM, turbidity, and temperature parameters. It shows 

robustness against outliers, superior prediction accuracy, and 

reduced error rates. This model is suitable for automating 

lettuce crop growing settings and predicting yield [12].  

Aeroponics, a soilless farming technique, has been 

significantly transformed by technology, offering 

environmental control, automated nutrient delivery, and plant 

health monitoring. The most common technology is sensing 

technology and Industry 4.0, offering sustainability and time 

efficiency. However, technical complexity and power 

dependency pose challenges. The Technology Adoption and 

Integration in Sustainable Agriculture (TAISA) model 

assesses technology integration in sustainable agriculture 

systems. Asia leads in technology integration, with Indonesia 

being the most studied country. As technology advances, 

careful consideration of benefits and limitations will lead to 

more efficient, productive, and resilient aeroponic cultivation 

systems [13]. 

The study assesses the use of Support Vector Regression 

(SVR) in estimating crop yields using the LCGMS Regression 

model, revealing environmental factors affecting crop growth. 

It suggests future research should focus on improving 

evaluation indices and data features for evidence-based 

decision-making, food security, and sustainable agricultural 

practices [14]. 

The authors have developed a meta-heuristic optimization 

technique for diagnosing heart disease using sound waves. The 

method uses Particle Swarm Optimization, the Firefly 

approach, and the Cuckoo Search Algorithm to find the most 

optimal feature vector. The approach is evaluated on the 

Pascal dataset, which is divided into separate sets for testing 

and training. Machine learning methods like Random Forest, 

K-Nearest Neighbors, Support Vector Machines, and Naive 

Bayes are used. The model achieved the highest classification 

accuracy of 90.32% using CSA and Naive Bayes [15]. 

The article suggests using shape curvature and multi-feature 

fusion for weed identification in crops. Shape curvature is 

useful for shape-based identification, while texture features 

provide discriminatory information. Combining both is 

advantageous. The SVM classifier outperformed other 

classifiers with 99.33% classification accuracy, potentially 

benefiting autonomous weed management systems by 

reducing false negative rates [16]. 

The study presents a high-throughput architecture for 

detecting anomalies in streaming data using the Apache-

Kafka-powered model. The RF algorithm achieves average 

accuracy, precision, recall, f-score, and computation time 

values of 98.6%, 91.8%, 90.4%, 91.09%, and 38.5ms, 

respectively. However, it exhibits over-fitting tendencies 

when dealing with small-sized data. The architecture's ability 

to channel data without data loss and consistent accuracy make 

it feasible for real-life applications [17]. 

A machine learning framework has been developed to 

assess students' satisfaction with online admissions counseling. 

The framework uses a Decision Tree Classifier without 

SMOTE and SVC-linear using SMOTE to estimate 

satisfaction rates. The accuracy was achieved at 48% in the 

Decision Tree Classifier without and 88% in SVC-linear using 

SMOTE, allowing for the optimization of students' choices 

based on their strengths, weaknesses, and related parameters 

[18]. 

Franchetti et al. [19] used 3D plant modeling and deep 

segmentation techniques to forecast the plant growth of Basil 

phenotyping with the help of features plant height, leaf area, 

and leaf weight where the accuracy was moderate. In another 

article, the authors used random forest and SVM for predicting 

rosette phenotyping with the help of plant leaves as a feature 

[20]. The LSSVM machine learning framework was proposed 

to find the water stress of the wheat crop. Here, the plant leaf 

was used as an essential feature [21]. Techniques like Self-

Organizing Maps (SOM), hierarchical clustering, and k-means 

algorithm were utilized for lettuce crop growth prediction with 

the extracted feature plant leaf and achieved higher accuracy 

rates [22]. Data visualization and Logistic regression 

approaches were used for analyzing the distribution of the 

dataset of the lettuce crop and produced the average error rates 

while predicting the lettuce yield [23]. In Mamatha and 

Kavitha [24], K nearest neighbors were implemented for 

predicting the yield of leafy vegetables which used the plant 

growth as the feature vector and produced a higher prediction 

accuracy. Reinforcement learning has been adopted by the 

authors for finding the phenotyping of the crops chili, beans, 

potatoes, and onions with a prediction accuracy of 83.563%. 

This work extracted plant leaves as the observed features for 

learning purposes [25]. The authors in the article [26] analyzed 

the effectiveness of the random forest regression model in 

predicting the aeroponic lettuce crop yield.  

So, from all these previous researches, it is inferred that 

most of the authors have utilized the applications of integrated 

IoT and ML algorithms without any doubts. Hence, the 

comparatives of those ML algorithms with their specific 

advantages have been carried out by the authors in this 

manuscript to provide which model is better for predicting 

aeroponic lettuce crop yield.  
 

 

3. AEROPONIC LETTUCE YIELD PREDICTION 

 

This section deals with the prediction of growth stages and 

harvesting of the Lactuca Sativa i.e. botanical name of lettuce 

crop. The yield prediction usually involves two different 

methodologies, 1) manual and 2) technology-driven approach. 

Both techniques are explained in brief in the following sub-

sections. To increase lettuce crop production through vertical 

aeroponic systems, this research examines a twofold 

methodology that blends conventional techniques (manual or 

traditional) with advanced technology (technology-driven 
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applications) to accurately predict yields. Given the distinctive 

features of aeroponic systems, it is crucial to adopt an 

integrated approach that combines tried-and-true agricultural 

practices with state-of-the-art tools to achieve optimal results.

 

Table 1. Comparison between manual and technological approaches in yield prediction 

 
Parameters Manual Approach Technology-Driven Approach 

Data Collection 

Conventional methods involve collecting data through 

visual evaluations of plant health, nutrient availability, 

and growth patterns, allowing researchers to identify and 

document key factors for qualitative analysis. 

Sensor technology like Internet of Things devices and 

environmental sensors provide real-time quantitative data 

on crop growth variables, ensuring continuous observation 

and increased accuracy in information gathering. 

Model 

Developments 

Prediction models are enhanced by the addition of 

experts' subject knowledge. In building models, leaf 

color, size, and general health of plants are taken into 

account along with information gathered manually. 

ML algorithms process sensor data to identify complex 

patterns, and analyze ensemble techniques, neural 

networks, or regression models, providing lettuce yield 

estimates as a quantitative framework. 

Performance 

Evaluation 

Agricultural specialists conduct qualitative analysis to 

evaluate model effectiveness, based on their extensive 

expertise, to evaluate the models' usefulness and 

applicability. 

ML models' accuracy and efficacy are evaluated using 

quantitative measures like mean squared error and R-

squared values, providing a basis for identifying reliable 

prediction algorithms. 

3.1 Predicting the yield of aeroponic lettuce-manual and 

technology-driven methods 

 

The basic comparison of predicting yield using manual and 

with the help of technology is presented in the form of Table 

1. 

 

3.2 Machine learning in lettuce yield prediction 

 

With their advanced analytical ability to cope with the 

complexity of agricultural systems, machine learning (ML) 

algorithms have become a potent tool in the prediction of 

lettuce crop yields. Here, in this work, we have utilized 

different machine-learning regression models that provide a 

greater impact on the yield prediction of the lettuce crop. 

 

3.2.1 Utilized machine learning models  

Linear Regression. Linear regression is the fundamental and 

interpretable machine learning regression model used for 

predicting numerical values with the help of the linear 

equation. In an aeroponic lettuce crop yield prediction system, 

the model estimates the linear relationship between the one 

input variable and the output variable. It is mathematically 

represented as: 
 

𝑦 = 𝑚𝑥 + 𝑏 (1) 
 

where, y is the dependent variable (crop yield), x is the 

independent variable (input parameters), m is the slope and b 

is the intercept term. 

Multiple Linear Regression Model. Linear regression 

models are simple approaches used to find the relationships 

between two variables, the input, and the output variable. But 

for more complex relationships that require more 

consideration, the multiple linear regression models were 

highly utilized to find the relationships between the multiple 

input variables and the output variable i.e. the situation where 

multiple independent variables are used to estimate the 

outcome of the single dependent variable.  There are two main 

uses of this regression analysis: 1) to determine the dependent 

variable based on the multiple independent variables and 2) to 

determine how strong the relationship is between the variables. 

Multiple linear regression is often used when forecasting 

more complex relationships. In an aeroponic lettuce crop yield 

prediction system, multiple regression models can make 

effective predictions on the new and unseen data. The 

coefficients of the feature variables are determined which 

allows the growers to make informed decisions about the crop 

behavior and yields. Equation 2 is the mathematical 

representation of the MLR: 

 

𝑦 = 𝑏0 + 𝑏1 𝑥1+𝑏2 𝑥2+ ⋯ + 𝑏𝑛 𝑥𝑛 (2) 

 

where, y is the dependent variable (crop yield), [x1, x2, …, xn] 

is the independent variable (input parameters) and [b0, b1, b 

2, …, b n] are the coefficients. 

Support Vector Regression. Support Vector regression is a 

type of supervised machine learning algorithm that works 

similarly to that of the SVM algorithm. The model aims to 

minimize the errors in the actual and predicted values which 

fit the hyper plane into the data points. In an aeroponic lettuce 

yield prediction system, the dependent variable lettuce yield is 

predicted using the independent variables which are the 

environmental factors for growing the lettuce crop with the 

help of different kernel functions to fix the non-linearities into 

linear problems. It deals with the complex relationship 

between the environmental factors and the yield.  SVR allows 

hyper-parameter tuning which improves the accuracy of the 

prediction model to better fit into the dataset. Like other 

regression models, SVR can be iteratively improved by 

incorporating the new and the unseen data. 

The mathematical formulation of the SVR objective 

function involves defining a hyperplane that finds the 

relationship between the input parameters and the output 

(yield). The data points n concerning the input parameters Xi 

and the corresponding output (yields) yi, where, i=1, 2, 3, …, 

n the SVR objective function could be written as two different 

equations as represented below. 

i) In the case of linear kernel 

 

𝑚𝑖𝑛𝑤,𝑏,𝜁,𝜁∗
1

2
𝑤𝑇𝑤 + 𝐶 ∑(𝜁𝑖 + 𝜁𝑖

∗)

𝑛

𝑖=1

 (3) 

 

subject to the constraints=(𝑦𝑖−𝑤𝑇𝑋𝑖 − 𝑏 ≤ 𝜀 + 𝜁𝑖)(𝑤𝑇𝑋𝑖 +
𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜁𝑖

∗)  𝑤ℎ𝑒𝑟𝑒, 𝜁𝑖 , 𝜁𝑖
∗ ≥ 0. 

ii) In the case of a non-linear kernel 

 

 𝑚𝑖𝑛𝑤,𝑏,𝜁,𝜁∗
1

2
𝑤𝑇𝑤 + 𝐶 ∑

𝑛

𝑖=1

(𝜁𝑖 + 𝜁𝑖
∗) (4) 

 

subject to the constraints= (𝑦𝑖−𝜙(𝑋𝑖)
𝑇𝑤 − 𝑏 ≤ 𝜀 +

𝜁𝑖)(𝜙(𝑋𝑖)
𝑇𝑤 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜁𝑖

∗) where, ζi, 𝜁𝑖
∗ ≥ 0. 
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where, ϕ(Xi) is the transformation of Xi into a high-

dimensional space. 

In these equations, 𝑤 𝑎𝑛𝑑 𝑏  are the parameters to be 

learned from the training data, ζi and 𝜁𝑖
∗  are slack variables 

allowing for deviations from the actual output and C is a 

regularization parameter controlling the trade-off between 

model simplicity and accuracy. 

Random Forest Regression. The Random Forest (RF) is the 

collection and utilization of multiple decision trees for output 

predictions. It is the ensemble learning approach that combines 

the output of multiple weak learners to improve the accuracy 

and robustness of the model. Each decision tree deals with the 

subset of random features that promotes the diversity leading 

to the chances of better predictions. It has the capability of 

handling missing values which does not require any external 

preprocessing techniques. Also, the model could effectively 

handle larger datasets.  In an aeroponic vertical farming 

system, the RF supports the complex interaction between the 

dependent and the independent features. One of the main 

advantages of RF regression is that it handles the overfitting 

problem due to the randomness in the feature selection. With 

the help of feature importance, the growers were able to gain 

insights into the input parameters that have the most 

significant impact on the lettuce yield. 

It is represented as the average of individual tree predictions 

which is given below: 

 

�̂�(𝑋) =
1

𝑁
∑ 𝐹𝑖(𝑋)

𝑁

𝑖=1

 (5) 

 

where, �̂�(𝑋) is the predicted output (yield) for the given set of 

input parameters (X), N is the number of trees in the random 

forest, Fi(X) is the prediction output from ith decision tree. 

Here, each tree Fi(X) is constructed based on the random 

subset of features at each split. The final prediction is an 

average of these individual tree predictions. 

XGBoost Regression. The Extreme Gradient Boosting-

XGBoost model is a powerful machine learning algorithm that 

excels in real-world prediction tasks. It uses a decision-tree-

based ensemble model to reduce errors and improve accuracy. 

The learning rate is used to control the behavior of each 

decision tree, affecting the overall model's accuracy. The 

model is effective in aeroponic lettuce crop yield prediction, 

handling missing values, non-linearities, and complex 

relationships, and preventing overfitting. It also focuses on 

feature importance, identifying environmental factors, and 

ensuring sufficient resource allocation and decision-making 

by growers. The model learns patterns and predicts outcomes 

effectively with new data. 

Assuming the dataset with n observations and m features 

and predicting a continuous output variable y based on the 

input features X, the XGBoost regression model is given by: 

 

 𝑦�̂� = 𝜙(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

 (6) 

 

where, 𝑦�̂�  is the predicted output for observation i, 𝜙(𝑥𝑖) =
∑ 𝑓𝑘(𝑥𝑖)

𝐾
𝑘=1  is the ensemble prediction for observation i, fk(xi) 

is the prediction of the kth regression tree. 

The individual regression tree prediction, fk(xi) is 

constructed based on the sum of predictions from each tree 

node along with the path that observation 𝑖 takes down the tree. 

 

𝑓𝑘(𝑥𝑖) = 𝑤𝑞(𝑖,𝑘)
 (7) 

 

where, 𝑤𝑞(𝑖,𝑘)
is the weight associated with the terminal node 

q(i.k) that observation 𝑖 reaches in the kth regression tree. 

Hence, the overall objective function for the XGBoost 

regression model is the sum of a regularized training loss and 

the regularization term: 

 

𝑜𝑏𝑗(𝜃) = ∑ 𝐿(𝑦𝑖,𝑦�̂�)

𝑛

𝑖=1

+ ∑ 𝛺𝑓𝑘

𝐾

𝑘=1

 (8) 

 

where, θ represents the parameter of the model; 𝐿(𝑦𝑖,𝑦�̂�) 

represents the training loss of the observation i and Ωfk is the 

regularization term for the kth regression tree. Here, important 

to note that is, the training loss is often MSE for the regression 

trees. 

 

3.3 Systematic representation of lettuce yield prediction 

 

The systematic representation or the workflow diagram is 

represented in Figure 1. It is the collection of different modules 

used to describe the stepwise implementation of the proposed 

system. In other words, it is the encapsulation of the workflow 

that provides a clear-cut graphical illustration of the 

implementation procedure. It improves communication and 

provides an easy understanding of the underlying mechanism. 

 

 

 
 

Figure 1. Lettuce crop yield prediction system 
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From Figure 1, it is clear that the implementation procedure 

starts with data collection and proceeds with the series of 

processes towards the yield prediction as the outcome. The 

detailed description of the various processes is explained 

below. 

 

3.3.1 Data collection and data visualization  

The first and foremost step in the implementation procedure 

is the data collection. Here, sensors such as pH sensor, EC 

sensor, temperature sensor, total dissolved salts (TDS) sensor, 

turbidity sensor, humidity sensor, and light sensor were 

deployed in the aeroponic lettuce growth tower. The data were 

collected from the growth tower at regular intervals of time, 

sample data is represented in the Figure 2. To easily 

understand the data distributions, data visualization techniques 

like bar charts (univariate data representation technique), 

correlogram (bivariate data analysis technique), and Andrews 

curve were utilized and implemented using the Python 

packages with the help of Python programming language. 

From Figure 2 (a-j), the input parameters are represented 

individually with the help of bar plots. 

Correlogram of the input dataset highlights the correlation 

between the input variables. Here, in Figure 2(l), the 

considered lettuce growth parameters were less correlated with 

the other parameters. This showcases that the parameters are 

independent of each other i.e. one cultivation parameter will 

not affect another parameter which is necessary for efficient 

lettuce growth and yield prediction. 

 

 
 

(a) Sample dataset (b) pH data distribution in the dataset 

  
(c) TDS data distribution in the dataset (d) Temperature data distribution in the dataset 

 
 

(e) EC data distribution in the dataset (f) Turbidity data distribution in the dataset 

 
 

(g) Humidity data distribution in the dataset (h) Light data distribution in the dataset 

 
 

(i) Growth data distribution in the dataset (j) Yield data distribution in the dataset 
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(k) Andrews curve of the pH dataset (l) Correlogram (Correlation) of the input dataset 

 

Figure 2. Sample dataset and dataset visualization techniques 

3.3.2 Data preprocessing 

One of the most important steps in the machine learning 

implementation is the pre-processing of the dataset for 

efficient prediction output. Here, in the aeroponic lettuce crop 

yield prediction system, the outliers are the major cause of 

higher error rates and low prediction accuracy. Hence, the 

removal of the outlier’s mechanism is incorporated for 

effective prediction by the regression models. The dataset size 

is represented below before pre-processing as the old shape 

and after pre-processing as the new shape of the dataset. 

 

 
(a) After preprocessing the dataset 

 
(b) Boxplot representation after preprocessing 

 

Figure 3. Data preprocessing 

 

The boxplot represents the dataset after pre-processing. The 

x-axis provides the different features of the lettuce growth 

dataset i.e. [0-8] is [pH to Yield] collected from the aeroponic 

vertical farming tower which is highlighted in Figure 3 (a) and 

(b). 

 

3.3.3 Dataset splitting 

Once the data is collected, pre-processed and ready for the 

implementation process, there is a necessary step called data 

partitioning or splitting of the data, before the data is fed into 

the ML model. In the case of the efficient implementation of 

the classification or regression model, the data has to be split 

into two: training data and testing data as shown in Figure 4. 

 

 
 

Figure 4. Dataset splitting 

 

3.3.4 Machine learning implementation: Model training and 

model testing 

The actual work of the implementation phase begins now. 

A structured methodology is used to train and evaluate 

machine learning regression models for predicting aeroponic 

lettuce crop yields. The collected, analyzed and pre-processed 

datasets were fed into all four machine-learning models for 

training purposes. Once, the training of the models is done, 

next comes the testing phase. The test dataset is supplied to the 

trained machine learning models for testing the performance 

of the models. The testing scores were recorded and based on 

the produced results, the process called hyper-parameter 

tuning is carried out to achieve better results further. The 

detailed description of the results produced by the models was 

described in the results and discussions section. 

 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 System requirements 

 

The system requirements that are essential to carry out the 

result analysis were the Anaconda Navigator, Jupyter 

Notebook with the Python programming language, and the 

desktop system or the personal computer or the laptop with the 

storage provided in the system or the laptop. 

In this section, the detailed notes on the performance of 

different machine learning models were described elaborately. 

The best model was chosen based on the error rates and the 

prediction accuracy produced by the model, i.e. how 

accurately the regression model predicts the yield of the lettuce 

Old Shape (pH): (50176, 9) 
New Shape (pH): (50176, 9) 
Old Shape (TDS): (50176, 9) 
New Shape (TDS): (45692, 9) 
Old Shape (Temperature): (45692, 9) 
New Shape (Temperature): (45413, 9) 
Old Shape (EC): (45413, 9) 
New Shape (EC): (44739, 9) 
Old Shape (Turbidity): (44739, 9) 
New Shape (Turbidity): (44739, 9) 
Old Shape (Humidity): (44739, 9) 
New Shape (Humidity): (44739, 9) 
Old Shape (Light): (44739, 9) 
New Shape (Light): (44350, 9) 
Old Shape (Growth): (44350, 9) 
New Shape (Growth): (44350, 9) 
Old Shape (Yield): (44350, 9) 
New Shape (Yield): (44350, 9) 
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crop in the aeroponic environment. 

 

4.2 Evaluation of the ML models using the performance 

metrics along with performance analysis 

 

Performance metrics are the fundamentals used for 

assessing the performance of the machine learning regression 

models based on the produced prediction output from the 

actual values and interpreting the accuracy of the predictions. 

The most commonly used evaluation metrics in lettuce yield 

prediction analysis are listed below. 

 

4.2.1 Mean squared error (MSE) 

It is the average of the squared differences between the 

predicted values (xi) and the actual values (yi). It penalizes 

larger errors more heavily. 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 (9) 

 

The MSE score of the implemented models is given in Table 

2 and Figure 5. 

 

Table 2. MSE scores 

 
Regression Type MSE 

Linear (Multiple) 20.4 

Support Vector 

Regressor 

Kernels 

Sigmoid 19.7 

RBF 15.3 

Linear 12.5 

Poly 9.8 

Random forest 8.5 

XGBoost 6.3 

 

 
 

Figure 5. Graph for MSE score 
 

All these regression models produce different error rates 

and linear regression shows less performance accuracy when 

compared to other regression algorithms. 

 

4.2.2 Root mean squared error (RMSE) 

It is the square root of the MSE. It provides the measure of 

the average magnitude of the errors in the predicted values, in 

the same units as the response variable. 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (10) 

 

The RMSE score of the implemented models is given in 

Table 3 and Figure 6. 

The XGBoost regression algorithm produced a minimum 

rmse score than the other regression algorithms. Next random 

forest regression algorithm produces an error rate less than the 

other five regression algorithms. The maximum rmse score is 

produced by the linear regression model.  

 

Table 3. RMSE scores 

 
Regression Type RMSE 

Linear (Multiple) 4.516 

Support Vector 

Regressor 

Kernels 

Sigmoid 4.438 

RBF 3.911 

Linear 3.535 

Poly 3.13 

Random forest 2.915 

XGBoost 2.509 

 

 
 

Figure 6. Graph for RMSE score of the utilized models 

 

4.2.3 Mean absolute error (MAE) 

It computes the average absolute differences between the 

predicted (xi) and the actual values (yi), providing the measure 

of the average magnitude of errors. The MAE score is 

highlighted in Table 4 and Figure 7. 

 

𝑀𝐴𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)

𝑛

𝑖=1

 (11) 

 

Table 4. MAE scores 

 
Regression Type MAE 

Linear (Multiple) 4.765 

Support Vector 

Regressor 

Kernels 

Sigmoid 3.832 

RBF 3.215 

Linear 2.867 

Poly 2.353 

Random forest 2.107 

XGBoost 1.906 

 

 
 

Figure 7. MAE Scores of the utilized models 

 

4.2.4 Mean absolute percentage error (MAPE) 

The MAPE expresses the errors as a percentage of the actual 

values, providing a relative measure of accuracy. Below 

presented Table 5 and Figure 8 highlights the obtained MAPE 
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scores of the model. 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (

𝑦𝑖 − 𝑥𝑖

𝑦𝑖

) × 100

𝑛

𝑖=1

 (12) 

 

Table 5. MAPE scores 
 

Regression Type MAPE 

Linear (Multiple) 15.5 

Support Vector 

Regressor 

Kernels 

Sigmoid 13.2 

RBF 10.8 

Linear 9.2 

Poly 8.1 

Random forest 7.89 

XGBoost 7.581 

 

 
 

Figure 8. MAPE Scores of the utilized models 

 

4.2.5 Median absolute percentage error (MedAPE) 

It is the median of the absolute percentage errors, making it 

less sensitive to outliers than MAPE. 

 

𝑀𝑒𝑑𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑦𝑖 − 𝑥𝑖

𝑦𝑖

) × 100 (13) 

 

The MedAPE score of the implemented models is given in 

Table 6 and Figure 9: 

 

Table 6. MedAPE scores 

 
Regression Type MedAPE 

Linear (Multiple) 14.2 

Support Vector 

Regressor 

Kernels 

Sigmoid 12.1 

RBF 9.7 

Linear 8.5 

Poly 6.9 

Random forest 6.3 

XGBoost 4.8 

 

 
 

Figure 9. MedAPE scores of the utilized models 

 

4.2.6 Root mean square logarithmic error (RMSLE) 

It is the measure of the average difference between the 

logarithm of the predicted (xi) and the actual values (yi). It is 

particularly useful when the target variable has a wide range. 

 

𝑅𝑀𝑆𝐿𝐸 = √
1

𝑛
∑[(1 + 𝑦𝑖) − 𝑙𝑜𝑔 (1 + 𝑥𝑖)]2

𝑛

𝑖=1

 (14) 

 

Table 7. RMSLE scores 

 
Regression Type RMSLE 

Linear (Multiple) 1.876 

Support Vector 

Regressor 

Kernels 

Sigmoid 1.83 

RBF 1.76 

Linear 1.4 

Poly 1.253 

Random forest 1.176 

XGBoost 1.03 

 

The RMSLE score of the implemented models was given in 

Table 7 and Figure 10: 

 

 
 

Figure 10. RMSLE scores of the utilized models 

 

4.2.7 R-squared metrics (Coefficient of determination) 

R-squared metrics represent the proportion of the variance 

in the independent variable that is predictable from the 

independent variable. Usually, this metric ranges between 0 

and 1. A higher R-squared value indicates a better fit of the 

model to the data. 

 

𝑅2 = [1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦)
2

𝑛
𝑖=1

] (15) 

 

Table 8. R-squared scores 
 

Regression Type R-Squared 

Linear (Multiple) 0.574 

Support Vector 

Regressor 

Kernels 

Sigmoid 0.676 

RBF 0.679 

Linear 0.768 

Poly 0.792 

Random forest 0.8154 

XGBoost 0.8948 

 

 
 

Figure 11. R-squared scores of the utilized models 
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The R-squared score of the implemented models is given in 

Table 8 and Figure 11. 
 

4.3 Comparative analysis of the performance metrics 

 

The performance analysis of all the utilized ML models has 

been done in this sub-section. Various results produced were 

depicted in the Table 9 and Figures 12, 13. 

 

 
 

Figure 12. Performance graph of the utilized regression 

models 

 

All these models are compared individually only with my 

collected dataset. Based on the results produced (refer Table 9, 

Figure 12 and Figure 13) by linear regression, Support Vector 

Regressor with their kernels: sigmoid, linear, radial basis 

function (RBF) and polynomial, random forest and XGBoost 

regression, it is observed that there is a consistent 

improvement in the predictive performance and decrease in 

the error metrics respectively. It should be noticed that a higher 

value of 0.89 R-squared metrics is shown by the XGBoost 

regression model. 

 

 
 

Figure 13. Accuracy of the utilized models 

 

4.4 Prediction graphs 

 

The graphs that showcase the predictive performance of the 

supervised and unsupervised machine learning classification 

and regression models by describing the complex relationships 

between the original (actual) values and the predicted values 

are termed prediction graphs. These graphs are used to 

perform a comprehensive analysis of various prediction 

algorithms to depict the efficacy of each algorithm separately. 

These graphs, not only highlight the individual strengths of 

each model but also contribute valuable insights for 

understanding the applicability of each model in predicting the 

complex relationships between the variables or parameters 

within the dataset. 
 

Table 9. Consolidated evaluation metrics of the ML models 
 

Regression Type MSE RMSE MAE MAPE MedAPE RMSLE R-Squared Prediction Accuracy in % 

Linear (Multiple) 20.4 4.516 4.765 15.5 14.2 1.876 0.574 64.92 

Support Vector 

Regressor 

Kernels 

Sigmoid 19.7 4.438 3.832 13.2 12.1 1.83 0.676 68.51 

RBF 15.3 3.911 3.215 10.8 9.7 1.76 0.679 71.46 

Linear 12.5 3.535 2.867 9.2 8.5 1.4 0.768 78.74 

Poly 9.8 3.13 2.353 8.1 6.9 1.253 0.792 83.647 

Random forest 8.5 2.915 2.107 7.89 6.3 1.176 0.8154 87.538 

XGBoost 6.3 2.509 1.906 7.581 4.8 1.03 0.8948 92.865 

 

 
(a) Prediction graph by Linear regression 

 

 

 
(b) Prediction graph by SVR-Sigmoid kernel 
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(c) Prediction graph by SVR-RBF kernel 

 
(d) Prediction graph by SVR-Linear kernel 

 
(e) Prediction graph by SVR-Poly kernel 

 
(f) Prediction graph by Random forest 

 
 

(g) Prediction graph by XGBoost model 

 

Figure 14. Prediction Graphs of the utilized models 

In this research work, Figure 14 (a) linear regression 

prediction graph highlights the linear relationship between the 

input parameters (actual values) and the output parameter 

(predicted values). From Figure 14, it is clear that the 

prediction accuracy gradually increases from support vector 

kernel- sigmoid, rbf, linear to polynomial kernel. These 

kernels exhibit distinctive patterns across each kernel which 

represents the average fit of the dataset and enhances the 

model’s ability to capture the non-linearities. Next comes the 

random forest and the XGBoost regressors that showcase 

remarkable accuracy, illustrating their robustness to outliers 

and noise by capturing the complex relationships within the 

dataset. 

 

4.5 Choosing the best model using the training and 

validation loss curves  

 

In simple terms, both these curves: the training loss curve 

and validation loss curves are crucial in machine learning 

regression as these curves showcase the generalization ability 

of the ML model on the unseen data i.e., the model should have 

the capability to generate the same type of output produced on 

the seen data (to predict the lettuce crop yield in our case) 

when it is exposed to the unseen dataset from the external 

environment. 

 

 
 

Figure 15. Training and validation loss 

 

 

5. CONCLUSION AND FUTURE SCOPE  

 

In summary, the purpose of the study was to optimize 

lettuce crop growth by integrating precision agriculture 

practices with intelligent techniques. Also, the results 

comprehensively analyzed the performance of several 

machine learning regression models in the context of a vertical 

aeroponic farming system to make accurate predictions of 

lettuce production. We have gained valuable insights into their 

effectiveness in handling the complex interactions between 

environmental variables such as pH, EC, temperature, total 

dissolved salts (TDS), turbidity, humidity, light and growth in 

days that are inherent to aeroponic cultivation as a result of our 

in-depth analysis and comparison of models such as linear 

regression, support vector regression, and random forest 

regression. This was accomplished through rigorous analysis 

and comparison of these models. 

According to the findings of our research, XGBoost 

surpasses the others in terms of error rates, accuracy and 

predictive power, demonstrating its potential as an excellent 

option for the prediction of lettuce production in aeroponic 

vertical farming. However, it is crucial to note that there are 

multiple aspects of agricultural systems and the selection of 

the most appropriate model may change depending on certain 
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environmental conditions. This is something that has to be 

acknowledged. 

This research work makes a significant contribution to the 

expanding body of knowledge in the field of precision 

agriculture, specifically the aeroponics indoor farming 

systems by providing practical recommendations on the 

application of machine learning regression models to the 

problem of maximizing the output of lettuce grown in 

aeroponic conditions. The research work enhances crop 

prediction in vertical farming systems, paving the way for 

future research and technology interventions to improve 

agricultural practices, reduce environmental impact, and 

enhance crop production. It also encourages competition in 

crop markets by incorporating diversification and crop rotation 

strategies, minimizing resource usage and promoting short-

term growth while minimizing pests, diseases, and climatic 

variability. 

The future development of the Aeroponic Lettuce Yield 

Prediction System is focused on enhancing its accuracy and 

reducing errors. This involves investigating various factors 

such as environmental conditions, nutrient levels, plant growth 

patterns, and more. In addition, the team plans to employ 

advanced machine learning techniques like ensemble learning 

and data augmentation to optimize model performance. Real-

time sensor data integration and leveraging pre-trained models 

are also part of the roadmap to further boost prediction 

capabilities. To make the system easy to use for farmers and 

operators, an intuitive interface with clear visualizations and 

actionable insights will be implemented. 
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