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This paper presents a new scheme for dynamical systems and time series modeling and 

identification. It is based on artificial neural networks (ANN) and metaheuristic algorithms. 

This scheme combines the strength of ANN with the dexterity of metaheuristic algorithms. 

This fusion is renowned for its ability to detect complex patterns, which considerably 

improves accuracy, computational efficiency, and robustness. The proposed scheme deals 

with the curve fitting and addresses ANN's local minima problem. This approach introduces 

the identification concept using a fresh novel identification element, referred to as the error 

model. The proposed framework encompasses a parallel interconnection of two models. 

The principal sub-model is the elementary model, characterized by standard specifications 

and a lower resolution, designed for the data being examined. In order to address the 

resolution limitation and achieve heightened precision, a second sub-model, named the 

error model, is introduced. This error model captures the disparities between the primary 

model and considered data. The parameters of the proposed scheme are adjusted using 

metaheuristic algorithms. This technique is tested across many benchmark data sets to 

determine its efficacy. A comparative study along with benchmark approaches will be 

provided. Extensive computer studies show that the suggested strategy considerably 

increases convergence and resolution. 
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1. INTRODUCTION

Dynamical systems have an extended variety of 

applications in diverse engineering sections, such as 

communication, biology, sociology, physiology, meteorology, 

economics, neuroscience, epidemiology, model based control 

design and pattern recognition. A dynamical system is a set of 

laws or differential equations from mathematics and physics, 

which describe the interactions between the states of particular 

systems and their evolution over the time [1]. However 

modeling and identification of those systems become a 

principal problem in engineering and science [2] and this is 

due to the fact that these systems operate using historical 

operations and investigations, which means that the current 

output is a function of past outputs, or past inputs, or both, 

contrary to static systems which are described by algebraic 

equations, which are straight and assimilated readily. 

Different methods for modeling and identification of both 

linear and nonlinear dynamical systems have been outlined in 

the literature. Some of those strategies are mathematical 

methods based on the theory of differential equations which 

fail in many cases to model these systems and obtain their 

mathematical model because of the complicity of some plants 

due to the unknown system parameters, and the others are 

computational intelligence techniques based on artificial 

intelligence, which are the most widely adopted by researchers 

in recent decades [3]. These methods include the concepts of 

Neural Networks, Radial Basis Function networks [4, 5], 

Fuzzy Logic [6, 7], Neuro-Fuzzy Systems [8], Machine 

learning [9] and Deep learning methods [10]. 

Inspired by the functioning biological nervous systems 

function in the human brain, the artificial neural network is a 

highly efficient computational system. Three layers constitute 

an artificial neural network (ANN): input, hidden, and output 

layers. Each neuron is connected to other neurons, and each 

link between these neurons is associated with a weight that 

holds information about the input signal. Each neuron has an 

internal state, known as the activation function. The signals 

that come out generated by combining the input signals and 

the activation rule are able to be transmitted to additional units 

[11, 12]. The flexibility, learning capabilities and symbolic 

reasoning make ANNs the most used in several branches, 

namely engineering, economics, medicine, military, navy, 

optimization, prediction, forecasting, control of complex 

systems, modeling, identification and control of dynamical 

systems. A possible advantage of using artificial neural 

networks (ANNs) in modeling is their ability to improve the 

accuracy and usability of complex natural systems with a large 
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number of inputs. This prompted many researchers to adopt it 

in their studies as a modeling tool for dynamical systems 

instead of statistical modeling techniques [13-17], for the 

reason that the combination with other techniques can be an 

effective way to improve the Modeling performance and gives 

the best accuracies compared to the other technique used 

separately. 

Several ANN hybrid methods are discussed in literature. 

Loussifi et al. [18] have provided a novel hybrid intelligent 

neural network model for nonlinear dynamical systems 

identification, which uses wavelet Multi-resolution analysis 

(MRA) as activation functions for the ANN structure. 

Using improved particle swarm optimization, Cavuslu et al. 

[19] provide the hardware implementation of ANN with 

learning abilities on field programmable gate arrays (FPGA) 

for dynamic system identification. 

Singh et al. [20] developed a novel method based on ANN 

structure and learning algorithm for identification and control 

of a nonlinear system. Jovanović [21] in his work presented a 

ANN approach for dynamical system Modeling and 

identification trained and tested by using the responses 

recorded in a real frame during earthquakes. A novel neural 

network estimator was constructed for nonlinear systems 

identification and control in the research [22] by Gautam. For 

the purpose of identifying nonlinear dynamical systems 

utilizing the back-propagation algorithm, Patra et al. [23] have 

proposed an alternative ANN structure called functional link 

ANN (FLANN). A new neural networks approach called a 

singularity-free approach for dynamical systems identification 

and control was developed by Zheng et al. [24]. 

Achieving a higher performance for any ANN-based 

technique depends on the algorithm used for its training and 

the iterative updating of its weights in order to minimize the 

error function, which is defined as the desired and target output 

and to overcome the entrapment in local minimums and slow 

convergence rate. The effectiveness of the Metaheuristic 

algorithms lies in their ability to improve neural network 

models to solve large and complex problems precisely [25]. 

They are currently the state of the art for a variety of 

optimization problems, especially for problems that are very 

complex and have a high dimensionality. 

In this paper, we propose a new structural method based on 

ANN and metaheuristic algorithms to address common 

difficulties in the modeling and identification of dynamical 

systems and time series. The change of states across time 

characterizes dynamical systems, and precisely modeling their 

behavior is critical for understanding and forecasting their 

dynamics. Traditional mathematical models may be 

insufficient for complex, nonlinear systems, and there is a 

growing interest in using machine-learning approaches, 

specifically ANN, for dynamical system modeling. 

Dynamical systems frequently demonstrate nonlinear 

behavior, which poses a challenge in accurately representing 

their dynamics using conventional linear models. ANNs 

possess the capability to capture nonlinear relationships. 

However, the task of designing a network architecture that 

accurately models the dynamics of a system is not 

straightforward. Moreover, it is worth noting that Dynamical 

systems often encounter constraints in terms of the data 

available for training purposes. Furthermore, the process of 

obtaining additional data can prove to be resource-intensive or 

even impractical in certain scenarios. The development of 

ANN models that exhibit data efficiency and strong 

generalization capabilities despite limited data availability is a 

significant challenge. Moreover, it is worth noting that 

dynamical systems have the potential to exhibit sensitivity to 

both initial conditions and external perturbations. The ANN 

model must possess sufficient robustness to effectively 

manage uncertainties and variations in the system parameters. 

ANNs are commonly regarded as "black-box" models, which 

poses challenges in interpreting the acquired representations. 

The development of techniques aimed at enhancing the 

interpretability of ANN models for dynamical systems is 

crucial in order to gain a deeper understanding of the 

underlying dynamics. 

The computational cost and time required for training 

complex neural network models pose challenges for 

applications with limited resources. The proposed structure 

addresses the aforementioned issue. 

The issue of local minima is a concern in the training of 

ANNs, especially when using gradient-based optimization 

algorithms. Local minima are locations in the loss landscape 

where the gradient is zero, and the algorithm may converge 

prematurely, preventing the network from finding the global 

minimum of loss function. In this study, metaheuristic 

algorithms were used to solve this problem. These algorithms 

accomplish the adaptive tuning of ANN parameters. Due to 

their general effectiveness, these algorithms are widely used 

in many different fields across various domains. Parallel 

processing within the population yields the best answer. 

The proposed approach introduced the notion of modeling 

using the error module. It consists of an association of two sub-

ANN models. The initial one is the primary model, which is a 

low-resolution representation of the ordinary model for the 

dynamical system or time series under investigation. The 

second sub-ANN model termed error model reflects the error 

modeling between the primary model outcome and the output 

of the real system or time series under consideration in order 

to resolve the resolution quality constraint and get a model 

with greater resolution. The effectiveness of this method is 

assessed through testing on the three nonlinear dynamical 

systems as stated by Narendra and Parthasarathy in references 

[16, 17] and benchmark time series. Intensive computer 

experiments improved the convergence and resolution of the 

proposed approach. 

The rest of the paper is structured as follows: Section 2 

introduces a brief description of ANNARMA and the 

metaheuristic algorithms. In Section 3 we explain the proposed 

technique, Section 4 includes several experimental instances 

and different validation tests to verify the effectiveness of the 

proposed method. Finally, the conclusion, which summarizes 

the entire paper, is given in Section 5. 

 

 

2. PRELIMINARIES 

 

This section presents a brief explanation of the concept of 

ANN-ARMA and the metaheuristic algorithms used in 

building our proposed model. 

 

2.1 ANN-ARMA Concept 

 

Artificial neural networks are a field of artificial intelligence 

that attempts to emulate the functioning of the human 

neurological system in order to resolve complicated issues. 

ANN is made up of a large number of nodes known as artificial 

neurons. A weight and bias are assigned to each neuron, which 

indicates the information the network employs to solve a 
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problem. Neurons are connected to one another through 

communication interactions. Inputs that a neuron receives 

determine its internal state or activation functions. A neuron’s 

activity is often sent as a signal to multiple other neurons. 

ANN changes the weights and biases of each neuron during 

training to minimize the difference between the expected and 

actual output using an optimization approach of gradient 

descent, which assesses the amount and direction of weight 

changes based on the error. 

Autoregressive (AR) models and Moving Average (MA) 

models are commonly used in time series analysis. 

Autoregressive models predict the next value in a series based 

on the previous values, while the moving average models 

predict the next value based on the average of the previous 

values. 

Artificial neural networks can also be used for time series 

analysis, including both autoregressive and moving average 

models. In an autoregressive ANN, the input to the network is 

a time series sequence, and the network uses previous values 

to predict the next value in the sequence. In a moving average 

ANN, the input to the network is a moving window of the time 

series sequence, and the network predicts the next value based 

on the average of the previous values in the window. A popular 

combination of these two approaches is the Autoregressive 

Moving Average (ARMA) model, which combines the 

strengths of both methods. In ARMA model, the network uses 

both the previous values and the moving average of previous 

values to predict the next value in the time series sequence. 

Autoregressive, moving average, and ARMA models can all 

be implemented using ANNs for time series analysis. The 

choice of which model to use depends on the particular 

characteristics of the time series data and objectives of analysis. 

For ARMA model, output is modelled as a linear difference 

equation between current and past inputs and past outputs as 

described in the equation that follows: 

 

𝑦(𝑡) =∑𝑎𝑖𝑥(𝑡 − 𝑖) +∑𝑏𝑗𝑢(𝑡 − 𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 (1) 

 
where, 𝑥(𝑡) and 𝑢(𝑡) are inputs and outputs, 𝑎𝑖 and 𝑏𝑗 are the 

ARMA parameters. 

Adding these outputs to a neural network as inputs is 

equivalent to changing its structure into a recurrent neural 

network. The objective of this hybrid structure (ANNARMA) 

is to combine the advantages of both and to obtain a more 

reliable modeling result. 

In order to minimize the error between the model’s output 

and real data  output, optimization algorithms are used to 

update the model’s parameters. Creating an appropriate fitness 

function, also known as an objective function, is essential for 

the effectiveness of the system identification and it is 

formulated to determine the control parameter values that best 

satisfy the desired goal. Usually, the control parameters must 

be selected within certain restrictive limits. In this work, Mean 

Square Error (MSE) criterion function was used which is 

described in the equation that follows: 

 

𝑀𝑆𝐸 =
∑ (𝑦𝑘 − �̂�𝑘)

2𝑁
𝐾=1

𝑁
 (2) 

 
where, 𝑦𝑘  and �̂�𝑘 are the actual measurement and its estimate, 

respectively, and 𝑁 is the length of the data. 

 

2.2 Metaheuristic algorithms 

 

In this section, we provide a synopsis of the IWO, PSO, ICA 

and CMA-ES metaheuristics algorithms. 

 

2.2.1 Invasive weeds optimization 

The population-based optimization approach known as 

"invasive weed optimization" (IWO) was first proposed by 

Mehrabian and Lucas in 2006, as stated in the study [26] and 

takes inspiration for solving continuous optimization problems 

from how invasive weeds operate in the natural world. 

A significant threat to agricultural crops, weeds is 

distinguished by their strength, rapid adaption, and ability for 

propagation in the environment. Weeds invade fields by 

dispersing their seeds through the air. These seeds occupy the 

available spaces and grow into flowering weeds using the 

available resources. New weeds following the same process 

are randomly dispersed in the field and develop into the 

flowering weeds and the process continues. 

The IWO algorithm is outlined below: 

 

▪ Generate randomly a population of 𝑛 weeds. 

▪ Generation of the seeds population. 

▪ Evaluation of the fitness of each seed and rank them 

according to their fitness. The seeds now are called 

flowering weeds. 

▪ Production of new seeds by the previous flowering weeds 

according to their rank. The number of seeds produced by 

a weed varies between 𝑆𝑚𝑖𝑛  and 𝑆𝑚𝑎𝑥  increasing linearly 

from the lowest ranked weed to the highest ranked weed. 

▪ Generation of the seeds using the normally dispersed 

arbitrary numbers with mean equivalent to the location of 

the generating weeds. The standard deviations are varied 

according to the following equation: 

 

𝜃𝑖𝑡𝑒𝑟 =
(𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟)𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
𝑛

(𝜃𝑖 − 𝜃𝑓) + 𝜃𝑓 (3) 

 

where, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 the maximum number of iterations, 𝜃𝑖 and 𝜃𝑓 

are both the initial and the last standard deviations, and 𝑛 is 

the nonlinear modulation index. 

 

▪ Evaluation of the fitness of newly generated seeds that 

become flowering weeds. They are then ranked with their 

parents according to their fitness. 

▪ Elimination of weeds of lower fitness in order to attain the 

maximum number of weeds allowed in the colony (𝑃𝑚𝑎𝑥). 

▪ The survived weeds can produce new seeds according to 

their rank and this process continues until the stopping 

criterion is reached. The stopping criterion is usually 

considered to be the maximum number of iterations or a 

certain limit value of fitness. 

 

2.2.2 Particle swarm optimization 

Particle Swarm Optimization (PSO) is a forceful meta-

heuristic optimization algorithm established by Kennedy and 

Eberhart in 1995 [27]. It was relying upon the comportment of 

flocking birds and schooling fish observed in nature. This 

algorithm works with this concept: a flock of birds is randomly 

initialized in the search area, where each bird is named a 

“particle”. After a specific number of iterations, these birds 

(particles) locate the optimal global position. For each iteration, 

every particle is able to alter its velocity vector depending on 

its momentum and the effect of its best position as well as the 
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best position of the most qualified individual. The particle then 

travels to a newly calculated location, and its fitness may be 

assessed using the optimization problem's objective function. 

The particle's previously visited best position is marked as its 

personal best position (𝑃𝑏𝑒𝑠𝑡). The global best position (𝑔𝑏𝑒𝑠𝑡) 
is the location of the best person in the swarm. These two 

equations are used to assign the particle's velocity and new 

location at each step: 

 

𝑉(𝑡+1) = 𝑉(𝑡) + 𝐶1𝑟1(𝑝𝑏(𝑡) − 𝑋(𝑡))

+ 𝐶2𝑟2(𝑝𝑔(𝑡) − 𝑋(𝑡)) 
(4) 

 

𝑋(𝑡+1) = 𝑋(𝑡) + 𝑉(𝑡+1) (5) 

 

where, 𝐶1 and 𝐶2 are the acceleration coefficients, and 𝑟1 , 𝑟2 

are random variables in a range of [0, 1]. 

The PSO algorithm is described as follows: 

 

▪ Generate randomly a population swarm of 𝑁 particles. 

▪ Initialization of the parameters of PSO ( 𝐶1 and𝐶1). 

▪ Initialize particle with random position (𝑥) and velocity 

(𝑣). 

▪ For each iteration, the following steps are repeated until 

satisfying the stopping criterion: 

✓ Solve the target problem. 

✓ Calculate the objective function. 

✓ Update the 𝑔𝑏𝑒𝑠𝑡  and 𝑝𝑏𝑒𝑠𝑡 values. 

✓ Update particle position ( 𝑥 ) and velocity (𝑣 ) 

according to the velocity and position updating 

Eqs. (4) and (5). 

▪ Stopping conditions are satisfied: 𝑔𝑏𝑒𝑠𝑡  and optimal 

solution has been found. 

 

2.2.3 Imperialist competitive algorithm 

Imperialist Competitive Algorithm (ICA) is a socio-

political metaheuristic algorithm proposed in 2007 by 

Atashpaz-Gargari and Lucas [28]. It was formed by the 

historical colonization process and the rivalry between 

empires for more colonies. The algorithm starts with a random 

initial population (country). The most powerful nation shall 

serve as the empire's imperialist, with the rest forming colonies. 

To assess the general intent of an empire, a linear combination 

of the imperialist's desired result and the average of the 

objective values of the empire's colonies is employed. The 

most vulnerable empire may be found after assessing all of the 

empires. Then all other empires compete to seize the weakest 

colony of the weakest empire. 

The ICA algorithm is detailed as follows: 

 

▪ Initialization of the algorithm. 

▪ Generation of a collection of arbitrary solutions within the 

optimization problem's search space and create initial 

empires. Generation of random countries and 

determination of their power by the cost function. 

▪ The countries having the cheapest function value turn 

Imperialists, seize control of other countries (or colonies), 

and establish the initial Empires. 

▪ Assimilation induces each empire's colonies to move 

closer to the imperialist state in the space of seeking 

optimization. 

▪ The revolution guides to sudden and random changes in 

the position of certain countries in the research space. 

▪ Throughout assimilation and revolution, a colony may 

attain a better position and have the opportunity to take 

over the entire empire and replace the present imperialist 

state of the empire. 

▪ For the imperialist competition, all empires compete to 

win the game and take control of colonies of other empires. 

Depending on their might, all empires have an 

opportunity of acquiring one or more colonies of the 

weaker empire at each stage of the algorithm. 

▪ Until a stop condition is satisfied, the algorithm continues 

to progress through the above mentioned steps 

(Assimilation, Revolution, Competition). 

 

2.2.4 Covariance matrix adaptation-evolution strategy 

Covariance Matrix Adaptation Evolution Strategy (CMA-

ES), as cited in the research, is a powerful version of evolution 

strategy algorithm for solving continuous optimization 

problems, introduced by Hansen and Ostermeier in 2001 [29]. 

CMA-ES is based on Evolution Strategy (ES) which is a type 

of evolution algorithm (EA). The mathematical and statistical 

model employed in the construction of CMA-ES is quite 

intriguing and sets it apart from all other evolutionary 

algorithms and metaheuristics. It consists in finding a vector 

of parameters 𝑥  that maximizes an objective or a fitness 

function 𝑓(𝑥) . The mean and covariance of exploration 

distribution are ordinary variables and are not conditioned by 

the agent’s current state. 

Dynamic modifications to the search distribution are 

possible through the covariance matrix's adaptation 

mechanism, which sets CMA-ES unique. CMA-ES's unique 

characteristic significantly simplifies complex, high-

dimensional objective function optimization. It has been 

successfully applied in many fields, including engineering, 

robotics, and other fields where conventional optimization 

techniques may falter, such as neural network architecture 

optimization and parameter tuning. 

The CMA-ES is clarified below: 

 

▪ Initialize the CMA-ES parameters. 

▪ Generate a population of candidate solutions. 

▪ Evaluate the fitness values for every individual in the 

population. 

▪ Select parents from the fittest individuals, based on their 

fitness values, to establish the next generation's parent 

population. 

▪ For each iteration, the following steps are repeated until 

satisfying the stopping criterion: 

✓ Update the Covariance Matrix: 

 

𝐶𝑡+1 = (1 − 𝑐1 − 𝑐𝜇)𝐶
𝑡 + 𝑐1 + 𝑃𝑐

𝑡+1(𝑃𝑐
𝑡+1)𝑇

+ 𝑐𝜇∑𝑊𝑅𝑖

𝑋𝑖 −𝑚𝑡

𝜎𝑡

𝛾

𝑖=1

(
𝑋𝑖 −𝑚𝑡

𝜎𝑡
)

𝑇

 
(6) 

 

where, 𝑐1  and 𝑐𝜇  are learning rate parameters, 𝑊𝑅𝑖  is the 

weight for the 𝑅𝑖𝑡ℎ highest point, and 𝑃𝑐 is the evolution path. 

 

𝑃𝑐
𝑡+1 = (1 − 𝐶𝑐)𝑃𝑐

𝑡 + √
𝐶𝑐(2 − 𝐶𝑐)

∑ 𝑊𝑖
2𝛾

𝑖=1

𝑚𝑡+1 −𝑚𝑡

𝜎𝑡
 (7) 

 

✓ Update the Step Size: 

 

𝜎𝑡+1 = 𝜎𝑡𝑒𝑥𝑝 (
𝑐𝜎
𝑑𝜎

𝑃𝜎
𝑡+1 − 𝑋𝑑
𝑋𝑑

) (8) 
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where, 𝑐𝜎  is the learning rate, 𝑑𝜎  is the damping rate, and 𝑃𝜎  

is the evolution path. 

✓ Generate Sample Population for generation 𝑡 +
1. 

✓ Update the mean for generation 𝑡 + 1: 

 

𝑚𝑡+1 = ∑𝑊𝑅𝑖𝑋𝑖

𝛾

𝑖=1

 (9) 

 

✓ Update the best-ever solution. 

✓ Stopping conditions are satisfied: Results. 
 

 

3. PROPOSED ANN SCHEME 

 

In this section, the proposed ANN method for dynamical 

systems and time series modeling and identification will be 

discussed. The proposed technique comprises three stages, the 

first is the identification of the primary model, the second is 

the identification of the error process, and finally the design of 

the final model, which consists of a parallel interconnection 

between the first two steps. 

 

3.1 Parameters update ANN 

 

The neural network optimization algorithm employed in 

this paper is a feedforward neural network. Figure 1 shows the 

ANN configuration throughout used in this work. 

Weights (wi) are the parameters in a neural network's hidden 

layers that modify the input data, and Biases (bn) are the 

constants added to the product of features and weights. These 

parameters determine the parameters of the ANN model to be 

trained by optimization methods. They are applied in order to 

offset the result. 

 

3.2 Primary model identification 

 

During this stage, the input-output dataset (𝑈𝑘 , 𝑌𝑘)  is 

utilized to establish the primary ANN model (𝑌𝑃𝑀 ) for the 

given dynamical system or time series (Figure 2). The ANN 

primary model is designed using an ANN-autoregressive 

moving average model (ANN-ARMA) that clearly strives to 

anticipate the current output based on the sum of previous 

outputs and inputs. The primary ANN-model's structure is 

mainly on online adaptation of the feed forward neural 

network’s parameters. The parameters optimization bloc 

(Figure 2) which can be either IWO, PSO, ICA or CMA-ES 

algorithms, will adjust the parameters of the primary model 

such that the error 𝐸𝑘 between the process output 𝑌𝑘 and the 

primary model output �̂�𝑘 attains its lowest value. 

 

3.3 Error process identification 

 

For this second stage, it will be the same as the first step, 

but the focus will be on identifying the error of the first stage 

(𝐸𝑘). This error results from a parallel connection between the 

relevant dynamical system process or time series (𝑦𝑘) and the 

primary model output (�̂�𝑘). The error 𝐸𝑘 is precisely defined 

by: 

 

𝐸𝑘 = 𝑦𝑘 − �̂�𝑘 . (10) 

 

After having obtained the error process 𝐸𝑘, we proceed to 

its modeling by a second ANN model. This model is called 

ANN error model (𝑌𝐸𝑀). The error 𝐸𝑘 can be considered as a 

time series, thus it makes sense to use an autoregressive model 

(AR) when designing its model, which strives to predict the 

new output based on the previous results. The structure of this 

stage is illustrated in the Figure 3. 

The structure of the ANN error model is mainly on online 

adaptation of the feed forward neural network’s parameters. 

The parameters optimization bloc (Figure 3), which can be 

either IWO, PSO, ICA or CMA-ES algorithms, will adjust the 

parameters of the error model such that the error 𝐸1𝑘 between 

the error process output 𝐸𝑘  and the error model output �̂�𝑘 

attains its lowest value. 
 

3.4 Final model design 
 

Ultimately, the primary model and the error model will be 

interconnected in parallel, resulting in the final ANN model 

depicted in Figure 4. This interconnection was made in order 

to reduce the Modeling error and obtain a net final model. 
 

 
 

Figure 1. ANN Structure 

 

 
 

Figure 2. ANN-Primary Model 

 

 
 

Figure 3. ANN-Error Model 
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Figure 4. ANN-Final Model 

 

 

4. RESULTS AND DISCUSSION 

 

In this section, we present and discuss the simulation results 

of the proposed method for modeling and identification of 

dynamical systems. For this purpose, the three nonlinear 

dynamical systems described below will be used for testing the 

ability of the proposed approach [16, 17]: 

 

• System 1: 

 

𝑦𝑝(𝑘 + 1) = 𝑓[𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1), … . , 𝑦𝑝(𝑘 − 𝑛

+ 1)] + ∑ 𝛽𝑖𝑢(𝑘 − 1).

𝑚−1

𝑖=𝑜

 
(11) 

 

• System 2: 

 
1( 1) ( 1) [ ( ), ( 1),..., ( 1)]0

ny k y k g u k u k u k mip pi −+ = − + − − + =  (12) 

 

• System 3: 

 

𝑦𝑝(𝑘 + 1) = 𝑓[𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1), . . . , 𝑦𝑝(𝑘 − 𝑛 + 1]

+ 𝑔[𝑢(𝑘), 𝑢(𝑘 − 1), . . . , 𝑢(𝑘 − 𝑚
+ 1)] 

(13) 

 

Following an extensive comparative analysis, we have 

identified that the most effective optimization algorithm 

among the four utilized is the IWO algorithm. This will be 

showcased in the comparative study section. Subsequently, we 

will present the simulation results of our technique based on 

the IWO algorithm. The weights and the bias are parts of the 

proposed ANN model that can be tuned.  Below is a list of the 

various parameters of the IWO algorithm: 

 

✓ The Initial and final population size are 10 and 25, 

respectively. 

✓ The Minimum and maximum number of seeds are 0 and 

5, respectively. 

✓ The Initial and final values of the standard deviation are 

1.5 and -1.5, respectively. 

 

4.1 Modeling and identification of system I 

 

For this system, we consider the particular case governed by 

the following differential equation: 

𝑦𝑝(𝑘 + 1) = 𝑓[𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1)] + 𝑢(𝑘); (14) 

 

with: 

 

𝑓[𝑦𝑝, 𝑦𝑝(𝑘 − 1)] =
𝑦𝑝(𝑘)𝑦𝑝(𝑘 − 1)[𝑦𝑝(𝑘) + 2.5]

1 + 𝑦𝑝
2(𝑘) + 𝑦𝑝

2(𝑘 − 1)
. (15) 

 

𝑢(𝑘) = 𝑠𝑖𝑛 (
2𝜋𝑘

25
) (16) 

 

where, 𝑓  is the part of Eq. (14) to be identified using the 

primary model, and 𝑢 is the input signal. 

 

The simulation results of system I are presented in Figure 5, 

where, 

✓ Figure 5 (a): Superposition between the system I output 

and the primary model output. 

✓ Figure 5 (b): Zoomed segments of Figure 5 (a). 

✓ Figure 5 (c): Superposition between the modeling error 

and the model of modeling error. 

✓ Figure 5 (d): Superposition between the system I output 

and the final model output. 

 

4.2 Modeling and identification of system II 

 

For the second nonlinear dynamical system, the process to 

be determined is provided by the following difference 

equation: 

 

𝑦𝑝(𝑘 + 1) = 0.3𝑦𝑝(𝑘) + 0.6𝑦𝑝(𝑘 − 1) + 𝑓[𝑢(𝑘)] (17) 

 

where, the following form represents the unknown function 

that has to be found: 

 

𝑓(𝑢) = 0.6 sin(𝜋𝑢) + 0.3 sin(3𝜋𝑢) + 0.1sin(5𝜋𝑢) (18) 

 

The input signal 𝑢 is chosen to be sinusoidal as follows: 

 

𝑢(𝑘) = 𝑠𝑖𝑛 (
2𝜋𝑘

250
) (19) 

 

The same parameters of the IWO optimization algorithm as 

those used for system I are used to simulate the second system 

Modeling and identification, the simulation results are 

presented in Figure 6. 

 

4.3 Modeling and identification of system III 

 

For this system, we consider the particular case described 

by the following difference equation: 

 

𝑦𝑝(𝑘 + 1) = 𝑓 (𝑦𝑝(𝑘), 𝑢(𝑘))

=
𝑦𝑝(𝑘)

1 + 𝑦𝑝(𝑘)
2
+ 𝑢(𝑘)3 

(20) 

 

𝑢(𝑘) = 𝑠𝑖𝑛 (
2𝜋𝑘

25
) + 𝑠𝑖𝑛 (

2𝜋𝑘

10
) (21) 

 

where, 𝑢(𝑘) is the input signal. We simulated this case with 

the same parameters of the IWO optimization algorithm as 

with system I and system II. The simulation results are shown 

in Figure 7. 
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Figure 5. ANN-based IWO model for system I 

 
 

 
 

 
 

 
 

Figure 6. ANN-based IWO model for system II 
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Figure 7. ANN-based IWO model for system III 

A visual examination of all of these Figures 5-7 reveals that 

the ultimate model is greatly superior to the primary model. 

This observation verifies the usefulness of the error model-

based identification idea. 

 

4.4 Validation and generalization tests 

 

To ensure both efficiency and robustness in our approach, 

validation tests have been conducted. A concise description of 

these validation tests is provided in this section. 

 

4.4.1 Generalization test 

The generalization process follows these steps: First, the 

primary model is validated using new input data 𝑢2, resulting 

in a new error. Next, this error is utilized in the error 

identification step. Finally, the final model is generated, 

representing a concurrent interconnection involving two 

models (primary model and error model). The outcomes of the 

validation process are illustrated in Figure 8 where: 

 

✓ Figure 8 (a): represents the primary model output with the 

input data 𝑢1 defined as follows: 

 

𝑢1(𝑘) = 𝑠𝑖𝑛 (
2𝜋𝑘

25
) (22) 

 

✓ Figure 8 (b): represents the primary model output with the 

new input data 𝑢2 given by the following equation: 

 

𝑢2(𝑘) = 𝑠𝑖𝑛 (
2𝜋𝑘

25
)for 1 ≤ 𝑘 ≤ 50 and 150 ≤ 𝑘 ≤ 200 (23) 

 

𝑢2(𝑘) = 𝑠𝑖𝑛 (
2𝜋𝑘

10
) + 𝑠𝑖𝑛 (

2𝜋𝑘

5
) for 50 ≤ 𝑘 ≤ 150 (24) 

 

✓ Figure 8 (c): represents the error process model. 

✓ Figure 8 (d): represents the final model output. 
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Figure 8. Generalization test 

 

The generalization test for models is a crucial step in the 

evaluation of machine learning and statistical models. It 

assesses how well a trained model can perform on unseen or 

new data. Based on a visual examination of Figure 8 (d), it can 

be verified that our model demonstrates satisfactory 

performance on applying a new input, which confirms the 

effectiveness of our proposed approach. 

 

4.5 Validation test 

 

By conducting validation tests, we can assess the model’s 

reliability, generalization ability, and suitability for real-world 

applications. These tests are crucial in ensuring that the model 

is not only accurate on the data it was trained on but also 

effective in making predictions on new, unseen data. 

 

4.5.1 Modeling and identification of ECG signal 

An ECG signal is a type of time series data which illustrates 

the heart's electrical activity over a particular period of time. 

In a time series, data points are recorded in chronological order 

at regular intervals. In the case of an ECG, the time series 

consists of a sequence of voltage measurements taken at 

successive time points during the cardiac cycle. In this section, 

our approach is applied to the identification of two types of 

ECG signals: Real ECG signals acquired from the ECG 

PhysioNet database [30] and synthetic ECG signal [31]. 

 

(1). Real ECG signal 

In the following, we explore the implementation of the 

suggested approach on real ECG data. To conduct this study, 

we obtained the real ECG signal 100.dat dataset from the MIT-

BIH normal sinus rhythm database [30], where it was recorded 

at a sampling rate of 360Hz with a resolution of 11 bits per 

sample. The outcome of applying the proposed method to the 

real ECG signal is visualized in Figure 9. 

(2). Synthetic ECG signal 

The same precepts and procedures used in the previous 

sections will be applied to model the synthetic ECG signal data 

[31]. The result gained is shown in Figure 10. 

 

 
 

 
 

 
 

Figure 9. ANN based IWO model for real ECG signal: a) 

Real ECG signal vs Primary ECG model, b) the Modeling 

error vs Model of modeling error, c) the Real ECG signal vs 

the Final ECG model 
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Figure 10. ANN based IWO model for synthetic ECG signal: 

a) synthetic ECG signal vs Primary ECG model, b) Modeling 

error vs Model of Modeling error, c) synthetic ECG signal vs 

Final ECG model 

 

4.5.2 Mackey-Glass time series modelling and identification 

Remember that a time series is only a set of data points 

organized temporally. Our method is also used to additional 

data from a time series. Time often serves as the independent 

variable in a time series, and future forecasting is the main goal. 

We take into consideration a time series produced by the 

Mackey-Glass equation for this purpose. Figure 11 shows the 

simulation's results. 

 

4.6 Comparative study 

 

In this section, a comparison is conducted to demonstrate 

the efficacy of the IWO optimization algorithm in contrast to 

other optimization techniques. To accomplish this, we have 

selected three algorithms, namely PSO, ICA, and ES-CMA, as 

described in section.1.2. The specific parameters for each 

optimization algorithm are chosen as follows: PSO algorithm 

parameters (the acceleration constants𝐶1 = 1.5, 𝐶2 = 2.5 and 

the coefficient of inertia 𝜔 = 0.48 ), ICA algorithm 

parameters (𝛼 = 1 , 𝛽 = 1.5 , µ (revolution rate) =0.1), ES-

CMA algorithm parameters (λ (Population size) =140, 

µ(Number of Parents) =40). Figures 12-14 depict the modeling 

and identification results of the three dynamical systems 

mentioned earlier, employing the proposed modelling method 

based on the four-optimization algorithms (IWO, PSO, ICA, 

and ES-CMA). 

After analysing all the figures, it is evident that the IWO 

algorithm exhibits superior performance when compared to 

the PSO, ICA, and ES-CMA algorithms. The results indicate 

that the IWO algorithm outperform the other optimization 

techniques in terms of Modeling and identification of the 

dynamical systems under consideration. 

 
 

 
 

 
 

Figure 11. ANN based IWO model for Mackey Glass time 

series: a) Mackey Glass time series vs Primary model, b) 

Modeling error vs Model of Modeling error, c) Mackey Glass 

time series vs Final model 
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Figure 12. System I based ANN model: (a) IWO, (b) PSO, 

(c) ICA, (d) ES-CMA 

 

 
 

 
 

 
 

 
 

Figure 13. System II based ANN model: (a) IWO, (b) PSO, 

(c) ICA, (d) ES-CMA 
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Figure 14. System III based ANN model: (a) IWO, (b) PSO, 

(c) ICA, (d) ES-CMA 

Currently, we proceed with a numerical evaluation of the 

method’s performance using a fitness function known as the 

mean square error (MSE). To ensure reliability, we conducted 

20 independent trials of our method and for each optimization 

algorithm. Table 1 presents statistical performance measures, 

including the worst and best values of the fitness function. 

 

Table 1. The fitness function results for 20 independent trials 

 
Optimization 

Algorithm 
Best Value Worst Value 

IWO 9.1127e-9 8.1002e-7 

PSO 8.2201e-6 5.9317e-4 

ICA 4.2138e-6 1.2139e-5 

ES-CMA 4.2138e-6 1.7293e-5 

 

Based on Table 1 and out of the techniques discussed, the 

IWO (Invasive Weed Optimization) algorithm demonstrated 

superior performance by achieving the best value across the 20 

independent trials. 

Moreover, to conduct comprehensive statistical 

investigations, we incorporated error bars for parameter 

optimization. This graphical technique represents the 

variability of the estimated parameters on graphs, providing an 

indication of the uncertainty associated with estimates and 

offering a general understanding of the parameter’s values 

accuracy. The primary model’s error bars parameters and the 

error process Modeling parameters can be observed in Figures 

15 and 16, respectively. 

A simple visual inspection of these figures, indicating that 

the error bars widths associated with the IWO method are the 

smallest when compared to the error bars of the PSO method, 

the ICA method, and CMA methods. This finding suggests 

that the IWO method exhibits greater precision and 

consistency in parameter optimization. 
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Figure 15. Primary model parameters error bars: (a) IWO, (b) PSO, (c) ICA, (d) ES-CMA 
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Figure 16. Error process parameters error bars: (a) IWO, (b)  

PSO, (c) ICA, (d) ES-CMA 

 

4.7 Discussion 

 

Our approach, which combines ANN and IWO methods and 

incorporates an error model, improves the modeling and 

identification of dynamical systems and time series 

significantly. By combining ANN and IWO, we increase 

efficiency and produce better solutions in situations where 

traditional methods may fail. This collaboration between ANN 

and IWO not only improves the ability to solve complex 

problems, but also enables us to deal with difficult scenarios 

more effectively. Our findings have a significant impact 

because they provide better predictions and optimization 

strategies for real-world tasks in fields such as finance and 

engineering. Our adaptable method is a valuable tool for 

control and decision-making in dynamical systems, making it 

applicable across industries and allowing us to address 

complex challenges effectively. 

 

 

5. CONCLUSION 

 

In this research paper, we introduced a novel strategy to 

address common challenges in Modeling and identification of 

dynamical systems and times series. Our approach involves 

combining hybrid Artificial Neural Network Autoregressive 

Moving Average (ANNARMA) with metaheuristics 

algorithms. Through this integration, we aim to tackle the 

classical problems that arise in this domain effectively. The 

presented approach introduces an innovative identification 

module known as the “error model.” This module serves as a 

valuable supplement to the primary model, enhancing its 

overall quality and leading to a more precise fit. As a result, 

the proposed approach yields a higher resolution model with 

improved accuracy. To achieve optimization in ANN 

identification, various metaheuristic algorithms, such as ICA, 

PSO, CMA-ES, and IWO, have been applied. These 

algorithms play a crucial role in refining the ANN 

identification process and enhancing its efficiency. The 

effectiveness of the proposed method is validated through 

simulation results and comparative studies. The outcome of 

these comparisons demonstrates that IWO method 

outperformed the other metaheuristic algorithms utilized in 

this study, providing the best optimization results. The 

superiority of IWO further reinforces the credibility and 

efficiency of the proposed approach in Modeling and 

identification of dynamical systems. 
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