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This research aims to compare the accuracy levels of the Least Square Support Vector 

Machine (LS-SVM) method and its modification with other algorithms in predicting various 

types of data. A quantitative approach with meta-analysis was employed, and the data were 

analyzed using JASP software, focusing on Mean Absolute Percentage Error (MAPE), 

Effect Size (ES) values, and Summary Effect (SE). The data analysis concludes that, 

overall, the LS method exhibits an accuracy rate of 92.7%, categorized as high, with an 

estimated coefficient value of 0.073. Based on the algorithm used, the analysis results with 

the LS method achieved an accuracy rate of 87.5%. The LS-SVM method demonstrates a 

higher accuracy level, reaching 95.4%, while the LS-Combination method attains the 

highest accuracy rate, namely 95.6%. In data classification, the analysis results indicate the 

highest accuracy level in economic and trade data, amounting to 95.6%. For social and 

demographic data, the coefficient value is 0.122 with an accuracy rate of 87.8%. Finally, in 

agricultural and mining data, the generated accuracy rate is 86.6%. These findings provide 

valuable insights into the performance of the LS method and its modifications with other 

algorithms in the context of forecasting various types of data. 
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1. INTRODUCTION

Forecasting is a crucial aspect of conducting predictive 

analysis [1]. According to Taylor & Letham [2], forecasting is 

a common task in the field of data science that aids 

organizations in capacity planning, goal setting, and anomaly 

detection. Moran et al. [3] assert that forecasting involves the 

ability to predict future occurrences based on the analysis of 

past and current data. On the other hand, prediction is a 

broader concept, referring to assigning a probability 

distribution to an outcome based on model estimates, 

applicable to both realized and unrealized outcomes [4]. 

The Least Squares (LS) method is commonly employed for 

estimating coefficients in regression models [5]. According to 

Fujii [6], the LS method is one statistical approach used to 

estimate correlations among various data sets. Meanwhile, 

Sulaimon Mutiu [7] asserts that the LS method serves as a 

standard approach in regression analysis for solving over-

determined system approximation, wherein there are more 

equations than unknowns. The LS method proves valuable in 

analyzing experimental data to summarize the effects of 

factors and test linear contrasts among predictions [8]. 

Furthermore, according to Kong et al. [9], the LS method is a 

way to find the best-fitting function by minimizing the total 

sum of squared errors between measured points and the 

corresponding straight line. Consistent with Abazid et al. [10], 

the LS method finds widespread application in data fitting, 

aiming for the best fit that minimizes the sum of squared 

residuals. 

Research on the LS method has been applied across various 

domains for economic data forecasting, such as business cycle 

data [11], carbon price [12-15], and stock price estimation [16]. 

Additionally, studies employing the LS method are prevalent 

in predicting shallow landslides induced by rainfall [17], 

streamflow forecasting [18, 19], and groundwater surface 

elevation forecasting [20]. Su et al. [21] utilized the Least 

Square Regression Boosting (LSBoost) method in their 

research on natural gas price forecasting, obtaining low MSE 

and RMSE values of 1.12% and 1.06%, respectively. 

Furthermore, findings from a study on predicting cow dung 

pyrolysis for biochar production indicated that the LS-SVM 

model outperformed the ANN model with R2 values of 0.96 

and 0.80, respectively [22]. 

Furthermore, the application of the LS method is 

widespread in climate data analysis, including wind energy 

data [23, 24] and air humidity data [25]. Utilizing LS in 

forecasting hourly fluctuations in the Air Quality Index (AQI) 

achieved an accuracy level of 93.24%, signifying a remarkably 

high precision [26]. In their study on monthly temperature 

estimation using the Partial Least Square (PLS) method, Ertaç 

et al. [27] reported an RMSE value of 1.80% and a high 

accuracy level of 94%. Moreover, the LS method finds 

application in forecasting endeavors in the United States and 

Europe, including the USA [28-32], the Netherlands [33, 34], 

Germany [35, 36], and Brazil [37]. In Peña-Guzmán et al. [38] 

research on forecasting water demand in residential, 
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commercial, and industrial areas using LS-SVM, an accuracy 

level of 98% and a percentage error below 12% were achieved, 

indicating a high level of precision. 

The LS method yields superior results and presents 

reasonable long-term elasticity concerning natural resource 

demand for energy consumption forecasts [39]. The LS 

method is extensively employed in forecasting in Asia, 

including China [40-44], Turkey [45], and Korea [46, 47]. 

Additionally, the integration of the LS method with other 

approaches in the forecasting domain is prevalent. Examples 

include LS-SVM for river flow prediction [48], Multi-Task 

Learning and LS-SVM for electricity load forecasting [49], LS 

Support Vector Machine Coupled with Data-Preprocessing 

Techniques (LSSVM-DWA) for river flow forecasting, 

Volterra-LS Support Vector Machine Model Combined with 

Signal Decomposition (EMD-LMD-LSSVM-Volterra) for 

hourly solar radiation forecasting [50], Fuzzy Clustering and 

Least Square Support Vector Machine Optimized with Wolf 

Pack Algorithm (FC-WPA-LSSVM) for short-term load 

forecasting at electric bus charging stations [51], and Least 

Square Support Vector Machine, Deep Belief Network, 

Singular Spectrum Analysis, and Locality-Sensitive Hashing 

(LSSVM-DBN-SSA-LSH) for wind power estimation [52]. 

Research outcomes by Tien Bui et al. [53] indicate that the 

predictive strength of LSSVM-BC surpasses that of SVM, 

achieving an accuracy rate of 93.8% in predicting landslides 

due to rainfall. The IGA-LS-SVM algorithm utilized by Lin et 

al. [54] provides a more significant MSE value of 0.83%, 

making it suitable for short-term power load prediction. 

Numerous studies on the application of the LS method, 

either standalone or in combination with various algorithms, 

have yielded diverse accuracy levels. Earlier research findings 

indicate that the LS method, combined with algorithms such 

as Support Vector Machine (SVM), fuzzy logic, Gravitational 

Search Algorithm (GSA), Genetic Programming (GP), 

Evolutionary Seasonal Decomposition (ESD), and Signal 

Decomposition (SD), achieves high accuracy levels based on 

Mean Absolute Percentage Error (MAPE) values. However, to 

date, there has been a lack of focus on accuracy levels based 

on MAPE values. The combination of the LS method with 

other techniques also impacts the number of iterations, training 

duration, and testing of data. Therefore, the author has 

undertaken data collection to discuss the research outcomes of 

the LS-SVM method, both in its standalone form and in 

combination with other algorithms. The objective of this 

research is to assess the comparative accuracy levels of the LS 

method and its modifications across various types of 

forecasted data. This research aims to provide a deeper 

understanding of the effectiveness of the LS-SVM method and 

its modifications in forecasting various types of data. 

Consequently, this study not only makes a practical 

contribution to selecting the optimal algorithm for time series 

forecasting but also strengthens the theoretical foundation in 

the development of more advanced forecasting techniques. 

The anticipated in outcome of this research is an improvement 

in prediction accuracy, which in turn is expected to yield 

significant benefits in decision-making processes. 

2. METHOD

This research adopts a quantitative approach utilizing meta-

analysis to delve into the error rates of the LS, LS-SVM, and 

the combination of LS with other algorithms in various 

forecasting domains such as economics, industry, social 

sciences, demography, agriculture, and mining. Typically, the 

classification function of LS-SVM can be formulated as 

follows [55]: 

𝑓(𝑥) = 𝑆𝑖𝑔𝑛 (𝑊𝑇𝜑(𝑥) + 𝑏) (1) 

where, 𝜑(x) is referred to as a nonlinear function mapping 

from the input space X to a high-dimensional feature space. 

The coefficients w and b are obtained by minimizing the upper 

bound of the generalization error. Thus, Eq. (1) can be derived 

by solving the following optimization problem: 

min
1

2
𝑤𝑇𝑤 +

1

2
𝛾 ∑ 𝜉𝑙

2

𝑙

𝑖=1

s. t. 𝑦𝑖 = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝜉𝑖 , (𝑖 = 1,2, … , 𝑙)

(2) 

where, 𝜉𝑖 is the error variable and 𝛾 is the penalty parameter.

By employing the Lagrangian function and Karush-Kuhn-

Tucker (KKT) conditions for optimality in Eq. (2), we can 

derive the final classification solution of the primal problem as 

follows: 

𝑓(𝑥) = 𝑆𝑖𝑔𝑛 (∑ 𝑤𝑖

𝑙

𝑖=1

𝐾(𝑥, 𝑥𝑖) + 𝑏) (3) 

In Eq. (3), K represents the kernel function, which serves to 

simplify the utilization of mapping. The research methodology, 

illustrated in Figure 1, outlines the procedural steps undertaken 

in this study. 

Figure 1. Research procedure 
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The data collection process involved searching for relevant 

research findings in both national and international indexed 

databases. Inclusion criteria encompassed studies conducted 

between 2013-2023, employing keywords such as “Prediction, 

Forecasting, LS, LS-SVM”, and featuring statistical data 

including data volume and accuracy parameters (MAD, MSE, 

MAPE, or RMSE). Conversely, exclusion criteria targeted 

quantitative studies and articles available only in full text. All 

relevant articles were downloaded and stored in a designated 

folder. In the second phase, each article was reviewed to 

ascertain (1) the input data size (N) during prediction, training, 

or testing stages, and (2) the value of Mean Absolute 

Percentage Error (MAPE). Subsequently, coding and 

tabulation were conducted, encompassing (1) publication year; 

(2) author names; (3) type of forecasted data; (4) country; (5)

forecasting method (LS); (6) data size (N); and (7) Mean

Absolute Percentage Error (MAPE) values. The accuracy

criteria for MAPE, as outlined by Yadav and Nath [56], are

presented in Table 1.

Table 1 presents criteria indicating the accuracy level based 

on Mean Absolute Percentage Error (MAPE) values to classify 

whether forecast outputs can be accepted or rejected. MAPE 

values <10% indicate highly accurate forecasting, 10% < 

MAPE <20% denotes good forecasting, 20% < MAPE <50% 

suggests acceptable forecasting, and MAPE >50% indicates 

inaccurate forecasting. Subsequently, Mean Absolute 

Percentage Error (MAPE) values were transformed into effect 

size (ES), and finally, ES values were converted into summary 

effect (SE) using the following formula: 

Table 1. Criteria for MAPE value 

Percentage Decimal Category 

<10% <0.1 Very accurate 

10%≤MAPE<20% 0.1≤MAPE<0.2 Accurate 

20%≤MAPE<50% 0.2≤MAPE<0.5 Worthy 

≥50% ≥0.5 Not accurate 

𝐸𝑆 = 0.5 × 𝐿𝑁 (
1 + 𝑀𝐴𝑃𝐸

1 − 𝑀𝐴𝑃𝐸
) (4) 

𝑆𝐸 = √
𝐸𝑆(1 − 𝐸𝑆)

𝑁
(5) 

Next, the data is tabulated in Microsoft Excel and saved in 

CVS (Macintosh) format. The stored data is then uploaded to 

the JASP software for coefficient determination, rank p-value 

testing, and forest plot generation. The output from JASP is 

interpreted to assess the accuracy level based on the MAPE 

values pf the Least Square method in forecasting, both overall 

and when employing conventional and combined methods. 

Finally, conclusions are drawn based on the conducted 

analysis. 

3. RESULT AND DISCUSSION

3.1 The search result 

A total of 140 data points were collected for the study, with 

54 meeting the specified criteria. There were 19 articles on the 

LS method, 10 articles on the LS-SVM method, and 25 articles 

on the LS method combined with other algorithms. The 

distribution of data is illustrated in Figure 2 and Figure 3. 

Based on the analysis of Figure 2 and Figure 3, the data 

analysis results reveal the utilization of three classification 

intervals for data forecasting: LS method, LS-SVM method, 

and LS modification with other algorithms. The LS method 

demonstrates commendable performance with 19 data points, 

exhibiting an average Mean Absolute Percentage Error 

(MAPE) of 0.13, an average Effect Size (ES) of 0.064, and an 

average Standard Error (SE) of 0.035, categorizing it as highly 

proficient. 

Figure 2. Data quantity based on method and data 

classification 

Figure 3. Average values of MAPE, ES, and SE based on 

method classification 

In the LS-SVM method, based on dataset of 10 entries, the 

average MAPE stands at 0.057, with an average ES of 0.104 

and an average SE of 0.034, also falling within the excellent 

category. Meanwhile, the LS method combine with other 

algorithms showcases outstanding performance, yielding an 

average MAPE of 0.053, an ES of 0.084, and an SE of 0.035, 

leveraging a dataset of 25 entries. Furthermore, the data is 

categorized into three intervals: economic and industrial (38 

data points), social and demographic (9 data points), and 

agricultural and mining (7 data points). The MAPE values for 

each data point are delineated in Figure 4. 

In Figure 4, the analysis results indicate that the average 

Mean Absolute Percentage Error (MAPE) value reaches 0.081, 

signifying a remarkably high level of accuracy in forecasting. 

Furthermore, the data reveals that the minimum recorded 

MAPE value is 0.001, while the maximum value reaches 0.412. 

This information serves as an indicator of the model's 

reliability, considering that lower MAPE values correspond to 
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more accurate forecasts. The subsequent step involves 

determining the values of effect size (ES) and standard error 

(SE) based on MAPE values and the number of data points (N), 

as illustrated in Figure 5. 

3.2 Homogeneity test and publication bias test 

Based on the ES and SE values of each dataset, the data 

were processed using JASP software to determine the category 

of the method employed (Fixed Effect or Random Effect 

model), coefficients, p-value rank test values, and funnel plot 

to ascertain the average error rate based on the predetermined 

model. The resulting JASP output can be found in Tables 2-4. 

Table 2. Fixed and random effect 

Q df p 

Omnibus test of model coefficients 35.816 1 <.001 
Test of residual heterogeneity 1290.756 53 <.001 

Figure 4. Summary of MAPE values 

Figure 5. Values of ES and SE for each data point 
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Table 3. Coefficients 

 
     95% Confidence Interval 

 Estimate Standard Error z p Lower Upper 

Intercept 0.073 0.012 5.985 <.001 0.049 0.097 

 

Table 4. p-value of rank correlation 

 
Rank Correlation Test for Funnel Plot Asymmetry 

 Kendall's τ p 

Rank test 0.222 0.019 

 

According to Table 2, the obtained information indicates 

that the input data fall into the heterogeneous category, with a 

residual heterogeneity test value of 1,290.756 and a significant 

variation among the data, indicating the complexity in the 

characteristics of the dataset used. Furthermore, from Table 3 

an estimation coefficient value of 0.073 with a significant p-

value < 0.001 is obtained for the LS method. This illustrates 

that the LS method demonstrates a low level of error in 

predicting or forecasting data, affirming the reliability of this 

method in predictive analysis. Meanwhile, in Table 4 the p-

value of rank correlation is found to be 0.019 > 0.001, 

indicating no indication of publication bias within the dataset 

utilized. Thus, the data from the 54 articles included in the 

study are deemed sufficiently representative to draw 

conclusions from this research, without significant influence 

from publication bias. 

In Figure 6, the JASP software output reveals that the funnel 

plot of the overall data indicates no research bias, marked by 

all circles enclosed or declared as not indicating publication 

bias. In other words, the results of the p-Rank test < α = 0.05 

suggest no indication of bias, as seen in Table 4. The forest 

plot value is 0.07 [0.05, 0.10], indicating an error rate of 7.3%, 

thus demonstrating an overall accuracy level of 92.7% for the 

LS method. Subsequently, the author divides the data based on 

the classification of methods and algorithms used. The JASP 

outputs based on these classifications are presented in Table 5. 

 

 
 

Figure 6. Funnel plot of overall data 

 

Table 5. MAPE category 

 
Method N Estimate Category of MAPE Z p Forest Plot Accuracy Level 

LS 19 0.125 12.5% Accurate 4.478 <.001 0.13 [0.07, 0.18] 87.5% 

LS-SVM 10 0.046 4.6% High Accurate 2.191 0.028 0.05 [0.00, 0.09] 95.4% 

LS-Combination 25 0.044 4.4% High Accurate 4.455 <.001 0.04 [0.02, 0.06] 95.6% 

 

From the results in Table 5, it is evident that the error rate 

for the LS method with N = 19 is 13% (0.07-0.18), and the 

estimated value is 0.125 with a p-value < 0.001, signifying an 

accuracy level of 87.5%. Furthermore, the error rate for LS-

SVM with N = 10 yields a result of 4.6% (0.00-0.09), an 

estimated value of 0.046, and a p-value of 0.028 < 0.05, 

indicating that LS-SVM has an accuracy level of 95.4%. This 

aligns with the research by Sun and Liang [57], where short-

term electricity load forecasting using LS-SVM achieved a 

low MAPE value of 2.34%. However, in the research 

conducted by Biswas et al. [58], experimental result indicate 

that the performance of the MARS model slightly outperforms 

that of the LS-SVM model. For LS-Combination with N = 25, 

the error rate is 4.4% (0.02-0.06), the estimated value is 0.044, 

and the p-value is < 0.001, implying that LS-Combination also 

has an accuracy level of 95.6% in predicting data. Consistent 

with the findings of Niu and Dai [59], the proposed short-term 

load forecasting model with EMD-GRA-MPSO-LS-SVM 

outperforms other models with a MAPE value of 1.1%. In 

contrast to the study by Yang et al. [60] utilizing the PLSE-

RVM method, where the accuracy rate reached 63.3%. The 

distribution pattern can be observed in Figure 7. 

From the JASP output, it is evident that the plot trajectories 

of the three algorithms indicate no indication of publication 

bias, as marked by the absence of open circles, meaning no 

missing studies. Additionally, all circles are enclosed, 

signifying that the research sample meets minimal standards. 

In other words, the p-Rank results for each algorithm are 

greater than 0.001 (p-value > 0.001), implying no indication 

of publication bias. Here, the author divides the data based on 

the publication year, data quantity, and data classification in 

each study. 

 

 
(a) Funnel plot of LS method 
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(b) Funnel plot of LS-SVM method 

 

 
(c) Funnel plot of LS-combination with other algorithms 

 

Figure 7. Funnel plot of each method 

 

3.3 Moderator variable test 

 

This study delves into the performance of LS method and 

its modifications in predicting various types of data. By 

categorizing the data based on publication year, data quantity, 

and classification. The data research offers a comprehensive 

understanding of how the method’s performance varies across 

different contexts. Additionally, supplementary analysis is 

conducted by considering moderator variables, as illustrated in 

Table 6. 

In the publication year interval, it is divided into two periods: 

2013-2018 and 2019-2023. For the years 2013-2018, the 

coefficient value is 0.044, the p-Rank test value is 0.044, and 

the forest plot is 0.04 [0.03, 0.06], indicating a very accurate 

with an accuracy level of 95.6%. For the years 2019-2023, the 

coefficient value obtained is 0.099, the p-Rank test value is 

0.149, and the forest plot is 0.10 [0.06, 0.14], meaning the 

accuracy level reaches 90.1% in predicting data. This aligns 

with the research by Yan and Chowdhury [61] with a MAPE 

value of 0.11 or 11%. The findings of Lin and Pai [62] on solar 

power output prediction using the ESD-LS-SVR method yield 

a MAPE value of 0.078 or 7.8%, indicating a very accurate. 

Furthermore, the data quantity is divided into two categories: 

equal to or less than 120 (N≤120) and greater than 120 

(N>120). For N≤120, the coefficient value is 0.062, the p-

Rank test value is < 0.001, and the forest plot is 0.06 [0.03, 

0.09], signifying an error rate of 6.2%. This error rate is higher 

than the findings of Tian’s [63] study, which reported a MAPE 

value of 3.79%. In the case of N>120, the coefficient value is 

0.096, the p-Rank test value is 0.007, and the forest plot is 0.10 

[0.03, 0.16], with a minimum value of 3% and a maximum 

value of 16%. These results are higher than the findings of 

Yang et al. [64] with a MAPE value of 0.0206 or 2.06% in the 

worthy category. Electricity load forecasting results with a 

data quantity of 84 and a MAPE value of 0.006 or 0.6%, as 

well as a MAPE value of 0.008 or 0.8%, both fall into the very 

accurate category, according to the studies [65, 66], 

respectively. 

In the realm of data classification, three distinct categories 

emerge: economic and trade data, social and demographic data, 

and agricultural and mining data. Focusing on economic and 

trade data, where N = 38, the coefficient stands at 0.044, the 

p-Rank at 0.056, and the forest plot at 0.04 [0.03, 0.06]. With 

a minimum value of 3% and a maximum of 6%, this attests to 

an accuracy level reaching 95.6%. This aligns with Mustaffa 

et al. [67] research on commodity price forecasting, boasting 

a MAPE value of 5.5%, and stock prediction with a MAPE of 

0.8% [68]. Tang et al. [69] estimated building material prices 

with an MSE of 2.44% and MAPE of 2.11%. 

Transitioning to social and demographic data, where N = 9, 

a notable error rate is evident with a coefficient of 0.122, p-

Rank of 0.477, and a forest plot of 0.12 [0.05, 0.20], signifying 

an accuracy level of 87.8%. In Song et al. [70] study on water 

quality prediction using LS-SVM, a MAPE of 5.2% 

underscores highly accurate forecasts. Chia et al. [71] 

achieved a MAPE of 5.6% in water quality index prediction 

through the SMWOA-LSSVM method. Turning to 

agricultural and mining data with N = 7, a coefficient of 0.134, 

p-Rank of 0.562, and forest plot of 0.13 [0.02, 0.24] showcase 

an accuracy level of 86.6%. Demonstrating very accurate, 

Yang et al. [72] forecasted short-term electricity load with AS-

GCLSSVM, yielding a MAPE of 0.006 or 0.6%. 

In this study, the results demonstrate that the Least Square 

Support Vector Machine (LS-SVM) method and its 

modifications exhibit a significant level of accuracy in 

forecasting various types of data. The LS-SVM method proves 

to achieve a high level of accuracy reaching 95.4% in this 

research. This finding aligns with previous studies 

highlighting the superiority of the LS-SVM method in short-

term electricity load forecasting. However, it is noteworthy 

that the study also finds that the MARS model slightly 

outperforms LS-SVM in certain contexts. 

Furthermore, the findings of this research provide valuable 

insights for practitioners and researchers in understanding the 

applicability and limitations of the forecasting methods 

employed. This study highlights potential avenues for future 

research, including refining algorithmic modifications, further 

investigating error rates in specific data categories, and 

developing more sophisticated forecasting models. It is 

important to acknowledge the limitations of this study, such as 

sample size and the scope of data types considered which 

could be addressed in future research to strengthen findings 

and broaden our understanding of forecasting methods. 
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Table 6. Moderator variable 

 
Variables Interval N Coefficient p-Rank Test Forest Plot Category of MAPE 

Publication year 
2013-2018 29 0.044 0.044 0.04 [0.03, 0.06] Very Accurate 

2019-2023 25 0.099 0.149 0.10 [0.06, 0.14] Very Accurate 

Data quantity 
≤120 38 0.062 < 0.001 0.06 [0.03, 0.09] Very Accurate 

> 120 16 0.069 0.007 0.10 [0.03, 0.16] Very Accurate 

Data classification 

Economic and trade data 38 0.044 0.056 0.04 [0.03, 0.06] Very Accurate 

Social and demographic data 9 0.122 0.477 0.12 [0.05, 0.20] Accurate 

Agricultural and mining data 7 0.134 0.562 0.13 [0.02, 0.24] Accurate 

 

 

4. CONCLUSIONS 

 

The utilization of the LS method, combined with 

algorithmic combinations, has proven instrumental in 

optimizing regression models for accurate data forecasting. 

This approach, integrating various methodologies, 

significantly enhances prediction precision. The analysis 

reveals an overall accuracy rate of 92.7% for the LS method, 

categorized as high, with an estimated coefficient of 0.073. 

Notably, algorithm-specific examination demonstrates an 

accuracy rate of 87.5% and an estimation value of 0.125 for 

the LS method. Conversely, the LS-SVM method exhibits a 

lower accuracy rate of 4.6% (0.00-0.09) with an estimation 

value of 0.046, indicative of low error rates. 

In the case of LS-Combination, an error value of 4.4% is 

obtained, ranging from 2% to 6%, with an estimation value of 

0.044, resulting in an impressive accuracy level of 95.6%. 

Further accuracy analysis within the data range (N≤120) yields 

a coefficient of 0.062 and a forest plot of 0.06 [0.03, 0.09], 

signifying an accuracy level of 93.8%. For datasets exceeding 

120 (N>120), a coefficient of 0.096, a p-Rank value of 0.007, 

and a forest plot of 0.10 [0.03, 0.16] signify an accuracy level 

of 90.4%, categorized as high. 

Moreover, the data classification analysis underscores the 

highest accuracy in economic and trade data at 95.6%, 

accompanied by a coefficient of 0.044, a p-Rank value of 

0.056, and a forest plot of 0.04 [0.03, 0.06]. Conversely, social 

and demographic data exhibit a considerable error, with a 

coefficient of 0.122, p-Rank value of 0.477, and an accuracy 

level of 78%. Meanwhile, agricultural and mining data show a 

coefficient of 0.134, a p-Rank value of 0.562, and a forest plot 

of 0.13 [0.02, 0.24], indicating an accuracy level of 86.6%. 

The findings underscore the efficacy of the LS method in 

enhancing prediction accuracy across various datasets, 

particularly in economic and trade contexts. The study 

highlights the practical implications of these findings in 

improving forecasting techniques, with potential future 

research directions focusing on refining algorithmic 

combinations and addressing error rates in specific data 

categories, such as social and demographic datasets. 
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