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This article discusses the application of digital image technology and deep learning using 

Convolutional Neural Network (CNN) in Forest Health Monitoring (FHM). Forest health 

monitoring is a method for measuring forest health, one of the parameters used is crown 

density and transparency. Measurement of these parameters is still done manually using 

magic cards so it is less effective and efficient, so it is necessary to apply digital images, 

one of which is the CNN algorithm to help measure the density scale and crown 

transparency.  CNN architectures namely AlexNet and VGG16 are used to train the tree 

image recognition model. This research uses a tree image dataset with four types of needles 

grouped into classes based on crown density and transparency. The results showed that both 

CNN architectures achieved a good level of accuracy in classifying coniferous tree species 

based on crown density and transparency. VGG16 notably achieves higher accuracy than 

AlexNet. The results of model evaluation via the confusion matrix also provide insight into 

the model's performance in recognizing crown density and transparency classes. 
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1. INTRODUCTION

A forest area is a place that consists of various types of trees 

and is managed by one agency or organization with objectives 

that are in line with the land owner. In Indonesia, forests 

produce various forest products, and some of them are the 

responsibility of the Ministry of Forestry [1]. In Indonesia, 

forests can be divided into two categories, namely forests that 

are in good condition and forests that are not in good condition. 

The health condition of a forest can be seen from the ability of 

the forest ecosystem to meet the needs of the living creatures 

in it. Forests are considered to be in good condition when their 

ecosystem functions are maintained and operating well [2]. 

Forest health conditions can be observed and monitored using 

the Forest Health Monitoring (FHM) method [3]. Forest 

Health Monitoring (FHM) is a systematic process for 

continuously monitoring and evaluating forest health 

conditions. This involves collecting data on various 

parameters that influence forest health, such as live crown 

ratio, crown density, foliage transparency, crown diameter, 

and dieback. The main goal is to detect changes in forest 

conditions early, understand their causes, and plan appropriate 

management actions to maintain or restore the balance of the 

forest ecosystem. FHM is carried out using various methods 

and technologies, including field surveys, remote monitoring 

with satellites, spatial data analysis, and collaboration with 

experts and other stakeholders. Thus, FHM becomes an 

important instrument in sustainable forest management and 

environmental conservation [4].  

The crown density and transparency scale card is used to 

measure the extent to which sunlight can enter and be filtered 

by the tree crown. Crown density and transparency are key 

parameters in assessing forest health. A forest is considered to 

be in good condition if its crown density reaches or exceeds 

55% and its transparency level is in the range between 0 and 

45% [5]. Usually, this parameter is assessed manually by an 

observer who is under the tree being surveyed. The assessment 

carried out by observers to measure the percentage of crown 

density and transparency is uniform for all tree types, 

including coniferous trees. Coniferous trees have a growth 

pattern that tends to cone upwards, so they tend to block more 

sunlight from entering the tree's crown area [6]. Currently, 

implementation using scale cards still tends to be less efficient 

because it involves visual observation and manual comparison 

with scale cards. This obstacle can be overcome by involving 

computing technology, one of which is digital image 

technology. 

Digital image technology can be applied using various 

methods, including deep learning. Deep learning is a 

component of machine learning that has the ability to learn its 

own methods in computing [7]. Deep learning, in particular, 

presents a very innovative approach to image classification as 

it expands traditional machine learning concepts by integrating 

a higher level of ‘depth’ into the model structure [8]. The deep 

learning method currently used for image recognition is the 

convolutional neural network (CNN). CNN attempts to mimic 

the image recognition system of the human visual cortex, 

which gives it the ability to process image information 
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effectively [9]. CNN has several architectures. The 

architecture used in this research is AlexNet and VGG16. 

AlexNet is one of the CNN architectures that won the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) competition, a large-scale image classification 

competition, in 2012. AlexNet introduces new innovations in 

the field of deep learning by combining CNN with dropout 

regularization techniques, using ReLu as an activation 

function, and utilizing data augmentation [10]. VGG16 is a 

CNN architecture consisting of 13 convolution layers and 3 

fully connected layers with weights, and is capable of 

processing images with three RGB color channels (Red, Green, 

and Blue) [11].  

This research was conducted in the Tahura WAR 

Conservation Forest in the Kemiling area of Bandar Lampung. 

The focus of this research is the use of four types of trees with 

needle leaves, namely pine merkusii, araucaria heterophylla, 

cupressus retusa, and shorea javanica. The results of this 

research can be applied to identify the density and 

transparency scales of the four types of trees with needle 

leaves. The information obtained from this research can also 

be useful for detecting the density and transparency of the 

canopy of tropical pine and araucaria trees, which are 

commonly found in tropical rainforests. Thus, the results of 

this research contribute to the understanding and management 

of forest ecosystems, especially in the Tahura WAR 

conservation forest area and similar types of tropical rainforest. 

2. RESEARCH METHODOLOGY

This research uses a data set containing images of trees with 

needles. This dataset includes four different tree types, with 

each tree type consisting of 1000 images. Within each tree type, 

there are ten different density and transparency classes, and 

each class has 100 relevant images. In total, this dataset 

consists of 4000 images, which have been grouped into 

appropriate classes. The steps of this research are explained in 

Figure 1 [12]. 

Figure 1. Research flow 

2.1 Image collection 

The initial stage in the research was taking pictures of 

coniferous trees as the main data. These images were obtained 

from the Tahura WAR Kemiling traditional area and the area 

around the University of Lampung (around the rectorate, the 

second route area around the UPT ICT, mechanical 

engineering department, banyan, and physics department). 

There were four types of needle leaves collected, namely 

araucaria heterophylla, pine merkusii, cupressus retusa, and 

shorea javanica. The images were taken using a Canon Eos 

250D camera with ISO 200 because the images were taken in 

an open room so the sensitivity was not too low and not too 

high by using a ratio of 1 to 1. Only a few images were 

collected due to the poor growth of the needles and the position 

of the needles. The terrain is high and uneven, so augmentation 

is needed to meet the needs for the number of datasets. 

2.2 Preprocessing 

The next step is to separate the images of coniferous trees 

into appropriate classes based on their density and 

transparency. After that, this tree dataset is labeled according 

to its category and resized to 224x224 pixels [13]. To expand 

the dataset of coniferous tree images, an augmentation 

technique was carried out so that each class would have 100 

images [14]. Data augmentation is a technique used to create 

additional variations in the training data by modifying the 

images. Data augmentation can include rotation, shift, 

horizontal or vertical flip, zoom, or color change. The 

augmentation techniques used in this research are flip vertical, 

flip horizontal, and zoom of 0.1 on each needle leaf crown 

image. Ultimately, the tree dataset will consist of 4000 images 

of trees with four different types of needles, where each type 

has 100 images in each of the 10 categories of crown density 

and transparency. This needle leaf-type dataset is stored in 

Google Drive to facilitate data processing with models 

programmed in Google Collab. The dataset is also stored on a 

Tesla K80 computer. Each tree-type image is stored in four 

different folders based on its density and transparency 

category labels. The machine will read this dataset at the initial 

stage of the process and then process it according to the 

categories listed in each folder [15]. 

2.3 Split data 

Each image of data that has been separated based on class 

is then divided into three main components: training data, 

validation data, and testing data. 

2.3.1 Training data 

Training data is used as the main material for carrying out 

the dataset training process [16]. The training data used was 

70% of each dataset per type of coniferous tree. 

2.3.2 Validation data 

Data validation is used to assist the process of training the 

dataset using training data. The training process using training 

data also requires data validation to prove the similarity of the 

data read by the model [17]. The validation data used in this 

research was 10% of each dataset per type of coniferous tree. 

2.3.3 Testing data 

Data testing is used to test datasets on an existing 
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architecture [18]. The testing data used in this research was 20% 

of each dataset per type of coniferous tree.  

 

2.4 AlexNet and VGG16 architecture training 

 

Training the model involved the use of two architectures, 

namely AlexNet and VGG16, with a dataset containing 700 

images for each needle type. Training of this model was 

carried out using Google Collab and Jupyter Notebook and 

involved adjusting hyperparameters such as epoch, batch size, 

optimizer, and learning rate [19]. These hyperparameter 

settings have an important role in influencing the success of 

model training and testing. The hyperparameter values used 

are in Table 1. 

 

Table 1. Hyperparameter Values 

 
Hyperparameter AlexNet VGG16 

Epoch 20 10 

Batch-size 8 32 

Optimizer Adam Adam 

Learning-rate 0.0001 0.001 

 

Model training requires several hyperparameters such as the 

number of training times (epoch), the amount of data 

processed at once (batch-size), how large the learning steps are 

(learning-rate), and the optimization algorithm used 

(optimizer). Various combinations of these settings are 

required to achieve the desired results. Training the VGG16 

model for the needle leaf dataset, the hyperparameters used are: 

training is carried out 10 times (epochs), 32 data samples are 

processed at one time (batch-size 32), the learning rate is very 

small, namely 0.001, and uses the Adam optimization 

algorithm. Likewise, when training the AlexNet model, it 

requires 20 training times (epochs), 8 data samples are 

processed at one time (batch-size 8), the learning rate is very 

small, namely 0.0001, and uses the Adam optimization 

algorithm. With this setup, the model will learn to recognize 

the dataset when tested. However, sometimes further 

experimentation is needed to find the most optimal settings for 

that specific dataset. 

 

2.5 Confusion Matrix 

 

The confusion matrix is obtained after going through the 

model training stage on training and validation data. When 

testing a model, test data is used to evaluate the performance 

of a model that has undergone previous training. Performance 

assessment of these two models can be done using a confusion 

matrix to calculate various metrics such as accuracy, F1-score, 

recall, and precision [20]. 

When applying this research method to forest monitoring in 

other regions or countries, there are several challenges that 

may be encountered as well as solutions that can be considered. 

First, differences in tree species are one of the main challenges 

because each region has a different flora composition. This 

requires adapting research methods to the dominant tree 

species in the region. Second, environmental variability such 

as geographic conditions, climate, and soil type can influence 

how data are collected and results interpreted. Cross-country 

collaboration and adaptation of research methods are solutions 

to overcome this challenge. Third, limited resources such as 

funds, a workforce, and infrastructure can be an obstacle to 

comprehensive monitoring. The use of technology and cross-

sector collaboration can help overcome these limitations. 

Finally, the technical skills required for this research method 

may not always be widely available in all regions. Technical 

training and capacitation programs can improve the skills of 

researchers and field officers in using research methods 

effectively. By addressing these challenges and implementing 

appropriate solutions, these research methods can be 

successfully applied to forest monitoring in various regions or 

countries. 

 

 

3. RESULT AND DISCUSSION  

 

3.1 Preprocessing  

 

Dataset preprocessing aims to prepare the data set before 

inputting it into the model training stage [21]. The process of 

preprocessing needle-leaf images involves several steps, 

including adjusting the size and increasing the data. In the size 

adjustment stage, the image of needles from various types of 

trees will be changed in pixel size to dimensions of 224x224 

pixels [22]. Even though we have collected a dataset, the 

amount of data is still limited, so data augmentation is carried 

out to increase the available data [23]. In the data 

augmentation process, several operations are performed, 

including vertical flip, horizontal flip, and zoom, by a factor of 

0.1 so that each class has 100 images. The results of pre-

processing the needle leaf image can be found in Table 2. 

 

Table 2. Image dataset of needle leaf types 

 

Crown Density and Transparency Class 
Tree Type 

Pinus Merkusii Araucaria Heterophylla Cupressus Retusa Shorea  

CD5_FT95 100 100 100 100 

CD15_FT85 100 100 100 100 

CD25_FT75 100 100 100 100 

CD35_FT65 100 100 100 100 

CD45_FT55 100 100 100 100 

CD55_FT45 100 100 100 100 

CD65_FT35 100 100 100 100 

CD75_FT25 100 100 100 100 

CD85_FT15 100 100 100 100 

CD95_FT5 100 100 100 100 

Total 1000 1000 1000 1000 
Information: CD: Crown Density; FT: Foliage Transparency 
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3.2 Needle-leaf type AlexNet architecture 

 

AlexNet is a CNN architecture consisting of eight feature 

extraction layers [24]. The AlexNet model on the needle leaf 

type image can be seen in Figure 2. 

 

 
 

Figure 2. Needle-leaf type AlexNet architecture 

 

The experiment in this research uses an input image 

measuring 224 x 224 pixels with three color channels, namely 

Red, Green, and Blue. Eight feature extraction layers follow 

this stage. These layers are divided into five convolution layers 

and three pooling layers. The pooling layer used is max polling. 

In its classification layer, AlexNet has two Fully Connected 

layers, each consisting of 4096 neurons. At this layer's end is 

a classification process using softmax activation [25]. 

 

3.3 Needle leaf type VGG16 architecture 

 

The VGG16 CNN model consists of a total of 13 

convolution layers, five pooling layers, three fully-connected 

layers, and one output layer [26]. The VGG16 model on the 

needle leaf type image can be seen in Figure 3. 

In this experiment, the VGG16 model processes an input 

layer with a 224 x 224 pixels resolution and three color 

channels (RGB). This process is followed by 13 convolution 

layers, where the ReLU activation function is used after each 

convolution operation. Additionally, several max-pooling 

layers are applied to convolution layers using 2x2 filters. This 

aims to reduce the spatial dimensions of the needle leaf image 

while reducing the number of parameters required in the 

network. After going through a series of convolution layers 

and max pooling, the image's features are channeled into fully 

connected layers, each consisting of 4096 neurons. The final 

output layer consists of 1000 neurons, corresponding to the 

number of classes in the ImageNet dataset, which is generally 

used to train image recognition models. This output layer 

typically uses a softmax activation function to generate 

probabilities for each class. 

 

 
 

Figure 3. Arsitektur VGG16 jenis daun jarum 

 

3.4 AlexNet and VGG16 architectural accuracy against 

coniferous trees 

 

3.4.1 Pinus merkusii 

The AlexNet model achieved an accuracy rate of 98% on 

training data and 86.00% for validation data in classifying the 

density and transparency classes of Merkusii pine trees when 

using a Tesla K80 GPU machine in 2510 seconds. On the other 

hand, the change in loss value in the AlexNet model for 

density and transparency classification in Merkusii pine trees 

was around 0.24% on the training data. In contrast, on the 

validation data, it reached approximately 68.89%. Meanwhile, 

the VGG16 model achieved an accuracy level of 100% on 
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training data. In comparison, on validation data, it gained 

90.00% in classifying the density and transparency classes of 

Merkusii pine trees when treated with a Tesla K80 GPU 

engine, and this was achieved in 110.00 seconds. On the other 

hand, the change in loss value in the VGG16 model for density 

and transparency classification in Merkusii pine trees was 

around 2.11% on the training data. On the validation data, it 

reached approximately 34.63%. 

 

3.4.2 Araucaria heterophylla 

The AlexNet model achieved an accuracy level of 100% on 

training data and 87.00% for validation data in classifying 

density and transparency classes of Araucaria heterophylla 

trees when using a TeslaK80 GPU in 2285 seconds. On the 

other hand, the change in loss value in the AlexNet model for 

density and transparency classification in Merkusii pine trees 

was around 0.0070% on the training data. In contrast, on the 

validation data, it reached approximately 52.78%. Meanwhile, 

the VGG16 model for classifying Araucaria heterophylla trees 

in determining density and transparency classes, when run 

using a Tesla K80 GPU, achieved an accuracy level of 100% 

on training data. In comparison, data validation attained an 

accuracy of 92.00% in 85.00 seconds. Changes in the loss 

value in the model decreased, but the loss value was almost 

stable. The final value of loss on training data is around 0.89%, 

while it reaches approximately 21.86% on validation data. 

 

3.4.3 Cupressus retusa  

The AlexNet model achieved an accuracy level of 100% on 

training data and 96.00% for validation data in classifying the 

density and transparency classes of cupressus retusa trees 

when using a Tesla K80 GPU machine within seconds. On the 

other hand, the change in loss value in the AlexNet model for 

density and transparency classification in the Cupressus retusa 

tree was around 6.49% on the training data. In contrast, on the 

validation data, it reached approximately 37.54%. Meanwhile, 

the VGG16 architectural model applied to the density and 

transparency classification of Cupressus retusa trees, when run 

using a Tesla K80 GPU, achieved an accuracy level of 100% 

on the training data. In comparison, the validation data 

achieved an accuracy of around 96.00% in 95.00 seconds. The 

loss value in the model decreased but was not stable. The final 

loss value on the training data was about 1.18%, while it 

reached around 12.83% on the validation data. 

 

3.4.4 Shorea javanica 

The AlexNet model achieved an accuracy level of 100% on 

training data and 95.00% for validation data in classifying the 

density and transparency classes of Shorea javanica trees when 

using a Tesla K80 GPU in 2376 seconds. On the other hand, 

the change in the loss value in the AlexNet model for density 

and transparency classification in the Shorea javanica tree is 

around 0.0013% on the training data. In contrast, on the 

validation data, it reaches approximately 0.25%. Meanwhile, 

the VGG16 model applied to density and transparency 

classification on shorea javanica trees, when run using a Tesla 

K80 GPU, succeeded in achieving an accuracy level of 100% 

on the training data. In comparison, data validation attained an 

accuracy of around 99.00% in 100.00 seconds. The loss value 

in the model decreases inconsistently. The final value of a loss 

on training data is approximately 0.11%, while it reaches 

around 2.35% on validation data. 

3.5 Confusion matrix of coniferous trees 

 

The confusion matrix includes model evaluation on images 

of coniferous trees based on density and transparency classes 

of conifers.  

 

3.5.1 Pinus merkusii 

Table 3 shows the results of testing the AlexNet architecture 

on the Mersusii pine tree type on a Tesla K80 GPU computer. 

False positive (FP) value, namely, the model incorrectly 

predicts an image into a class. In a class with a density of 15, 

there are 5 FPs, which means 2 images are actually a density 

class of 5 and 3 images are actually a density class of 35. 

Likewise, in a class with a density of 25, there are 3 FPs, which 

means one image of them is actually a density of 5, and two 

images are actually a density of 95. A similar thing happens in 

the class with a density of 35, where there are 5 FPs, one of 

the images is actually a density of 5, 2 images are actually a 

density of 15, and 1 image is actually a density of 85. Likewise, 

in a class with a density of 45, there are 8 FPs, which means 

three images actually have a density of 5, two images actually 

have a density of 55, one image actually has a density class of 

65, and two images actually have a density class of 75. Similar 

patterns also occur in other classes. 

Apart from FP, there is also a false negative (FN) value, 

namely a false negative prediction. The model fails to identify 

something that should belong to a class. From the test results, 

there were 8 false negatives at a density of 5, which means the 

model failed to identify 8 images that should belong to a 

certain class. Of the 8 images, 2 images were incorrectly 

predicted as density 15, 1 image was incorrectly predicted as 

density 25, 1 image was incorrectly predicted as density 35, 3 

images were incorrectly predicted as density 45, and 1 image 

was incorrectly predicted as density 85. At density 15, there 

were 3 FNs, where 2 images were incorrectly predicted as 

density 35 and 1 image was incorrectly predicted as density 55. 

At density 25, there were 2 FNs, of which 2 images were 

incorrectly predicted as density 75. At density 35 with 5 FNs, 

where 3 images were incorrectly predicted as density 15 and 2 

images were incorrectly predicted as density 55). At a density 

of 55, there are 2 FNs, where 2 images are incorrectly 

predicted as having a density 45. At a density of 65, there is 1 

FN, where there is 1 image that is incorrectly predicted as 

having a density 45. At density 75, there are 2 FNs, which 

means 2 images are incorrectly predicted as density 45. At a 

density of 85, there is 1 FN, where 1 image is incorrectly 

predicted to have a density of 35. At a density of 95 with 4 

FNs, where 2 images are incorrectly predicted as a density of 

25 and 2 images are incorrectly predicted as a density of 75. 

From the results of testing the AlexNet architecture on the 

Merkusii pine tree species, a number of false positive (FP) and 

false negative (FN) values were found, which describe the 

model's performance in predicting density classes. The model 

often incorrectly classifies images into inappropriate classes. 

This is indicated by the presence of FP values and similar 

patterns in other density and transparency classes. This 

analysis of model accuracy from FP and FN values shows that 

there is room for improvement in model performance. With 

incorrect predictions for both FP and FN, the model is less 

accurate in identifying density and transparency classes in the 

Merkusii pine tree species. 
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Table 3. Confusion matrix AlexNet pinus merkusii 

Original 

Class 

Prediction Result Class 

CD5, 

FT95 

CD15, 

FT85 

CD25, 

FT75 

CD35, 

FT65 

CD45, 

FT55 

CD55, 

FT45 

CD65, 

FT35 

CD75, 

FT25 

CD85, 

FT15 

CD95, 

FT5 

CD5, FT95 17 2 1 1 3 0 0 0 1 0 

CD15, FT85 0 12 0 2 0 1 0 0 0 0 

CD25, FT75 0 0 25 0 0 0 0 2 0 0 

CD35, FT65 0 3 0 19 0 2 0 0 0 0 

CD45, FT55 0 0 0 0 14 0 0 0 0 0 

CD55, FT45 0 0 0 0 2 19 0 0 0 0 

CD65, FT35 0 0 0 0 1 0 20 0 0 0 

CD75, FT25 0 0 0 0 2 0 0 9 0 0 

CD85, FT15 0 0 0 1 0 0 0 0 20 0 

CD95, FT5 0 0 2 0 0 0 0 2 0 17 
Information: CD: Crown Density; FT: Foliage Transparency. 

Table 4. Confusion matrix VGG16 pinus merkusii 

Original 

Class 

Prediction Result Class 

CD5, 

FT95 

CD15, 

FT85 

CD25, 

FT75 

CD35, 

FT65 

CD45, 

FT55 

CD55, 

FT45 

CD65, 

FT35 

CD75, 

FT25 

CD85, 

FT15 

CD95, 

FT5 

CD5, FT95 21 2 0 2 0 0 0 0 0 0 

CD15, FT85 0 13 0 2     0 0 0 0 0 0 

CD25, FT75 0 0 26 0 0 0 0 0 0 1 

CD35, FT65 0 2 0 22 0 0 0 0 0 0 

CD45, FT55 0 0 0 0 14 0 0 0 0 0 

CD55, FT45 0 0 0 0 0 20 1 0 0 0 

CD65, FT35 0 1 0 1 0 0 19 0 0 0 

CD75, FT25 0 0 0 0 0 0 0 11 0 0 

CD85, FT15 0 0 0 1 0 0 1 0 19 0 

CD95, FT5 0 0 3 0 0 0 0 2 0 16 
Information: CD: Crown Density; FT: Foliage Transparency. 

Table 5. Confusion matrix AlexNet araucaria heterophylla 

Original 

Class 

Prediction Result Class 

CD5, 

FT95 

CD15, 

FT85 

CD25, 

FT75 

CD35, 

FT65 

CD45, 

FT55 

CD55, 

FT45 

CD65, 

FT35 

CD75, 

FT25 

CD85, 

FT15 

CD95, 

FT5 

CD5, FT95 21 0 0 0 0 3 0 0 1 0 

CD15, FT85 1 12 0 0 0 2 0 0 0 0 

CD25, FT75 1 0 26 0 0 0 0 2 0 0 

CD35, FT65 0 0 0 24 0 0 0 0 0 0 

CD45, FT55 0 0 0 0 14 0 0 0 0 0 

CD55, FT45 2 0 0 0 0 17 1 0 1 0 

CD65, FT35 0 0 1 0 0 1 19 0 1 0 

CD75, FT25 0 0 0 0 0 0 0 11 0 0 

CD85, FT15 0 0 0 0 0 0 0 0 21 0 

CD95, FT5 0 0 0 0 0 0 0 0 0 21 
Information: CD: Crown Density; FT: Foliage Transparency 

Table 6. Confusion matrix VGG16 araucaria heterophylla 

Original 

Class 

Prediction Result Class 

CD5, 

FT95 

CD15, 

FT85 

CD25, 

FT75 

CD35, 

FT65 

CD45, 

FT55 

CD55, 

FT45 

CD65, 

FT35 

CD75, 

FT25 

CD85, 

FT15 

CD95, 

FT5 

CD5, FT95 25 0 0 0 0 0 0 0 0 0 

CD15, FT85 0 11 0 1 0 2 0 0 1 0 

CD25, FT75 1 0 26 0 0 0 0 0 0 0 

CD35, FT65 0 0 0 24 0 0 0 0 0 0 

CD45, FT55 0 0 0 0 14 0 0 0 0 0 

CD55, FT45 0 4 0 0 0 14 0 0 3 0 

CD65, FT35 0 2 0 0 0 0 19 0 0 0 

CD75, FT25 0 0 0 0 0 0 0 11 0 0 

CD85, FT15 1 0 0 0 0 0 0 0 20 0 

CD95, FT5 0 0 0 0 0 0 0 0 0 21 
Information: CD: Crown Density;FT: Foliage Transparency. 

Table 4 shows the confusion matrix results of the VGG16 

architecture on the Merkusii pine tree on a Tesla K80 GPU 

machine. The FP and FN values must be lowered to improve 

model performance so that it can predict the class density and 
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canopy transparency of Merkusii pine trees more precisely. 

There is an FP (false positives) value in density class 15, with 

5 images actually in density class 35, 1 image actually in 

density class 65, and 2 images actually in density class 5. Then, 

in density class 25, there are actually 3 images in density class 

95. In density class 35, there are 6 FPs consisting of 2 real 

images of density class 5, 2 real images of density class 15, 1 

real image of density class 65, and 1 real image of density class 

85. Density class 65 has 2 FPs, with 1 real image of density 

class 55 and 1 image that is actually density class 85. Finally, 

density class 75 has two images that are actually density class 

95. 

FN (false negatives) also occurs in some classes. In density 

class 5, there are 4 FNs consisting of 2 images incorrectly 

predicted as density 15 and 2 images incorrectly predicted as 

density 35. In density class 15, there are 2 FNs, which means 

2 images are incorrectly predicted as density 35. In density 

class 25, there is 1; the image was incorrectly predicted as 

density 95. In density class 35, there were 2 images incorrectly 

predicted as density 15. In the density class 55, there was one 

image incorrectly predicted as having a density 65. In the 

density class 65, there were 2 FNs, with 1 image incorrectly 

predicted as density 15 and 1 image incorrectly predicted as 

density 35. At density class 85, there are 2 FNs, with 1 image 

incorrectly predicted as density 35 and 1 image incorrectly 

predicted as density 65. Finally, at density 95, there are 5 FNs, 

with three images incorrectly predicted as density 25 and two 

images incorrectly predicted as density 75. 

From the results of testing the VGG16 architecture on the 

merkusii pine tree species, a number of false positive (FP) and 

false negative (FN) values can be seen, which reflect the 

model's performance in predicting density classes. The model 

often experiences errors in assigning images to inappropriate 

classes, which is reflected in the presence of FP values and 

similar patterns in other density and transparency classes. 

Evaluation of model accuracy based on FP and FN values 

shows that there is room to improve model performance. With 

inaccurate predictions for both FP and FN, the model is less 

accurate in recognizing density and transparency classes in the 

Merkusii pine tree species. 

 

3.5.2 Araucaria heterophylla 

Table 5 shows the results of the AlexNet architecture 

confusion matrix for the Araucaria heterophylla tree on the 

K80 GPU machine. False positive (FP) values in several 

classes, such as density class 5 with 4 FP, where one image is 

actually density class 15, one image is actually density class 

25, and one image is actually density class 55. In density class 

25, there is one image that is actually density class 65. Density 

class 55 has 6 FPs, which means three images are actually of 

density class 5, two images are actually of density class 15, 

and one image is actually of density class 65. At density 65, 

there is actually 1 image of density class 55. At density 75, 

there are actually 2 images of density class 25. Density class 

85 with 3 FP, which means one image is actually density class 

5, one image is actually density class 55, and one image is 

actually density class 65. False negative (FN) values are also 

seen in density class 5 with 4 FN, where 3 images are 

incorrectly predicted as density 55 and 1 image is incorrectly 

predicted as density 85. Density 15 with 3 FN, where 1 image 

is incorrectly predicted as density 5, and 2 images are 

incorrectly predicted as density 55. Density 25 with 3 FN, 

where 1 image is incorrectly predicted as density 5, and 2 

images are incorrectly predicted as density 75. Density 55 with 

4 FN, where 2 images are incorrectly predicted as density 5, 1 

image is incorrectly predicted as density 65, and 1 image is 

incorrectly predicted as density 85. At density 65, there are 3 

FNs, of which 1 image is incorrectly predicted as density 25, 

1 image is incorrectly predicted as density 55, and 1 image is 

incorrectly predicted as density 85. 

From the results of testing the AlexNet architecture on the 

Araucaria heterophylla tree species, there are a number of false 

positive (FP) and false negative (FN) values that reflect the 

model's performance in predicting density classes. The model 

often makes mistakes in placing images into inappropriate 

classes, which can be seen from the FP values and similar 

patterns in other density and transparency classes. Assessment 

of model accuracy based on FP and FN values shows that there 

is room to improve model performance. With inaccurate 

predictions for both FP and FN, the model becomes less 

precise in recognizing density and transparency classes in the 

Araucaria heterophylla tree species. 

Table 6 shows the results of the VGG16 architecture matrix 

confusion on Araucaria heterophylla trees on a Tesla K80 

GPU machine. FP (false positives) values are found in several 

classes, such as density class 5 with 2 FP, where one image is 

actually density class 25 and one image is actually density 

class 85. In density class 15 with 6 FP, four images are actually 

density class 55 and two are actual images of density class 65. 

For density class 35, there is 1 FP, which marks one true image 

of density class 15, density class 55 with 2 FP, which marks 2 

true images of density class 15, and density class 85 with 4 FP, 

where one image is actually density class 15 and 3 images are 

actually density class 55. Meanwhile, FNs (false negatives) are 

also found in several classes, such as density class 15 with 4 

FNs, where 1 image is incorrectly predicted as density 35, 2 

images are incorrectly predicted as density 55, and 1 image is 

incorrectly predicted as density 85. For the density class 25 

with 1 FN, there is 1 image incorrectly predicted as density 5. 

For the density class 55 with 7 FN, there are 4 images 

incorrectly predicted as density 15 and 3 images incorrectly 

predicted as density 85. For density class 65, there are 2 

images incorrectly predicted as density 15. In density class 65 

with 2 FN, 1 image is incorrectly predicted as density 15, and 

1 image is incorrectly predicted as density 35. And density 

class 85, with 1 image incorrectly predicted as density 5. 

From the results of testing the VGG16 architecture on the 

Araucaria heterophylla tree species, there are several false 

positive (FP) and false negative (FN) values that reflect the 

model's performance in predicting density classes. The model 

often makes mistakes in placing images into inappropriate 

classes, which can be seen from the presence of FP and similar 

patterns in other density and transparency classes. Evaluation 

of model accuracy based on FP and FN values shows that there 

is room to improve model performance. With inaccurate 

predictions for both FP and FN, the model becomes less 

effective in recognizing density and transparency classes in the 

Araucaria heterophylla tree species. 

 

3.5.3 Cupressus retusa 

Table 7 shows the confusion matrix results of the AlexNet 

architecture for the Cupressus Retusa tree on a Tesla K80 GPU 

machine. In several classes, such as density class 5, there are 

3 false positive (FP) values, which means 3 images are actually 

density class 85. At density 15, there is 1 FP, which means 1 

image is actually density class 5. At density 45, there is 1 real 

image density class 5. For density 55 with 1 FP, which means 

1 image is actually density class 65, At density 65 with 4 FP, 
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where 4 images are actually density class 55. For density class 

75 with 3 FP, there are actually two images of density class 25, 

and one image is actually density class 95. Meanwhile, density 

is 85 with 3 FP, which means 3 images are actually density 

class 5. False negative (FN) values are also seen in density 

class 5 with 5 FN, where 1 image is incorrectly predicted as 

density 15, 1 image is incorrectly predicted as density 45, and 

3 images are incorrectly predicted as density 85. At density 25 

with 2 FN, which means 2 images are incorrectly predicted as 

density 75. For density 55 with 4 FN, 4 images are incorrectly 

predicted as density 65. At density 65 with 2 FN, where 1 

image is incorrectly predicted as density 5 and 1 image is 

incorrectly predicted as density 55. Meanwhile, density 85 

with 3 FN, where 3 images are incorrectly predicted as density 

5. 

From the results of testing the AlexNet architecture on the 

Cupressus retusa tree species, a number of false positive (FP) 

and false negative (FN) values can be seen, which describe the 

model's performance in predicting density classes. The model 

often incorrectly assigns images to inappropriate classes, as 

seen by the FP values and similar patterns in other density and 

transparency classes. Evaluation of model accuracy based on 

FP and FN values shows that there is room to improve model 

performance. With less accurate predictions, both FP and FN, 

the model becomes less effective in recognizing density and 

transparency classes in the Cupressus retusa tree species. 

Table 8 shows the confusion matrix results of the VGG16 

architecture on the Cupressus Retusa tree on a Tesla K80 GPU 

machine. There are FP (false positives) values in several 

classes, such as density class 5 with 2 FP, which means 2 

images are actually a density of 85. For density class 25 with 

2 FP, which means 2 images are actually a density of 5, For 

density class 35 with 1 FP, which means 1 image is actually a 

density of 15, In the density class 75, there is 1 FP, which 

means 1 image is actually a density of 95. Meanwhile, the 

density class 85 has 4 FPs, which means three images are 

actually a density of 5, and one image is actually a density of 

65. On the other hand, there are also FN (false negatives) in 

several classes, such as density class 5 with 5 FN, which means 

2 images were incorrectly predicted as density 25, and 3 

images were incorrectly predicted as density 85. For density 

class 25 with 2 FN, which means 2 images incorrectly 

predicted as density 75, For density class 55 with 4 FN, which 

means 4 images were incorrectly predicted as density 65, For 

density class 65 with 1 FN, which means 1 image was 

incorrectly predicted as density 55. In density class 85 with 2 

FN, which means 2 images were incorrectly predicted as 

density 5, Meanwhile, the density class is 95 with 1 FN, which 

means 1 image was incorrectly predicted as having a density 

75. 

From the test results using the VGG16 architecture on the 

Cupressus retusa tree species, there are a number of false 

positive (FP) and false negative (FN) values that indicate the 

model's performance in predicting density classes. The model 

rarely experiences errors in placing images into inappropriate 

classes, as evidenced by the existence of FP values and similar 

patterns in other density and transparency classes. Evaluation 

of model accuracy based on FP and FN values shows that there 

is room to improve model performance. With fairly accurate 

predictions for both FP and FN, the model can be considered 

quite effective in recognizing density and transparency classes 

in the Cupressus retusa tree species. 

 

Table 7. Confusion matrix AlexNet cupressus retusa 

 

Original 

Class 

Prediction Result Class 

CD5, 

FT95 

CD15, 

FT85 

CD25, 

FT75 

CD35, 

FT65 

CD45, 

FT55 

CD55, 

FT45 

CD65, 

FT35 

CD75, 

FT25 

CD85, 

FT15 

CD95, 

FT5 

CD5, FT95 20 0 2 0 0 0 0 0 3 0 

CD15, FT85 0 14 0 1 0 0 0 0 0 0 

CD25, FT75 0 0 27 0 0 0 0 0 0 0 

CD35, FT65 0 0 0 24 0 0 0 0 0 0 

CD45, FT55 0 0 0 0 14 0 0 0 0 0 

CD55, FT45 0 0 0 0 0 21 0 0 0 0 

CD65, FT35 0 0 0 0 0 0 20 0 1 0 

CD75, FT25 0 0 0 0 0 0 0 11 0 0 

CD85, FT15 2 0 0 0 0 0 0 0 19 0 

CD95, FT5 0 0 0 0 0 0 0 1 0 20 
Information: CD: Crown Density; FT: Foliage Transparency. 

 

Table 8. Confusion matrix VGG16 cupressus retusa 

 

Original 

Class 

Prediction Result Class 

CD5, 

FT95 

CD15, 

FT85 

CD25, 

FT75 

CD35, 

FT65 

CD45, 

FT55 

CD55, 

FT45 

CD65, 

FT35 

CD75, 

FT25 

CD85, 

FT15 

CD95, 

FT5 

CD5, FT95 20 1 0 0 1 0 0 0 3 0 

CD15, FT85 0 15 0 0 0 0 0 0 0 0 

CD25, FT75 0 0 27 0 0 0 0 2 0 0 

CD35, FT65 0 0 0 24 0 0 0 0 0 0 

CD45, FT55 0 0 0 0 14 0 0 0 0 0 

CD55, FT45 0 0 0 0 0 21 4 0 0 0 

CD65, FT35 1 0 0 0 0 1 19 0 0 0 

CD75, FT25 0 0 0 0 0 0 0 11 0 0 

CD85, FT15 2 0 0 0 0 0 0 0 19 0 

CD95, FT5 0 0 0 0 0 0 0 1 0 20 
Information: CD: Crown Density; FT: Foliage Transparency. 
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Table 9. Confusion matrix AlexNet shorea javanica 
 

Original Class 

Prediction Result Class 

CD5, 

FT95 

CD15, 

FT85 

CD25, 

FT75 

CD35, 

FT65 

CD45, 

FT55 

CD55, 

FT45 

CD65, 

FT35 

CD75, 

FT25 

CD85, 

FT15 

CD95, 

FT5 

CD5, FT95 25 0 0 0 0 0 0 0 0 0 

CD15, FT85 0 15 0 0 0 0 0 0 0 0 

CD25, FT75 0 0 27 0 0 0 0 0 0 0 

CD35, FT65 0 1 0 20 0 2 0 1 0 0 

CD45, FT55 0 0 0 0 14 0 0 0 0 0 

CD55, FT45 0 0 0 1 0 19 1 0 0 0 

CD65, FT35 0 0 0 1 0 0 20 0 0 0 

CD75, FT25 0 0 2 0 0 0 0 9 0 0 

CD85, FT15 0 0 0 0 0 0 0 0 21 0 

CD95, FT5 0 0 1 0 0 0 0 0 0 20 
Information: CD: Crown Density; FT: Foliage Transparency. 

 

Table 10. Confusion matrix VGG16 shorea javanica 
 

Original 

Class 

Prediction Result Class 

CD5, 

FT95 

CD15, 

FT85 

CD25, 

FT75 

CD35, 

FT65 

CD45, 

FT55 

CD55, 

FT45 

CD65, 

FT35 

CD75, 

FT25 

CD85, 

FT15 

CD95, 

FT5 

CD5, FT95 25 0 0 0 0 0 0 0 0 0 

CD15, FT85 0 15 0 0 0 0 0 0 0 0 

CD25, FT75 0 0 27 0 0 0 0 0 0 0 

CD35, FT65 0 0 0 24 0 0 0 0 0 0 

CD45, FT55 0 0 0 0 14 0 0 0 0 0 

CD55, FT45 0 0 0 0 0 21 0 0 0 0 

CD65, FT35 0 0 0 0 0 0 21 0 0 0 

CD75, FT25 0 0 0 0 0 0 0 11 0 0 

CD85, FT15 0 0 0 0 0 0 0 0 21 0 

CD95, FT5 0 0 1 0 0 0 0 0 0 20 
Information: CD: Crown Density; FT: Foliage Transparency. 

 

3.5.4 Shorea javanica 

Table 9 shows the confusion matrix results of the AlexNet 

architecture for the Shorea Javanica tree on the K80 GPU 

machine. False positive (FP) values in several classes, for 

example, density class 15 with 1 FP, means 1 image is actually 

density 35. Density class 25 with 3 FP, which means 3 images 

are actually density 75 and one image is actually density 95. 

For density class 35 with 2 FP, which means 2 images are 

actually a density of 55 and one image is actually a density of 

65, Density 55 with 2 FP, which means 2 images are actually 

a density of 35. Density 65 with 1 FP, where 1 image is 

actually a density of 55. Density 75 with 1 FP, meaning that 1 

image is actually a density of 35. False negative (FN) values 

are also seen in the density class 35 with 4 FNs, where 1 image 

is incorrectly predicted as a density of 15, 2 images are 

incorrectly predicted as a density of 55, and 1 image is 

incorrectly predicted as a density of 75. Density 55 with 2 FN, 

where 1 image is incorrectly predicted as density 35 and 1 

image is incorrectly predicted as density 65. Density 65 with 

1 FN, where 1 image is incorrectly predicted as density 35. 

Meanwhile, density class 75 with 2 FN, which is 2 images 

wrongly predicted as a density of 25, Meanwhile, the density 

class is 95 with 1 FN, where 1 image is wrongly predicted as 

a density of 25. 

Based on test results using the AlexNet architecture on the 

Shorea javanica tree species, there are a number of false 

positive (FP) and false negative (FN) values that indicate the 

model's performance in predicting density classes. The model 

often experiences errors in placing images into inappropriate 

classes, as evidenced by the existence of FP values and similar 

patterns in other density and transparency classes. Evaluation 

of model accuracy based on FP and FN values shows that there 

is room to improve model performance. With less accurate 

predictions, both FP and FN, the model can be considered less 

effective in recognizing density and transparency classes in the 

Shorea javanica tree species. 

Table 10 depicts the confusion matrix results for the VGG16 

architecture on Shorea javanica trees. However, FP and FN 

still appear in the performance of the VGG16 model on shorea 

javanica trees, which were evaluated using the Tesla K80 GPU 

engine. One case of FP can be observed in density class 25, 

where one image is actually density 95. In addition, one case 

of FN was found in density class 95, where one image was 

incorrectly predicted as density 25. 

Based on test results using the VGG16 architecture on the 

Shorea javanica tree species, there is one false positive (FP) 

and one false negative (FN) value, which indicates the model's 

performance in predicting density and transparency classes. 

The model almost does not experience errors in placing images 

into inappropriate classes, as evidenced by the presence of 1 

FP and FN values. With accurate predictions in both FP and 

FN, the model can be considered effective in recognizing 

density and transparency classes in the Shorea javica tree 

species. 

 

3.6 Performance comparison between AlexNet and 

VGG16 

 

The following are the differences between AlexNet and 

VGG16. 

The differences in the AlexNet and VGG architectures can 

be seen in Table 11. AlexNet uses hyperparameters as in Table 

11. These hyperparameters were after carrying out several 

experiments during the research to get the best accuracy from 

the AlexNet and VGG16 models. AlexNet also has 11 layers, 

consisting of 5 convolutional layers, 3 max pooling, and 3 
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fully connected layers while VGG16 is much deeper with a 

total of 21 layers, including 13 convolutional layers, 5 max 

pooling, and 3 fully connected layers. AlexNet uses a 'wide' 

configuration with the addition of larger layers in proportion 

to depth, for example 96, 256, 384, and 384 filters in the 

convolution layer. VGG16 uses a 'deep' configuration with all 

convolution layers having a relatively small number of filters 

(64 or 128) but a deeper structure. VGG16 learns images more 

deeply and has more parameters so it is typically slower to 

train than AlexNet. VGG16 often provides better results in 

object recognition tasks due to its greater depth and 

complexity. However, AlexNet has introduced important 

concepts such as dropout, which influenced subsequent 

convolutional neural network architecture designs. In this 

study, the VGG16 results were better than AlexNet because 

the VGG16 model learned more deeply about the images used 

and the hyperparameters used as in Table 11.  

 

Table 11. Comparison of AlexNet and VGG16 

 
Arsitektur Hyperparameter Layer 

AlexNet 

Epoch 20 

11 Batch-size 8 

Learning-rate 0.0001 

VGG16 

Epoch 10 

21 Batch-size 32 

Learning-rate 0.001 

 

 

4. CONCLUSION 

 

In this research, introducing density levels and editorial 

transparency using four variations of needle leaves has been 

successfully implemented using the AlexNet and VGG16 

architecture. The AexNet architecture model in identifying the 

level of density and transparency in needle leaves on the Tesla 

K80 machine produces an accuracy for the Araucaria 

heterophylla needle leaf type of 93.00%. In comparison, for 

Shorea javanica it reaches 99.00%. Meanwhile, this model 

also achieved an accuracy of 96.00% for Cupressus retusa and 

86.00% for Pinus merkusii. Meanwhile, the accuracy results 

obtained by the VGG16 architecture when using the Tesla K80 

machine to identify density and transparency in Pinus merkusii 

needle leaves were around 90.00%. In contrast, in Araucaria 

heterophylla needle leaves, it reached around 92.00%. For 

Cupressus retusa needle leaves, this architecture achieves an 

accuracy of approximately 96.00%; for Shorea javanica needle 

leaves, the accuracy even reaches around 99.00%. 

The AlexNet model experienced errors in classifying or 

predicting 20 images of Araucaria heterophylla trees, 10 

images of Cupressus retusa, 28 images of Pinus merkusii, and 

four images of Shorea javanica. Meanwhile, errors in 

classifying images in the VGG16 architecture included 19 

images of Pinus merkusii trees, 15 images of Araucaria 

heterophylla trees, 10 images of Cupressus retusa trees, and 

one image of Shorea javanica trees. This error occurs because 

there are similar patterns and positions in the image. 

 

 

5. RECOMMENDATION 

 

In the research, it is necessary to add pictures of types of 

needle leaves with more and more variations for each class. 

This will help increase the level of accuracy of the resulting 

model. It is important to review hyperparameter settings and, 

if possible, measure these values greater than those used in this 

study. This can help achieve a higher level of accuracy in the 

model. In addition to the AlexNet and VGG16 architectures, 

you should consider using other Convolutional Neural 

Network (CNN) architectures such as LeNet, MobileNet, 

EfficientNet, etc. This will help compare accuracy results 

between various architectures so you can choose the one that 

provides optimal results. This research can also be further 

developed by integrating it into a website or mobile-based 

application. This will make it easier to monitor and use the 

model for various practical purposes. This research will be 

applied in the forestry sector, especially for monitoring forest 

health in the Wan Abdul Rachman Community Forest Park, 

Lampung, Indonesia. 
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